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PREFACE 

The aim to write of this teaching material is to provide an outline about the essence of the 

structural engineering problems. However the author of this lecture notes is a researcher of special 

parts of the structural optimization the main aim was here to give a tool for students, a tool to offer 

solution techniques, to give a short description of the theoretical backgrounds of structural 

optimization problems. 

The scope of this booklet is the mathematical formulation perfectly elastic and elastic plastic 

structural optimization problems. According to the complexity of usual structural optimization 

problems, throughout simple examples we present the solution methodology as well using the 

program package of Wolfram Mathematica
1
 The introduction contents the basic principles of the 

structural optimization modelling and the classification in computational methodology point of view. 

Second chapter related to linear elastic structural optimization problems where the objective function 

is the weight or volume of the whole structure subject to several structural constraints such as stress, 

displacements, local and global structural instability. The effects of the constraints are demonstrated 

by graphical interpretation of the results for 2D problems. Third chapter presents elasto-plastic and 

perfectly plastic optimization formulations. In this chapter different collapse states and two examples 

are considered to emphasize the main advantages of plastic design over the traditional elastic design. 

Fourth chapter deals with the most simple solution technique, namely the linear programming 

method because this is the basics of the nonlinear programming methods. Throughout simple 2D and 

3D examples the simplex method are shown manually and compared the results using Wolfram 

Mathematica. 

Fifth chapter offers a higher order mechanical modelling, where large deflection behavior is 

supposed. The structural control and stability criteria are computed based on the principle of 

minimum potential energy function. This chapter deals with the theoretical background and 

throughout two examples the geometrically nonlinear structural modelling is presented. Numerical 

computational code is given step by step in order to demonstrate the already highly nonlinear and 

nonconvex problem complexity. 

                                                 

1
 https://www.wolfram.com/mathematica/online/ 
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The topic of sixth chapter points beyond the median level of presentations for graduate 

students. However, this part of the structural optimization requires already higher level of knowledge 

of numerical mathematics, the author provides for graduate students those are interesting on a 

scientific research of special problems in structural optimization or apply to be doctoral student. 

Some texts are published in scientific journals by the author to present the current state of the field. 

The author would like to express her acknowledgement for the financial support of the Project 

No. EFOP - 3.4.3-16-2016-00005 „Felsőoktatási intézményi fejlesztések a felsőfokú oktatás 

minőségének és hozzáférhetőségének együttes javítása érdekében”. 

  

https://topszotar.hu/angolmagyar/point+beyond+something


8 

1. INTRODUCTION 

1.1 Modelling of Structural Optimization Problems 

The traditional structural design is an iterative procedure supposing an initial design based on 

empirical formulas of structural engineering process. Starting from a pre-conceptual structure where 

the applied materials, geometry, and the cross sections are given, the internal forces are computed. In 

the following step the designer compare the obtained stresses, strains, or displacements with the 

capacity of the selected structural materials and the given structural geometry. If this structure 

satisfies the main requirements the process terminates. 

In order to obtain a better design the structural optimization let us to define several free 

parameters that will be hereinafter the so called design variables during the structural design process. 

The goal of the optimal design might be to obtain a simple light-weight structure or a more reliable 

structure. However generally we are able to vindicate more complex requirements. The constructor 

could be prescribe different concepts as the goals of the structural design as multiple goal functions 

or in other name the objectives of the optimal design. 

In order to avoid any type of the structural collapse the structural requirements are considered 

during the searching process while we are looking for the minimal weight, minimal volume, or 

minimal cost structure. We have to satisfy the stress, strain, displacement, stability and any others 

criteria such that in normal rule of the traditional structural design. Therefore, we will apply the main 

relationships of static equilibrium, compatibility criteria, and material law, in linear or nonlinear 

cases depending on the structural ability. The structural rules will be considered as equality or 

inequality constraints of the structural optimization. 

The essence of the structural optimization is described above verbally, but in order to solve 

the problem we need to define the mathematical formulas of the optimization problem. The objective 

functions are minimization where two types of variables are supposed, design variables and state 

variables. 

The objective function: 

 𝑚𝑖𝑛 {𝑓1(𝑋, 𝑌), 𝑓2(𝑋, 𝑌), … , 𝑓𝑛(𝑋, 𝑌)} (1.1) 

subject to: 
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 𝑔𝑗(𝑋, 𝑌) = 0, 𝑗 = 1,2, … , 𝑘  (1.2) 

 ℎ𝑗(𝑋, 𝑌) ≤ 0, 𝑗 = 1,2, … , 𝑙 (1.3) 

where 𝑔𝑗(𝑋, 𝑌) are the equality constraints, ℎ𝑗(𝑋, 𝑌) are the inequality constraints, 𝑋 is the vector of 

the design variables, and 𝑌 is the vector of the state variables. 

In the mathematical formulas (1.1-1.3) described above very likely either of them will be nonlinear. 

Moreover, most structural engineering optimization problems are highly nonlinear and non-convex. 

Consequently, the applied solution techniques must be nonlinear. The problem is typically large, and 

the evaluation of the functions and gradients is expensive due to their implicit dependence on design 

variables (see in (Csébfalvi, 2009). 

The traditional engineering optimization algorithms are based on nonlinear programming methods 

that require substantial gradient information and usually seek to improve the solution in the 

neighborhood of a starting point. Many real-world engineering optimization problems, however, are 

very complex in nature and quite difficult to solve using these algorithms. If there is more than one 

local optimum in the problem, the results may depend on the selection of an initial point, and the 

obtained optimal solution may not necessarily be the global optimum. 

The computational drawbacks of existing numerical methods have forced researchers to rely on 

metaheuristic algorithms based on simulations to solve engineering optimization problems. The 

common factor in metaheuristic algorithms is that they combine rules and randomness to imitate 

natural phenomena. Csébfalvi (Csébfalvi, 2009) describes a hybrid metaheuristic for engineering 

optimization problems with continuous design variables. 

The highlights of this work are to present the complexity and computational difficulties of 

structural optimization problems. However, the subject doesn’t cover the knowledge of the full 

mathematical background. Therefore, in order to solve the thematic examples, the Author proposes 

the usage of the program package of Wolfram Mathematica which is available for students in the 

computer laboratories of the Faculty of Engineering and Information Technology of University of 

Pécs. Further instructions for the application of the Wolfram Mathematica will be described in sub-

sequential chapter connection with relevant subjects. 
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1.2 Classification of Structural Optimization Problems 

There are many types of classifications to distinguish the optimization methods and 

techniques. One of them might be the nature of objective functions, or the specification of the 

structural constraints and the type of the structures. Christensen and Klarbring (Christensen, 2009) 

proposed a specification system where basically three different types of structural optimizations are 

distinguished:  

Sizing optimization: This is when the objective function and constraints are given in terms of 

𝑋 where of 𝑋 is some type of structural thickness, i.e., cross-sectional areas of truss members, or the 

thickness distribution of a sheet. A sizing optimization problem for a truss structure is shown in Fig. 

