Orientation

How can the WCB be determined from observations?
Recall the definition of mean direction:

All the angular observations refer to the index of the horizontal circle, but they should refer to the Northing instead!

Orientation

$$
\mathrm{z}_{\mathrm{A}}-\text { orientation angle }
$$

Orientation

How to find the orientation angle?
A, B are known points, $M D_{A P}$ and $M D_{A B}$ are observed.

Aim: Compute $\mathrm{WCB}^{\prime}{ }_{\text {AP }}$

Compute the orientation angle:

$$
\mathrm{z}_{\mathrm{A}}=\mathrm{WCB}_{\mathrm{AB}}-\mathrm{MD}_{\mathrm{AB}}
$$

Computing the $\mathrm{WCB}^{\prime}{ }_{\mathrm{AP}}$:

$$
W C B_{A P}^{\prime}=z_{A}+M D_{A P}
$$

Computing the mean orientation angle

In case of more orientations, as many orientation angles can be computed as many control points are sighted:

$$
\begin{aligned}
& \mathrm{z}_{A}^{B}=\mathrm{WCB}_{A B}-\mathrm{MD}_{\mathrm{AB}} \\
& \mathrm{z}_{\mathrm{A}}^{\mathrm{C}}=\mathrm{WCB}_{A C}-\mathrm{MD}_{\mathrm{AC}} \\
& \mathrm{z}_{A}^{\mathrm{D}}=\mathrm{WCB}_{A D}-\mathrm{MD}_{\mathrm{AD}}
\end{aligned}
$$

$\mathrm{Z}_{\mathrm{A}}{ }^{B}, \mathrm{z}_{\mathrm{A}}{ }^{\mathrm{C}}$ and $\mathrm{z}_{\mathrm{A}}{ }^{\mathrm{D}}$ are usually slightly different due observation and coordinate error.

However, the orientation angle is constant for a station and a set of observations.

Mean orientation angle:

$$
z_{A}=\frac{z_{A}^{B} \cdot d_{A B}+z_{A}^{C} \cdot d_{A C}+z_{A}^{D} \cdot d_{A D}}{d_{A B}+d_{A C}+d_{A D}}
$$

WCB vs provisional WCB

Whole circle bearing ($\mathbf{W C B}_{\mathrm{AB}}$): computed from coordinates, between two points, which coordinates are known.

Provisional whole circle bearing ($\mathbf{W C B}^{\prime}{ }_{\mathrm{AB}}$): an angular quantity, which is similar to the whole circle bearing. However it is computed from observations, by summing up the (mean) orientation angle and the mean direction.

