Orientation

Z

How can the WCB be determined from observations?

Recall the definition of mean direction:

All the angular observations refer to the index of the horizontal circle, but they should refer to the Northing instead!

Orientation

 z_A – orientation angle

Orientation

How to find the orientation angle?

A,B are known points, MD_{AP} and MD_{AB} are observed.

Aim: Compute WCB'_{AP}

Compute the orientation angle: $z_A = WCB_{AB} - MD_{AB}$ Computing the WCB'_{AP}: $WCB'_{AP} = z_A + MD_{AP}$

Computing the mean orientation angle

In case of more orientations, as many orientation angles can be computed as many control points are sighted:

> $z_A^B = WCB_{AB} - MD_{AB}$ $z_A^C = WCB_{AC} - MD_{AC}$ $z_A^D = WCB_{AD} - MD_{AD}$

 $z_A{}^B$, $z_A{}^C$ and $z_A{}^D$ are usually slightly different due observation and coordinate error.

However, the orientation angle is constant for a station and a set of observations.

Mean orientation angle: $z_A = \frac{z_A^B \cdot d_{AB} + z_A^C \cdot d_{AC} + z_A^D \cdot d_{AD}}{d_{AB} + d_{AC} + d_{AD}}$

WCB vs provisional WCB

Whole circle bearing (WCB_{AB}): computed from coordinates, between two points, which coordinates are known.

Provisional whole circle bearing (WCB'_{AB}): an

angular quantity, which is similar to the whole circle bearing. However it is computed from observations, by summing up the (mean) orientation angle and the mean direction.