1.1. 

Shape optimization: In this case of 𝑌 represents the form or contour of some part of the 

boundary of the structural domain. Think of a solid body, the state of which is described by a set of 

partial differential equations. The optimization consists in choosing the integration domain for the 

differential equations in an optimal way. Note that the connectivity of the structure is not changed by 

shape optimization: new boundaries are not formed. A three-dimensional shape optimization 

problem is seen in Fig. 1.2. 

Topology optimization: This is the most general form of structural optimization, where the 

design variables might be complex, e.g. cross-sectional areas and geometrical variables are given in 

terms of 𝑋, 𝑌. In a discrete case, such as for a truss, it is achieved by taking cross-sectional areas of 

truss members as design variables, and then allowing these variables to take the value zero, i.e., bars 

are removed from the truss. In this way the connectivity of nodes is variable so we may say that the 

topology of the truss changes, see Fig. 1.3. 

If instead of a discrete structure we think of a continuum-type structure such as a two-

dimensional sheet, then topology changes can be achieved by letting the thickness of the sheet take 

the value zero. If pure topological features are optimized, the optimal thickness should take only two 

values: 0 and a fixed maximum sheet thickness. 

Naturally, the types of structural optimizations listing above could be shared into further sub-

types concerning different design variables. The other point of view to distinguish the optimization 

types, the selection of different solution techniques (e.g. linear, or nonlinear optimization methods). 
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Finally we could select different types of structural modelling, e.g. trusses, slabs, beams, or shall 

structures.  

 

Figure 1.1 Nominal solution of minimal weight sizing optimization.
2
 

 

Figure 1.2 Shaping optimization of a 3D cantilever beam
3
 

                                                 

2
 Csébfalvi A., A new theoretical approach for robust truss optimization 

3
 Csébfalvi A, 3D Benchmark Results for Robust Structural Optimization…… 
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Figure 1.3 Nominal-compliance-minimal shape of topology optimization
4
 

Approaching from the properties of the applied material, the modelling will be basically two 

types: 

1. Idealized linear elastic, where the optimization process generally requires before a linear or 

non-linear structural analysis depending on the structural behavior, 

2. Idealized linear elastic – perfectly plastic, where the structural modelling doesn’t requires the 

structural analysis simultaneously, and led to a simpler optimization process. 

We have to note that “The plastic analysis cannot replace the elastic analysis but supplements 

it by giving useful information about the collapse load and the mode of the collapse”
5
. In some 

special cases, where large deformations, or structural instabilities (see e.g. shallow space structures 

in Fig. 1.4-1.5) are considered the plastic analysis seems very useful to give an estimated solution of 

optimal structural design. However, the elastic instability analysis requires the evaluation of large 

scale problems inside of a heuristic optimization technique. 

                                                 

4
 Csébfalvi A, Lógó J, A critical analysis of expected-compliance… 

5
 Kirsch (1981) Optimum Structural Design, Concepts, Methods and Applications  
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Figure 1.4 Shallow space dome structure 

 

Figure 1.5 Shallow space dome structure - view from above 

According to the limitation of pages of this book the consideration of structural optimization 

will be reduced to only to rod structures i.e. optimization problems related to trusses and beam 

structures are presented in the consecutive chapters. 

  

https://topszotar.hu/angolmagyar/view+from+above
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2. OPTIMIZATION OF ELASTIC STUCTURES 

Considering a statically determinate structure, the most frequently occurring examples are the 

minimal weight design or minimal volume design subject to structural equilibrium criteria as 

equilibrium constraints. In order to satisfy the further structural requirements, stress, displacement, 

and buckling constraints are imposed as inequality constraints of the structural optimization process. 

Considering a statically indeterminate structure, the formulation of objective function is same 

as defined above, but in case of computation of structural constraints we need to satisfy not only the 

static equilibrium equation systems but more over we need to satisfy the compatibility and 

constitution constraints as well. 

The mathematical formulation of the structural optimization problem is the following: 

 𝑚𝑖𝑛 𝑓(𝐴𝑖) = ρ∑𝐴𝑖𝐿𝑖 , 𝑖 = 1,2, … , 𝑚 (2.1) 

 𝑔𝑗(𝐴𝑖) = 0, 𝑗 = 1,2, … , 𝑘  (2.2) 

 ℎ𝑗(𝐴𝑗) ≤ 0, 𝑗 = 1,2, … , 𝑙 (2.3) 

where 𝑔𝑗(𝐴𝑖) are the equality constraints, ℎ𝑗(𝐴𝑖) are the inequality constraints in terms of 

cross sections, 𝐴𝑖 is the vector of the cross section design variables, 𝐿𝑖 is the vector of the length of 

elements, and ρ is the density of the applied material. 

Using the optimization problem described above in case of large structures or in case when 

we apply large number of design variables we have to simplify the computation of structural 

constraints. 

In the following subchapters the computational background of structural constraints are 

presented. Subsequently, through simple examples statically determinate and statically indeterminate 

structures are considered to demonstrate the problem formulation, mathematical modelling, and its 

solution techniques using the Wolfram Mathematica program package. 
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2.1 Structural Constraints 

In order to satisfy the equality and inequality constraints defined above in formula (2.2) and 

(2.3) we have to know the exact mechanical modelling, the structural behavior of an optimization 

problem. This chapter presents an overview about the basic knowledge of structural analysis. Refer 

to Aslam Kassimali, in book of Matrix Analysis of Structures (Kassimali, 2012) he stated, 

“Structural analysis, which is an integral part of any structural engineering project, is the process of 

predicting the performance of a given structure under a prescribed loading condition. The 

performance characteristics usually of interest in structural design are: (a) stresses or stress resultants 

(i.e., axial forces, shears, and bending moments); (b) deflections; and (c) support reactions. Thus, the 

analysis of a structure typically involves the determination of these quantities as caused by the given 

loads and/or other external effects (such as support displacements and temperature changes)”. 

Basically two types of structural optimizations are distinguished, the elastic and plastic optimizations 

in terms of the applied material law and modelling. In the traditional structural analysis we suppose a 

perfectly linear elastic material where the Hook’s law is valid in the full range of loading. 

In subsequent chapters of this book, we suppose that readers are familiar with classical 

methods of structural analysis and its extension to matrix method and finite element analysis. We 

present that both matrix and classical methods are based on the same fundamental principles—but 

that the fundamental relationships of equilibrium, compatibility, and member stiffness are now 

expressed in the form of matrix equations, so that the numerical computations can be efficiently 

performed on a computer. However, the finite element modelling is would be more complex in 

structural analysis, the final description of the small displacements based finite element method 

results the same formula of stiffness matrix as matrix method. 

