

Surveying I.

Tacheometry

Principle of tacheometry

Tacheometry

"Fast measurement" – measurement of horizontal and vertical coordinates of detail points in one step.

Principle of tacheometry

The horizontal position of the detail point is computed using the polar coordinates (WCB & d_h), while the elevation is measured using trigonometric heighting.

Principle of tacheometry

Horizontal coordinates:

Е

- (N_A, E_A) and (N_T, E_T) are known;
- ϕ_{AP} , t_{AP} is measured.

Exercise: compute the coordinates of **P**

Solution:

- WCB_{AT} is computed (2nd fundamental task of surveying;
- WCB_{AP} is computed by transfering the WCB from AT to AP (WCB_{AP}=WCB_{AT}+ ϕ_{AP});
- the horizontal coordinates of P are computed by the 1st fundamental task of surveying

Principle of tacheometry

Vertical coordinates:

$$\Delta h_{AP} = h_I + d_S \sin \zeta_{AP} - h_S$$

Measuring the slope distance

Older instruments: use the optical method (stadia lines) to measure the distance. The maximal range is 150-200m, and the accuracy 15-20cm.

Latest instruments: EDMs are used to measure the slope distance. The maximal range is usually 2-3 km, accuracy is 1-2 cm.

Electronic tacheometers (Total Stations)

Important features:

- automated distance measurements and angular observations;
- the observations can be corrected for the effect of systematic error, and reduced to the MSL;
- the data can be recorded for later use;
- observation software enables the instrument to compute coordinates and stake out.

Operation of Total Stations

- Centering and leveling the instrument by the operator
- \bullet observing the slope distance (d_s), correcting the effect of the reflector constant, the frequency error and the meteorological correction;
- the horizontal (Hz) and vertical (V) angles are read, and the effects of the collimation and index error are accounted for;
- the horizontal distance (d_h) and the elevation difference is (Δh) is computed (instrument and signal height must be entered previously);
- the data set (d_s , Hz, V) or (Hz, d_h , Δh) is logged.

Important software of Total Stations

1. Free station establishment

The station coordinates are computed using angular and distance observations to known points (resection, arc-section and their combination). In most cases the orientation is also done.

2. Determination of the elevation of the station

by trigonometric heighting to known stations.

3. Orientation of the horizontal circle

by taking horizontal angle observations to known stations.

4. Computation of rectangular coordinates (N,E) using the polar coordinates (provisional WCB and

horizontal distance)

Important software of Total Stations

5. Tie distance

The horizontal distance between two measured detail points can be computed using their coordinates.

6. Remote object

by measuring the horizontal distance to the vertical of a remote object, and the zenith angle.

Detail surveys using tacheometry

Preparation

- densification of control network;
- finding suitable places for free station establishment.

Detail survey

- detail points of:
 - buildings;
 - linear objects (e.g. electric poles);
 - rectangular buildings;
 - arcs;
 - topography.

Detail surveys using tacheometry

Identifying the detail points

- drawing a sketch of the area, and marking the detail points on it with ID numbers;
- recording the coordinates or observations with the same ID numbers;
- ensure that the two numberings are identical;

Mapping the survey

- marking the positions of the detail points in a given scale;
- the elevation of topographic points should be written on the map;
- contour lines are interpolated between the measured topographic points.

Thank You for Your Attention!