TOPICS

FOR STUDENTS OF CIVIL ENGINEERING BSC Valid from the Spring semester 2019/2020

	REINFORCED CONCRETE STRUCTURES
1.	Ultimate and serviceability limit state design methods of mild steel reinforced
	concrete beams for bending, with or without the simultaneous presence of shear or
	torsional forces, in accordance with EC2.
2.	Simplified method for evaluating the biaxial capacity of rectangular reinforced
	concrete sections.
3.	Elastic and plastic design of one way and two way reinforced concrete ribbed, wall
	and beam supported slabs according to EC2.
4.	Load bearing capacity of reinforced concrete slabs using Johansen's yield-line
~	theory.
э.	Design and construction of reinforced concrete flat slabs. How to avoid punching
6	Shear failure?
0.	present approximate manual calculation methods for internal forces in reinforced
	frames
7	Primary and secondary loadbearing structures of high-rise concrete buildings
7.	Bracing against lateral load of wind and earthquake
8	Structural design of reinforced concrete industrial halls. Static and dynamic effects
0.	of bridge cranes
	STEEL STRUCTURES
9.	Design of tensioned and compressed steel bars. Structural solutions and design of
	steel trusses according to EC3.
10.	Strength, stability and serviceability design of steel beams under shear and bending
	according to EC3
11.	Design of simple steel connections according to EC3: sheared, tensioned and pre-
	stressed bolts, welded connections.
12.	Design of industrial steel buildings – statical behaviour, ultimate and serviceability
	limit states, design of main structural elements according to EC3.
	COMPOSITE STRUCTURES OF STEEL AND CONCRETE
13.	Pros and cons of using steel-concrete composite structures in buildings. Explain the
1.4	
14.	Ultimate limit state design of steel-concrete composite simple, and continuous
15	Deallis Serviceshility limit state analysis of steel concrete composite hears
15.	Interaction between structural elements in steel concrete composite structuras. Full
10.	and nartial interaction. Design of shear connectors. Force-slip diagrams
17	Design of steel-concrete composite columns
1/1	TIMRER
18	Timber's mechanical properties. What parameters influence these mechanical
10.	properties? Describe the effect of fiber orientation and moisture content on the
	strength properties of timber
	strength properties of timber

19.	Analysis of timber structures in ultimate limit states, subjected to simple and
20	combined actions.
20.	Modern timber connection types (bolts, nails). Structural analysis and main rules of builtup
	BRIDGE CONSTRUCTION
21	Describe the types typical structural systems and main elements of bridges
21.	The substructures and hearings of bridges
23	Traditional and modern construction methods of bridges
	DVNAMICS
24	What do we mean by one DoF free undamped harmonic and linear vibrations?
∠-т.	How do we model such a system? What do we mean by the following terms: period
	amplitude natural angular frequency? What is the mathematical form of the
	displacement in function of time? Give simple examples.
25.	What do we mean by one DoF, free, damped vibrations? How do we model such a
	system? What do we mean by the following terms: dissipation force, relative
	damping coefficient, natural angular frequency of the damped system, amplitude of
	the damped system? Give simple examples.
	STATICS
26.	Introduce the force systems (concurrent, parallel, general), define their resultants and
	their equilibrant forces. Show an example for a structural static model and its
	application.
27.	Internal forces of simple structures. Introduce the normal, the shear and the moment
	functions of simply supported, overhanging straight and angled beams. Present the
	interdependence of them.
28.	Static equilibrium of determinate compound structures. Introduce the internal force
	diagrams of Gerber beams and three hinged frames. Present an example of reality.
	STRENGTH OF MATERIALS
29.	Material models in strength design, Hooke-law, generalized Hooke-law. Present
	some material model of structural materials.
30.	Geometric properties of an area: area, moment of the area, centroid, moments of
01	inertia for an area. Major and minor axes and importances.
31.	Determination of simple stresses: pure tension-compression, flexural buckling of
22	columns, pure bending, coupled bending, pure shear, torsion.
32.	Determination of stresses at coupled internal forces: eccentric normal force (tansion/compression and handing) determination of the neutral axis handing and
	(tension/compression and bending), determination of the neutral axis, bending and shear shear and torsion
	UNDERGROUND STRUCTURES CENTECHNICS
33	Types of shallow foundations design process Design of foundation level and
55.	recometry (B. L. m) based on Eurocode 7. Stresses below foundation settlement
	calculations, protection against uneven high settlement
34.	Types of deep foundations. Categorization of pile foundations (material, size, load
5	bearing, technology). Single pile design methods, pile density, geometry, Box,- and
	shell foundations, type, structural elements. Diaphragm wall foundations, type,
	structural elements.
	BUILDING MATERIALS-CONCRETE TECHNOLOGY
35.	Describe the typical composition of concrete. What are the most important
	properties of fresh concrete? What methods can be used to measure consistence of
	concrete?

36.	Describe the principles and steps of concrete mix design
	MASONRY STRUCTURES
37.	Describe the main mechanical properties of unreinforced masonry.
38.	Describe the main types of masonry structures and the design method of vertically
	loaded unreinforced masonry walls.