Structural analysis, in general, involves a triplet of equilibrium equations (1), compatibility 

conditions (2), and constitutive relations (3), subsequently described by the following matrix 

equilibrium equation systems: 

 𝐆 𝐬 + q = 0 (2.4) 

 𝐆𝑇u + δ + t = 0 (2.5) 

 δ = F s (2.6) 
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where 𝐆 is a geometry matrix which transforms the vector 𝐬, the vector of element forces 

from local coordinate system into the global coordinate system, and q is the vector of external loads 

in formula (2.4) equilibrium equation system. The 𝐆𝑇 matrix is the transpose of geometry matrix 

which transforms the vector u, the vector of nodal displacements from global coordinate system into 

the local coordinate system. The δ is the vector of the change in length of the elements computed 

from the internal forces, and t is the vector of the change in length causes any other effects as 

internal forces, e. g. changes of the temperature or building imprecision in formula (2.5). The 

formula (2.6) is actually the Hook’s law, where F is the flexibility matrix of the structure. 

In case of statically determinate structures and only stress constraints are imposed, the 

structural analysis reduced to equilibrium equations from the triplet of formulas (2.4-2.6). But, if 

both the stress and displacements are constrained we need the whole triplet requirements described 

above to solve the optimization problem. 

In case of statically indeterminate structures the matrix direct method or the displacements 

based stiffness method is proposed which is formulated in a block matrix below: 

 [
𝟎 𝐆

𝐆𝑇 𝐅
] [

𝒖
𝐬

]  +  [
𝐪
𝐭

] = 0. (2.7) 

The most simple solution of formula (2.7) the direct matrix method when the inverse matrix 

could be easily computed e. g. in case of a relatively small example. 

In any other cases the displacements based stiffness method is applied, where the structural 

stiffness is computed from the geometrical matrix and flexibility matrix using the following formula 

obtained from the triplet of equilibrium equations (1), compatibility conditions (2), and constitutive 

relations (3): 

 𝐊 𝐮 = 𝐪, (2.8) 

where 𝐊 is the structural stiffness matrix computed from the following formula: 

 𝐊 =  𝐆 𝐅−1 𝐆𝑇. (2.9) 

The nodal displacements of the free joints are computed from (2.8) formula: 

 𝐮 =   𝐊−1 𝐪. (2.10) 
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The nodal displacements replaced to compatibility equilibrium equation system, the member 

forces are obtained from the following formula: 

 𝐬 = −  𝐅−1 𝐆 𝐮. (2.11) 

The inverse of the flexibility matrix is the structural stiffness in local coordinate system. 

In subsequent chapter the constraints are determine using the basic formulas of structural 

analysis, where the linear elastic structural behavior is supposed. The further computation of the 

optimal structural design requires a deeper knowledge of the advanced structural analysis. There are 

several books
6
 available for readers to refresh the already learned teaching materials or get a stronger 

cognitive skill on the field of structural design.  

2.2 Minimal Weight Design Subject to Stress Constraints 

Consider the statically determinate four-bar truss in Fig. 2.1. The geometry is given by the 

angle in between member 1 and 4, and member 3 and 4 (𝛼 = 30°). Therefore, the lengths of the 

elements 1-3 is L, and the length of member 4 is √3 𝐿. The objective function of the optimization is 

the minimal weight subject to stress limit only. The design variables are the area of the cross sections 

𝐴1 𝑎𝑛𝑑 𝐴2 that have to satisfy the stress limit 𝜎0  and the positivity criteria (see in Fig. 2.2). 

 

Figure 2.1 Topology of the four-bar truss (the free joints and truss members are numbering) 

                                                 

6
 Kassimali A. (2012) Matrix Analysis of Structures, SI Version, 2nd Edition …. 
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The mathematical formulation of the truss optimization problem in terms of design variables: 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = ρL(3𝐴1 + √3 𝐴2) (2.12) 

 𝐴1 ≥ 0; 𝐴2 ≥ 0  (2.13) 

 𝜎1 ≤ 𝜎0 ; 𝜎2 ≤ 𝜎0  (2.14) 

In order to determine the stress constraints in formula (2.14) we need to compute the internal 

forces of the truss elements. Consider the equilibrium equation criteria for nodal joints supposed 

tension forces in each element. 

 

Figure 2.2 Design variables of the four-bar truss 

The directions of components are given in 𝑥, 𝑦 coordinate system (see Fig. 2.1). 

 ∑𝐹𝑖𝑥 = 0, 𝑖 = 1,2, … ,4 (2.15) 

 ∑𝐹𝑖𝑦 = 0, 𝑖 = 1,2, … ,4  (2.16) 

Substituting the components of the internal forces into formula (2.1) and (2.2) for both joints 

1 and 2: 

 −𝑆1 cos ∝ − 𝑆4 = 0 (2.17) 

 𝑆1 sin ∝ − 2𝐹 = 0  (2.18) 

 𝑆1 cos ∝ − 𝑆2 cos ∝ − 𝑆3 cos ∝ = 0 (2.19) 
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 −𝑆1 sin ∝ + 𝑆2 sin ∝ − 𝑆3 sin ∝ − 𝐹 =0 (2.20) 

where 𝑆𝑖  
, 𝑖 = 1,2, . . ,4 are the internal forces of elements. 

Replace to (2.4) matrix formula the equations (2.17-2.20), the geometrical matrix is described 

in terms of coefficients of member forces, and finally a matrix equilibrium equation system is 

obtained: 

  [

−𝑐 0
𝑠 0

 
     0 −1
      0 0

𝑐  −𝑐
−𝑠 𝑠

 
    −𝑐    0

−𝑠 0

] [

𝑆1

𝑆2

𝑆3

𝑆4

]  +  [

0
−2𝐹

0
−𝐹

] = 0 (2.21) 

where 𝑐 = cos ∝ and 𝑠 = sin ∝. 

In order to solve the matrix equilibrium equation system (2.4) we have to determine the 

inverse of the geometry matrix 𝐆, where 𝛼 = 30° replaced into (2.21). 

The steps of the solution are described in Table 2.1, where Wolfram Mathematica program 

applied. 

 

s=Sin[Degree 30] 

c=Cos[Degree 30] 

 

q={0,-2F,0,-F} 

G={{-c,0,0,-1},{s,0,0,0},{c,-c,-c,0},{-s,s,-s,0}} 

MatrixForm[%] 

 

IG=Inverse[G] 

MatrixForm[%] 

S=-IG.q 

 

Table 2.1: Computation of internal forces of the 4-bar truss 
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The results as output of the solution are described in Table 2.2, obtained of computation 

process in Table 2.1 using Wolfram Mathematica. 

