Surveying I. (BSc)

Trigonometric heighting.

Distance measurements, corrections and reductions

How could the height of skyscrapers be measured?

The principle of trigonometric heighting

The principle of trigonometric heighting

$$
m=?
$$

The principle of trigonometric heighting

The principle of trigonometric heighting

The principle of trigonometric heighting

$m=h+\Delta m-\ell=h-\ell+d \cot z$

Trigonometric levelling

Trigonometric levelling

Advantage:

- the instrument height is not necessary;
- non intervisible points can be measured, too.

Advantages compared to optical levelling:

- A large elevation difference can be measured over short distances;
- The elevation difference of distant points can be measured (mountain peaks);
- The elevation of inaccessible points can be measured (towers, chimneys, etc.)

Disadvantages compared to optical levelling:

- The accuracy of the measured elevation difference is usually lower.
- The distance between the points must be known (or measured) in order to compute the elevation difference

The determination of the heights of buildings

The horizontal distance is observable, therefore:

$$
\begin{gathered}
\Delta m=d_{A P} \cot z_{A} \\
m=l_{O}+d_{A P} \cot z_{A}
\end{gathered}
$$

Determination of the height of buildings

The distance is not observable.

Determination of the height of buildings

$$
\begin{gathered}
\frac{d_{A P}}{\sin \beta}=\frac{a}{\sin (180-\alpha-\beta)} \Rightarrow d_{A P}=a \frac{\sin \beta}{\sin (\alpha+\beta)} \\
\frac{d_{B P}}{\sin \alpha}=\frac{a}{\sin (180-\alpha-\beta)} \Rightarrow d_{B P}=a \frac{\sin \alpha}{\sin (\alpha+\beta)}
\end{gathered}
$$

Determination of the height of buildings

Determination of the height of buildings

Determination of the height of buildings

Using the observations in pont B :

$$
\begin{gathered}
m^{B}=l_{O}^{B}+d_{B P} \cot z_{B} \\
m=\frac{\left(m^{A}+m^{B}\right)}{2}
\end{gathered}
$$

