## Surveying I.

## Plane surveying. Fundamental tasks of surveying. Intersections. Orientation.



#### The coordinate system



Northing axis is the projection of the starting meridian of the projection system, while the Easting axis is defined as the northing axis rotated by 90° clockwise.

# The whole circle bearing

How could the direction of a target from the station be defined?



**Whole circle bearing:** the local north is rotated clockwise to the direction of the target. The angle which is swept is called the whole circle bearing.

 $0^{\circ} \leq WCB_{AB} < 360^{\circ}$ 



#### **Transferring Whole Circle Bearings**

WCB of reverse direction:

 $WCB_{BA} = WCB_{AB} \pm 180^{\circ}$ 

Transferring WCBs:  $WCB_{AB}$  is known,  $\alpha$  is measured, how much is  $WCB_{AC}$ ?





#### 1st fundamental task of surveying



A(E<sub>A</sub>, N<sub>A</sub>), WCB<sub>AB</sub> and d<sub>AB</sub> is known, B(E<sub>B</sub>, N<sub>B</sub>)=?

$$\Delta E_{AB} = E_B - E_A = d_{AB} \cdot \sin WCB_{AB}$$
$$\Delta N_{AB} = N_B - N_A = d_{AB} \cdot \cos WCB_{AB}$$
$$\Downarrow$$
$$E_B = E_A + d_{AB} \cdot \sin WCB_{AB},$$
$$N_B = N_A + d_{AB} \cdot \cos WCB_{AB}.$$



#### 2nd fundamental task of surveying



A(E<sub>A</sub>, N<sub>A</sub>), B(EB,NB) is known, WCB<sub>AB</sub>=? and  $d_{AB}$ =?

$$d_{AB} = \sqrt{(E_B - E_A)^2 + (N_B - N_A)^2}$$
$$\alpha = \arctan \frac{E_B - E_A}{N_B - N_A},$$
$$WCB_{AB} = \alpha + c$$



IV.

#### 2nd fundamental task of surveying



\_

+

+360°

#### Intersections

**Aim:** the coordinates of an unknown point should be computed. Measurements are taken from two different stations to the unknown point, and the so formed triangle should be solved.



#### **Foresection with inner angles**



- 1. Compute WCB<sub>AB</sub>,  $d_{AB}$  using the 2nd fundamental task of surveying.
- 2. Using the sine theorem compute  $d_{AP}$  and  $d_{BP}$ !

$$d_{AP} = d_{AB} \frac{\sin \beta}{\sin(\alpha + \beta)}$$
  $d_{BP} = d_{AB} \frac{\sin \alpha}{\sin(\alpha + \beta)}$ 

3. Compute WCB<sub>AP</sub> and WCB<sub>BP</sub>:  $WCB_{AP} = WCB_{AB} - \alpha$   $WCB_{BP} = WCB_{BA} + \beta$ 

#### **Foresection with inner angles**



#### **Foresection with WCBs**



A,B,C and D are known points,  $\alpha$  and  $\beta$  are measured.



#### **Foresection with WCBs**



$$WCB'_{AP} = WCB_{AC} + \alpha$$
$$WCB'_{BP} = WCB_{BD} + \beta$$

 $N_1 = N_A + (E - E_A) \cdot \cot WCB_{AP}$  $N_2 = N_B + (E - E_B) \cdot \cot WCB_{BP}$ 

#### **Foresection with WCBs**



Let's compute the intersection of the lines AP and BP:  $N_1 = N_2$   $E(\cot WCB_{AP} - \cot WCB_{BP}) = N_B - N_A + E_A \cot WCB_{AP} - E_B \cot WCB_{BP}$   $E_P = \frac{N_B - N_A + E_A \cot WCB_{AP} - E_B \cot WCB_{BP}}{\cot WCB_{AP} - \cot WCB_{BP}}$  $N_P = N_A + (E_P - E_A) \cot WCB_{AP}$ 



### **Different types of intersections**

How can we use intersections, when A or B is not suitable for setting up the instrument:



 $\alpha$  can be computed by  $\alpha = 180^{\circ} - \gamma - \beta$ . => Foresection.

#### Resection



A,B,C are known control points  $\xi$  and  $\eta$  are observed angles

Aim: compute the coordinates of P (the station)

#### Resection





#### Resection



Since  $T_1$ , P and  $T_2$  are on a straight line:

 $WCB_{T_1P} = WCB_{T_1T_2}$  $WCB_{BP} = WCB_{T_1T_2} + 90^{\circ}$ 

**Foresection with WCBs** 



### **Resection – the dangerous circle**

What happens, if all the four points are on one circumscribed circle?



#### Arcsection

A, B are known control points,  $D_{AP}$  and  $D_{BP}$  are measured.

**Aim:** compute the coordinates of P!



Using the cosine theorem, compute the angle  $\alpha$ :

$$D_{BP}^{2} = D_{AP}^{2} + d_{AB}^{2} - 2D_{AP}d_{AB}\cos\alpha$$
$$\downarrow\downarrow$$
$$\alpha = \arccos\frac{D_{AP}^{2} + d_{AB}^{2} - D_{BP}^{2}}{2D_{AP}d_{AB}}.$$



#### Arcsection



Compute WCB<sub>AB</sub> from the coordinates of A and B,

$$WCB_{AP} = WCB_{AB} - \alpha$$

1st fundamental task of surveying

12242 march 19

## Orientation



How can the WCB be determined from observations?

Recall the definition of mean direction:

All the angular observations refer to the index of the horizontal circle, but they should refer to the Northing instead!

#### Orientation

 $z_A$  – orientation angle



# Orientation

How to find the orientation angle?

A,B are known points,  $MD_{AP}$  and  $MD_{AB}$  are observed.

Aim: Compute WCB'<sub>AP</sub>



Compute the orientation angle:  $z_A = WCB_{AB} - MD_{AB}$ Computing the WCB'<sub>AP</sub>:  $WCB'_{AP} = z_A + MD_{AP}$ 





#### **Computing the mean orientation angle**

In case of more orientations, as many orientation angles can be computed as many control points are sighted:

> $z_A^B = WCB_{AB} - MD_{AB}$  $z_A^C = WCB_{AC} - MD_{AC}$  $z_A^D = WCB_{AD} - MD_{AD}$

 $z_A{}^B$ ,  $z_A{}^C$  and  $z_A{}^D$  are usually slightly different due observation and coordinate error.

However, the orientation angle is constant for a station and a set of observations.

Mean orientation angle:  $z_A = \frac{z_A^B \cdot d_{AB} + z_A^C \cdot d_{AC} + z_A^D \cdot d_{AD}}{d_{AB} + d_{AC} + d_{AD}}$ 



#### **WCB vs provisional WCB**



Whole circle bearing (WCB<sub>AB</sub>): computed from coordinates, between two points, which coordinates are known.

#### Provisional whole circle bearing (WCB'<sub>AB</sub>): an

angular quantity, which is similar to the whole circle bearing. However it is computed from observations, by summing up the (mean) orientation angle and the mean direction.



#### **Thank You for Your Attention!**