The optimization problem given in formula (2.12 – 2.14) is already defined by the stress 

constraints. The maximal value of internal forces for cross section 𝐴1 is 𝑆2 = 5𝐹 (see Table 2.2). 

 

{4𝐹, 5𝐹, −𝐹, −2√3𝐹} 

 

Table 2.2: Resulted internal forces of 4-bar truss  

Therefore, the stress constraints will be the following: 

 𝜎1 = 5𝐹 𝐴1⁄ ≤ 𝜎0 ;   𝜎2 = 2√3𝐹 𝐴2⁄ ≤ 𝜎0  (2.22) 

In order to solve the optimization problem dimensionless new variables are introduced.  

 𝑋1 = 5𝐹 𝜎0 𝐴1⁄ ;   𝑋2 = 2√3𝐹  𝜎0 𝐴2⁄  (2.23) 

The optimization problem replaced by the new variables will be nonlinear in the objective 

function, but the obtained constraints become linear: 

 𝑚𝑖𝑛 𝑓(𝑋1, 𝑋2) = ρLF/𝜎0 (5 𝑋1⁄ + 2 𝑋2⁄  ) (2.24) 

 𝑋1 ≥ 0; ; 𝑋2 ≥ 0  (2.25) 

 𝑋1 ≤ 1; 𝑋2 ≤ 1 (2.26) 

The results of optimization problem in terms of 𝑋1 and 𝑋2, where only stress constraints are 

considered will be trivial solution, i.e. the maximal values are obtained for both variables (see in 

Table 2.3 and Table 2.4). 

 

Minimize[{5 X1⁄ + 2 X2⁄ , 0 ≤ X1 ≤ 1,0 ≤ X2 ≤ 1}, {X1, X2}] 

 

Table 2.3: Optimization of 4-bar truss replaced by new dimensionless variables 
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We are able to conclud as a statment, that the minimal weight design of a statically 

determinate structure subject to only stress constraints we obtain always trivial solution. But, 

subsequently we will see that when we extend the constraints by any others, the optimization results 

depend on the extended criteria namely we get an optima in intersection of the objective function and 

the function of the extended criteria. 

 

{7, {X1 → 1, X2 → 1}} 

 

Table 2.4: Results of optimization of 4-bar truss 

2.3 Minimal Weight Design Subject to Stress and Displacement 

Constraints 

In the following example we are looking for a minimal weight structure subject to stress and 

displacements constraints together. The problem solution is presented for the simple two-bar truss 

(see in Figure 2.3). However this structure statically determinate again the optimal solution will be 

already non-trivial. The geometry is given by the angle in between member 1 and member 2 

(𝛼 = 30°). The design variables are the area of the cross sections 𝐴1 𝑎𝑛𝑑 𝐴2 that have to satisfy the 

stress limit 𝜎0 , the displacement limit 𝑢0 , and the positivity criteria for the design variables. 

The mathematical formulation of the optimization problem is described by the following way: 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = ρL(𝐴1 + 𝐴2/𝑐𝑜𝑠𝛼) (2.27) 

 𝐴1 ≥ 0; 𝐴2 ≥ 0  (2.28) 

 𝜎1 ≤ 𝜎0 ; 𝜎2 ≤ 𝜎0  (2.29) 

 𝑢1 ≤ 𝑢0 ; 𝑢2 ≤ 𝑢0  (2.30) 

Starting with the equilibrium equations of the internal forces: 

 ∑𝐹𝑖𝑥 = 0, 𝑖 = 1,2 (2.31) 

 ∑𝐹𝑖𝑦 = 0, 𝑖 = 1,2  (2.32) 
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Figure 2.3 Initial data of two-bar truss optimization problem 

Substituting the components of the internal forces into (2.30 and 2.31): 

 −𝑆1 − 𝑆2 cos ∝ = 0 (2.33) 

 −𝑆2 sin ∝ − 𝐹 = 0  (2.34) 

In order to solve directly the equilibrium equations will be given in matrix form: 

 [
−1 −𝑐
0 −𝑠

] [
𝑆1

𝑆2
]  +  [

0
−𝐹

] = 0  (2.35) 

where 𝑐 = cos ∝ and 𝑠 = sin ∝, and tension members are supposed. 

The displacements are computed from the compatibility equation system, where linear elastic 

material applied i.e. the Hook’s law is valid, the relationship in between the internal forces and the 

changes of the member length is given by the E elasticity modulus. 

The compatibility equations are described in matrix form as well, where the displacements are 

transformed into local coordinate system: 

 [
−1 0
−𝑐 −𝑠

] [
𝑢1

𝑢2
]  + 𝐿 𝐸⁄ [

1 𝐴1⁄ 0

0 𝑐 𝐴2⁄
] [

𝑆1

𝑆2
]  = 0  (2.36) 

In order to determine the exact stress and displacement constraints we have to solve the (2.31 

and 2.32) matrix equations. The steps of the solution are described in Table 2.5, where Wolfram 

Mathematica program applied: 

 

y

x

LEA  , ,1

F

1u

2u



cosLEA / , ,2
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Clear[c,s,q,G,IG,s,FLEX,TG,delta,ITG,u] 

c=Cos[Pi/6] 

s=Sin[Pi/6] 

q={0,-F} 

 

G={{-1,-c},{0,-s}} 

MatrixForm[G] 

 

IG=Inverse[G] 

MatrixForm[IG] 

 

s=-IG.q 

FLEX=L/MOD*DiagonalMatrix[{1/A1,1/c/A2}] 

TG=Transpose[G] 

ITG=Inverse[TG] 

 

delta=FLEX.s 

u=-ITG.delta 

 

Table 2.5: Computation of internal forces and displacements of the 2-bar truss
7
 

 

{
√3𝐹𝐿

A1MOD
, −

4𝐹𝐿

√3A2MOD
} 

{
√3𝐹𝐿

A1MOD
, −

3𝐹𝐿

A1MOD
−

8𝐹𝐿

√3A2MOD
} 

 

Table 2.6: Results of internal forces (see first row) and displacements (see second row) of 2-bar truss 

                                                 

7
 Note: According to the special character regulation of the Wolfram Mathematica in the program the elasticity modulus 

(E) is replaced by the new name MOD. 
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The resulted displacements vector will be given in matrix form: 

  [
𝑢1

𝑢2
] = −𝐹𝐿 𝐸⁄  [

−√3/𝐴1

3/𝐴1 + 8/√3𝐴2

]. (2.37) 

The displacement constraints is formulated for the vertical displacement of formula (2.37): 

 3𝐹𝐿 𝐴1⁄ 𝐸 + 8𝐹𝐿 √3𝐴2⁄ 𝐸 ≤ 𝑢0 (2.38) 

The stress constraints will be the following replased by the obtained internal forces: 

 𝜎1 = √3𝐹 𝐴1⁄ ≤ 𝜎0 ;   𝜎2 = 2𝐹 𝐴2⁄ ≤ 𝜎0  (2.39) 

In order to simplify the optimization problem we will introduce again new variables instead of 

the original cross section variables 𝐴1  and 𝐴2. 

The main goal of this reformulation of structural constraints is to create a linear explicit 

relationship in terms of new variables 𝑋1  and 𝑋2. 

Let 𝑋1  and 𝑋2. In terms of variables 𝐴1  and 𝐴2.as following: 

 𝑋1 = √3𝐹 𝐴1⁄ 𝜎0 ;   𝑋2 = 2𝐹 𝐴2⁄ 𝜎0  (2.40) 

Let the vertical displacement limit  𝑢0 = 𝜎0 𝐿 𝐸⁄ , consequently, and the optimization problem 

is described in terms of 𝑋1  and 𝑋2 using the formula (2.40). 

The optimization problem replaced by the new variables will be nonlinear in the objective 

function, but the obtained constraints become linear: 

 𝑚𝑖𝑛 𝑓(𝑋1, 𝑋2) = ρLF/𝜎0 (3 𝑋1⁄ + 4 𝑋2⁄  ) (2.41) 

 0 < 𝑋1 ≤ 1; 0 < 𝑋2 ≤ 1  (2.42) 

 √3𝑋1 +
4

√3
𝑋2 ≤ 1 (2.43) 

The results of optimization problem in terms of 𝑋1 and 𝑋2, where stress and displacements 

constraints are considered will be obtain using Wolfram Mathematica (see in Table 2.7) and the 

results of the solution is given in Table 2.8. 
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The grafical interpretation of the results is shown in Figure 2.3, where the optimal solution is 

obtined in the intersection of the linear displacement function and nonlinear objective function. 

 

NMinimize[{3 X1⁄ + 4 X2⁄ , {0 ≤ X1 ≤ 1,0 ≤ X2 ≤ 1, Sqrt[3] ∗ X1 + 4 Sqrt[3]⁄ ∗ X2

≤ 1}}, {X1, X2}] 

Table 2.7: Optimization of 2-bar truss replaced by new dimensionless variables 

 

{28.290163223369824, {X1 → 0.2474358293750296, X2 → 0.24743582935464875}} 

 

Table 2.8: Results of optimization of 2-bar truss 

 

Figure 2.4 Results of two-bar truss optimization problem in terms of 𝑋1 and 𝑋2 design variables, where 

{X1 → 0.2474358293750296, X2 → 0.24743582935464875} 

The optimal values of cross sectional areas as the variables of the original optimization 

problem could be computed from formula 2.40, where the obtained 𝑋1 and 𝑋2, are replaced. 
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0.1

0.2

0.3

0.4

0.5



26 

2.4 Minimal Weight Design Subject to Buckling Constraints 

The two-bar truss (Fig. 2.5) minimal weight design is subjected to stress and member 

buckling constraints simultaneously. The given external vertical load causes tensile stress in member 

1, and member 2 is under compression. The stress constraints for member 2 depend on the material 

law, the data of the geometry, the relationship in between of the cross section and the member length, 

and more over it depend on the intensity of applied external load. Therefore, we need to simplify 

some parameters to demonstrate a potential collapse mode. 

The geometry is given by the angle in between member 1 and member 2 (𝛼 = 45°). The 

design variables are the areas of the cross sections 𝐴1 𝑎𝑛𝑑 𝐴2 that have to satisfy the stress limit 𝜎0 , 

and the Euler buckling limit 𝜎𝑏 . 

The mathematical formulation of the optimization problem is described by the following 

form: 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = ρL(𝐴1 + 𝐴2/𝑐𝑜𝑠𝛼) (2.44) 

 𝐴1 ≥ 0; 𝐴2 ≥ 0  (2.45) 

 𝜎1 ≤ 𝜎0 ; 𝜎2 ≤ 𝑚𝑖𝑛 [𝜎0 ;  𝜎𝑏 ] (2.46) 

 

Figure 2.5 Initial data of two-bar truss optimization problem subject to buckling constraint 

The equilibrium criteria are given in 𝑥, 𝑦 coordinate system (see Fig. 2.5). 

y

x

F

1u

2u



A
1

2A
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 ∑𝐹𝑖𝑥 = 0, 𝑖 = 1,2 (2.47) 

 ∑𝐹𝑖𝑦 = 0, 𝑖 = 1,2  (2.48) 

Substituting the components of the internal forces into formula (2.47) and (2.48): 

 −𝑆1 cos ∝ − 𝑆2 = 0 (2.49) 

 𝑆1 sin ∝ − 𝐹 = 0  (2.50) 

where 𝑆𝑖  
, 𝑖 = 1,2 are the internal forces of elements. 

From the equilibrium equation system the following stress criteria are obtained: 

 𝐴1 ≥ 𝐹  csc 𝛼 𝜎0⁄  (2.51) 

 𝐴2 ≥ 𝑚𝑎𝑥 [𝐹  cot 𝛼 𝜎0⁄ ;  𝐹  cot 𝛼 𝜎𝑏⁄ ] (2.52) 

The formula (2.52) contents already two different potential collapse cases depending on load 

intensity and the form of the cross section. In order to recognize the complexity of the buckling 

constraints the formula (2.52) is rewritten.  

 𝐴2 ≥ 𝑚𝑎𝑥 [𝐹  cot 𝛼 𝜎0⁄ ;  𝐹  cot 𝛼 𝜎𝑏(𝐴2, 𝐼2, 𝐿, 𝐸)⁄ ] (2.53) 

where 𝐼2 the moment of inertia of the cross section, 𝐸 the elasticity modulus of the applied 

material. 

In order to avoid further circumstances concerning instability against Euler buckling mode we 

suppose a circular cross section. 

The buckling load for a hinged-hinged column is 

 𝑃𝑏 = 𝐸𝐼 𝜋2 𝐿2⁄  (2.54) 

where for a circular cross section 

 𝐼 = 𝐴2
2 4𝜋⁄  (2.55) 

The stress constraint against Euler critical load becomes 

 𝐴2
2 ≥ 4𝐹𝐿2 𝜋𝐸⁄  (2.56) 
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Example: 

The relationship in between the load intensity factor and the radius of the applied cross 

section is demonstrated in Fig. 2.6. 

In this example we supposed the following initial values: 𝛼 = 45°; 𝐿 = 100 𝑐𝑚; 𝐸 =

21000 𝑘𝑁/𝑐𝑚2;  𝜎0 = 24 𝑘𝑁/𝑐𝑚2. 

The intersection of these functions determines whether the buckling stress 𝐹𝐸  or the stress 

limit 𝐹𝐻 will be active during the structural optimization. According to the given actual initial values 

we could be determine the level of intersection ( 𝐹𝐸 = 𝐹𝐻 = 349.23 𝑘𝑁 ). Therefore, two load cases 

are distinguished: 

o In case 1 ( 𝐹1 = 400 𝑘𝑁 > 349.23 𝑘𝑁), the constraint of Euler-buckling doesn’t active. 

o In case 2 ( 𝐹2 = 300 𝑘𝑁 < 349.23 𝑘𝑁), the constraint of Euler-buckling is active. 

The results are obtained using Wolfram Mathematica numerical optimization procedure (In 

case 1 see in Table 2.9 and 2.10; and in case 2 see in Table 2.11 and 2 12 ). 

 

Figure 2.6 Changes of the stress constraints in the compression element in terms of the applied radius 

The mathematical formulation of the optimization problem is described by the following 

form: 
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 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = 𝐴1√2 + 𝐴2 (2.57) 

 𝐴1 ≥ 𝐹√2 𝜎0⁄ ; 𝐴2 ≥ 𝑚𝑎𝑥[𝐹 𝜎0⁄ ; 4𝐹𝐿2 𝐴2𝜋𝐸⁄ ]  (2.58) 

 

NMinimize[{A1 𝑐⁄ + A2, A1 ≥ 23.57023, A2 ≥ 16.6667}, {A1, A2}] 

NMinimize[{A1 𝑐⁄ + A2, A1 ≥ 23.57023, A2 ≥ 15.5731}, {A1, A2}] 

 

Table 2.9: Optimization of 2-bar truss subject stress constraints 

 

{50.0000389342532, {A1 → 23.57023, A2 → 16.6667}} 

 

{48.9064389342532, {A1 → 23.57023, A2 → 15.5731}} 
 

Table 2.10: Results of optimization of 2-bar truss subject sterss constraint 

 

NMinimize[{A1 𝑐⁄ + A2, A1 ≥ 17.6777, A2 ≥ 12.5}, {A1, A2}] 

NMinimize[{A1 𝑐⁄ + A2, A1 ≥ 17.6777, A2 ≥ 13.4867}, {A1, A2}] 

 

Table 2.11: Optimization of 2-bar truss subject buckling constraints 

 

{37.500043091562866, {A1 → 17.6777, A2 → 12.5}} 
 

{38.486743091562865, {A1 → 17.6777, A2 → 13.4867}} 

 

Table 2.12: Results of optimization of 2-bar truss subject buckling constraint 
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2.5 Minimal Weight Design of Three-Bar Truss Subject to 

Stress Constraints 

The statically indeterminate three-bar truss presented in Fig. 2.7, have been considered by Uri 

Kirsch (see in (Kirsch, 1981); (Kirsch, 1993)) for minimal weight design subjected to stress and 

displacements constraints. In this chapter, in first step we will perform the computation of the 

structural constraints and the mathematical formulation will be defined for minimal weight design 

subject to only simple stress constraints. 

Consider the three-bar truss shown in Fig. 2.7. The bars have Young’s modulus 𝐸 is given, let 

the angle for both inclined elements, 𝛼. The lengths of the elements are 𝐿1 = 𝐿 cos 𝛼 ;⁄ 𝐿2 = 𝐿; and 

𝐿3 = 𝐿 cos 𝛼⁄ , where a symmetrical geometry is supped. 

 

Figure 2.7 Initial data of the statically indeterminate three-bar truss. 

The design variables are the cross-sectional areas A1, A2 and A3, but for simplicity we 

assume that the cross-sectional areas in bar-1 and bar-3 will be equal to each other (𝐴3 = 𝐴1). 

The objective function, which is the total weight of the truss, becomes 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = L(ρ1𝐴1/𝑐𝑜𝑠𝛼 + ρ1𝐴2 + ρ3𝐴1/𝑐𝑜𝑠𝛼) (2.59) 

where 𝜌1, 𝜌2 , and 𝜌3 are the densities of the bars. The design constraints are 
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 𝐴1 ≥ 0; 𝐴2 ≥ 0  (2.60) 

 |𝜎𝑖| ≤ 𝜎0 ;  𝑖 = 1,2,3 (2.61) 

The static equilibrium criteria are given in 𝑥, 𝑦 coordinate system (see Fig. 2.7): 

 ∑𝐹𝑖𝑥 = 0, 𝑖 = 1,2,3 (2.62) 

 ∑𝐹𝑖𝑦 = 0, 𝑖 = 1,2,3  (2.63) 

Substituting the components of the internal forces into formula (2.62) and (2.63): 

 −𝑆1 cos ∝ + 𝑆3 cos ∝ + 𝐹 cos ∝ = 0 (2.49) 

 𝑆1 sin ∝  + 𝑆2 + 𝑆3 sin ∝ − 𝐹 sin ∝ = 0  (2.50) 

where 𝑆𝑖  
, 𝑖 = 1,2,3 are the internal forces of elements. 

According to the statically indeterminate structure the formula (2.49) and (2.50) contains 3 

unknown variables but we have only two equilibrium criteria available. In order to determine the 

stress constraint we need for other criteria. Let’s consider the compatibility equilibrium criteria: 

 −𝑢1 cos ∝ + 𝑢2 𝑠𝑖𝑛 ∝ + 𝐿𝑆1 𝐸⁄ 𝐴1 cos ∝ = 0 (2.51) 

 𝑢2 + 𝐿𝑆2 𝐸⁄ 𝐴2 = 0 (2.52) 

 𝑢1 cos ∝ + 𝑢2 sin ∝ + 𝐿𝑆3 𝐸⁄ 𝐴1 cos ∝ = 0 (2.53) 

The static and compatibility equilibrium together (2.49-2.53) already satisfy criteria of the 

solution for five unknowns, for (𝑆1;  𝑆2; 𝑆3) internal forces and (𝑢1;  𝑢2) nodal displacements. 

The matrix form of static and compatibility equilibrium (2.49-2.53) are obtained: 

 [
− cos ∝ 0 cos ∝

sin 𝛼 1 sin 𝛼
] [

𝑆1

𝑆2

𝑆3

] + 𝐹 [
cos ∝

− sin ∝
] = 0 (2.54) 

 [
− cos 𝛼 sin 𝛼

0 1
cos 𝛼 sin 𝛼

] [
𝑢1

𝑢2
] + 𝐿 𝐸⁄ [

1 𝐴1⁄ cos 𝛼 0 0

0 1 𝐴2⁄ 0

0 0 1 𝐴1⁄ cos 𝛼
] [

𝑆1

𝑆2

𝑆3

] = 0 (2.55) 
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Starting from the static and compatibility equilibrium equation systems (2.54) and (2.55) the 

displacements based finite element method is obtained. The results of the nodal displacements is 

computed from the following matrix equilibrium equation 

 𝑲𝒖 = 𝒒 (2.56) 

where 𝑲 = 𝑮𝑇𝑭−1𝑮 is the stiffness matrix of the three-bar truss, 𝒖 is the vector of the nodal 

displacements, and 𝒒 is the load vector. The coefficient matrix of the displacements vector in 

formula (2.55) 𝑮𝑇 is the coefficient matrix of internal forces in formula (2.54), and 𝑭−1 is the inverse 

matrix of the flexibility matrix in formula (2.55) supposed linear elastic material where the Hooke’s 

law is valid. 

The vector of the internal forces is obtained from 𝒔 = −𝑭−1𝑮𝒖 is where 𝒔 is the 

displacements vector, and 𝑭−1𝑮 is a part of the determination the stiffness matrix. 

The main steps of the optimization design are presented in the subsequent pages where the 

angle is given ( 𝛼 = 45°). Substituting into the matrix formulas (2.54) and (2.55): 

 [
− 1 √2⁄ 0 1 √2⁄

1 √2⁄ 1 1 √2⁄
] [

𝑆1

𝑆1

𝑆3

] + 𝐹 [
1 √2⁄

− 1 √2⁄
] = 0 (2.57) 

 [
− 1 √2⁄ 1 √2⁄

0 1
1 √2⁄ 1 √2⁄

] [
𝑢1

𝑢2
] + 𝐿 𝐸⁄ [

√2 𝐴1⁄ 0 0

0 1 𝐴2⁄ 0

0 0 √2 𝐴1⁄

] [
𝑆1

𝑆2

𝑆3

] = 0 (2.58) 

The stiffness matrix is obtained from the multiplication of coefficient matrices 𝑲 = 𝑮𝑇𝑭−1𝑮  

 𝑲 = 𝐸 𝐿⁄ [
𝐴1 √2⁄ 0

0 𝐴1 √2 + 𝐴2⁄
] (2.59) 

The resulted vector of displacements becomes 

 𝒖 = 𝐹𝐿 𝐸⁄ [1 𝐴1⁄ 1 (𝐴1 + √2 𝐴2)⁄ ] (2.60) 

Finally, the vector of internal forces is computed from formula 𝒔 = −𝑭−1𝑮𝒖 and resulted 

 𝒔 = 𝐹[(2𝐴1 + √2𝐴2) 2(𝐴1 + √2𝐴2)⁄ 𝐴2 (𝐴1 + √2𝐴2)⁄ −𝐴2 (√2𝐴1 + 2𝐴2)⁄ ] (2.61) 

The stresses of truss elements after some manipulation and simplification are the following 
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 𝜎1 = 𝐹 (2𝐴1 + √2𝐴2) (2𝐴1(𝐴1 + √2𝐴2))⁄    

 𝜎2 = 𝐹 (𝐴1 + √2𝐴2)⁄   

 𝜎3 = −𝐹 𝐴2 𝐴1(√2𝐴1 + 2𝐴2)⁄   

In order to compare the stress constraints, we need to apply a common denominator, and 

obtained 

 𝜎1 = 𝐹 (𝐴2 + √2𝐴1) (2𝐴1𝐴2 + √2𝐴1
2)⁄   

 𝜎2 = 𝐹 √2𝐴1 (2𝐴1𝐴2 + √2𝐴1
2)⁄   

 𝜎3 = −𝐹 𝐴2 (2𝐴1𝐴2 + √2𝐴1
2)⁄   

In this example the densities of the bars will be equal to each other 𝜌1 = 𝜌2 = 𝜌3. Let the 

stress limit for tension element 𝜎0
+ = 20, for compression element 𝜎0

− = 20, the member length 

𝐿 = 100, and the external load 𝐹 = 20. Substituting the given values above into the formulas (2.59-

2.61) the optimization problem is formulated following way: 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = 200√2𝐴1 + 100𝐴2 (2.62) 

 𝐴1 ≥ 0; 𝐴2 ≥ 0  (2.63) 

 20 (𝐴2 + √2𝐴1) (2𝐴1𝐴2 + √2𝐴1
2) − 20 ≤ 0⁄  (2.64) 

 20 √2𝐴1 (2𝐴1𝐴2 + √2𝐴1
2) − 20 ≤ 0⁄  (2.65) 

 −20 𝐴2 (2𝐴1𝐴2 + √2𝐴1
2)⁄ − 15 ≤ 0 (2.66) 

The results are obtained using Wolfram Mathematica numerical optimization procedure (see 

in Table 2.13 and 2.14). 

A grafical interpretation of the optimal solution is presented in Fig. 2.8. In order to describe 

the intersection of the objective function and the function of the active constraint we have solve the 

equilibrium criteria for both functions (see in Table 2.15). The results is presented in Table 2.16. 
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Clear[A1, A2] 

"Minimal Weight Design Subjected to Stress Constraints" 

NMinimize[{200.∗ Sqrt[2] ∗ A1 + 100. A2, {Sqrt[2] + A2 A1⁄ − 2.∗ A2 − Sqrt[2] ∗ A1 <= 0, 

A1 >= 0, A2 >= 0}}, {A1, A2}] 

 

Table 2.14: Optimization of optimization of 3-bar truss subject stress constraints 

 

{263.89584336078366, {A1 → 0.7886751336089477, A2 → 0.40824829309546323}} 

 

Table 2.14: Results of optimization of 3-bar truss subject stress constraints 

 

NSolve[Sqrt[2] + A2 A1⁄ − 2.∗ A2 − Sqrt[2] ∗ A1 == 0, {A2}] 

NSolve[200. Sqrt[2] ∗ A1 + 100. A2 − 263.89584336078366 == 0, {A2}] 

 

Table 2.15: Solution of objective function and the function of the active constraint 

 

{{A2 →
−1.4142135623730951 + 1.4142135623730951A1

−2. +
1

A1

}} 

 

{{A2 → 0.01(263.89584336078366  − 282.842712474619A1)}} 

Table 2.16: Results of objective function and the function of the active constraint in terms of A1 

The graphical solution can be seen in Fig. 2.8 where the three nonlinear stress constraints and the 

linear objective function are presented. In Fig. 2.9, the optimal solution is given in the intersection of 

the optimal values of objective function and the only active stress constraint function ( 𝑔1). 
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Figure 2.8 Grafical interpretation of the optimal solution with stress constraint functions 

 

Figure 2.9 Grafical interpretation of the optimal solution. Intersection of the objective function and the 

function of the active constraint 
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2.6 Minimal Weight Design of Three-Bar Truss Subject to 

Stress and Displacement Constraints 

In previous chapter the statically indeterminate three-bar truss has been considered for 

minimal weight design subjected to stress constraints. Before the mathematical formulation of the 

minimal weight optimization problem where only stress constraints were imposed the main steps of 

structural analysis was presented. 

During the computation of the required internal forces the displacements are obtained as well 

solving the displacements based finite element equilibrium equation system. Considering the three-

bar truss shown in Fig 10, we supposed that the bars properties are given. Let the Young’s modulus 

(𝐸), the angle for both inclined elements (𝛼), and the lengths of the elements (𝐿1 = 𝐿 cos 𝛼 ;⁄ 𝐿2 = 𝐿; 

𝐿3 = 𝐿 cos 𝛼⁄ ) initially predicted, where a symmetrical geometry is supped. 

In this chapter, we will present the effect of the displacements constraints to the final result 

obtained in chapter 2.5 (see Fig. 2.7). In order to compare the results computation of the minimal 

weight design subject to only simple stress constraints with the extended optimization problem 

where both the stress and displacements constraints are imposed we apply the same structural 

response data. 

 

Figure 2.10 Initial data of three-bar truss optimization subjected to stress and displacement constraints. 
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In order to describe the mathematical formulation of the extended optimization problem the 

results of structural constraints (see 2.60) are presented here again, where the first element related to 

the horizontal, the second to the vertical displacement: 

 𝒖 = 𝐹𝐿 𝐸⁄ [1 𝐴1⁄ 1 (𝐴1 + √2 𝐴2)⁄ ]  

The stress constraints were already obtained in previous section as well: 

 𝜎1 = 𝐹 (𝐴2 + √2𝐴1) (2𝐴1𝐴2 + √2𝐴1
2)⁄   

 𝜎2 = 𝐹 √2𝐴1 (2𝐴1𝐴2 + √2𝐴1
2)⁄   

 𝜎3 = −𝐹 𝐴2 (2𝐴1𝐴2 + √2𝐴1
2)⁄   

In this example the mathematical formulation will be defined for minimal weight design 

subject to stress and vertical displacement constraints. 

Let the densities of the bars will be equal to each other (𝜌1 = 𝜌2 = 𝜌3). Let given the stress 

limit for tension (𝜎0
+ = 20), for compression (𝜎0

− = 15), the member length 𝐿 = 100, and the 

external load 𝐹 = 20. In the former consideration the elasticity modulus hasn’t role (see formulas 

2.62-2.66) in optimization process, but with an extension by displacement constraint we need the 

exact value of elasticity modulus and displacement limit as well. Let elasticity modulus 𝐸 = 30000 

and the limit of vertical joint displacement 𝑢2
0 = 0.04 is. 

Substituting the given values above into the formulas the optimization problem is formulated: 

 𝑚𝑖𝑛 𝑓(𝐴1, 𝐴2) = 200√2𝐴1 + 100𝐴2  

 𝐴1 ≥ 0; 𝐴2 ≥ 0   

 20 (𝐴2 + √2𝐴1) (2𝐴1𝐴2 + √2𝐴1
2) − 20 ≤ 0⁄   

 20 √2𝐴1 (2𝐴1𝐴2 + √2𝐴1
2) − 20 ≤ 0⁄   

 −20 𝐴2 (2𝐴1𝐴2 + √2𝐴1
2)⁄ − 15 ≤ 0  

 2 30(𝐴1 + √2 𝐴2) − 0.04⁄ ≤ 0  
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The results are obtained using Wolfram Mathematica numerical optimization procedure (see 

in Table 2.17 and 2.18). 

A grafical interpretation of the optimal solution is presented in Fig. 2.8. In order to describe 

the intersection of the objective function and the function of the active constraints we have solve the 

equilibrium criteria for both functions (see in Table 2.19). The results is presented in Table 2.20. 

 

Clear[A1, A2] 

"Minimal Weight Design Subjected to Stress and Displacement Constraints" 

 

NMinimize[{200.∗ Sqrt[2] ∗ A1 + 100. A2, {Sqrt[2] + A2 A1⁄ − 2.∗ A2 − Sqrt[2] ∗ A1 <= 0, 

2 − 30 ∗ 0.04(A1 + Sqrt[2]A2) ≤ 0, 

A1 >= 0, A2 >= 0}}, {A1, A2}] 

 

Table 2.17: Optimizati of 3-bar truss subject stress and displacement constraints 

 

{269.3740120760541, {A1 → 0.7142857111718958, A2 → 0.6734350404633282}} 

 

Table 2.18: Results of optimization of 3-bar truss subject stress and displacement constraints 

 

NSolve[Sqrt[2] + A2 A1⁄ − 2.∗ A2 − Sqrt[2] ∗ A1 == 0, {A2}] 

NSolve[200. Sqrt[2] ∗ A1 + 100. A2 − 269.374 == 0, {A2}] 

NSolve[2 − 1.2(A1 + Sqrt[2]A2) == 0, {A2}] 

 

Table 2.19: Solution of objective function and the function of the active constraint 
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A2 →
−1.4142135623730951 + 1.4142135623730951A1

−2. +
1

A1

 

 

{A2 → 0.01(269.374  − 282.842712474619A1)} 

 

{{A2 → −0.5892556509887896(−2. +1.2A1)}} 

 

Table 2.20: Results of objective function and the function of the active constraints in terms of A1 

The graphical solution can be seen in Fig. 2.11 where the three nonlinear stress constraints, 

the linear displacement constraint, and the linear objective function are presented.  

 

Figure 2.11 Grafical interpretation of the optimal solution with stress constraint functions 
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The optimal solution is given in the intersection of the optimal values of objective function 

and the active stress and displacement constraint function. In order to compare the difference in 

between two cases the results obtained subject to only stress constraints presented in Fig. 2.12. 

 

Figure 2.12 Grafical interpretation of the optimal solution. Intersection of the objective function and 

the function of the active constraint 

In case of extended version where the sterss and the vertical nodal displacement constraint are 

considered the obtained results will be A1 = 0.7142857111718958,   

A2 = 0.6734350404633282. The results can be seen in the intersection of the three functions, 

namely the first nonlinear stress constraint (blue line), the linear displacement constraint (green line), 

and the actual value of the objective function (red line). 

2.7 Exercises 

Determine the optimal solutions of the statically indeterminate three-bar truss in case A), B), 

C), and D) cases presented in Fig. 2.10. Describe the objective and constraint functions in 2D 

coordinate system and prove that only one will be active in optimal solution. Let the stress limit for 

tension element 𝜎0
+ = 20, for compression element 𝜎0

− = 20, the member length 𝐿 = 100, and the 

external load length 𝐹 = 20. Let the angle of elements 𝛼 = 𝛽 = 45° initially. 
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A Let 𝜌1 = 2𝜌2 = 𝜌3; and (𝐴3 = 𝐴1). B Let 𝜌1 = 2𝜌2 = 2𝜌3; and (𝐴3 = 𝐴1). 

  

 

C Let 𝜌1 = 2𝜌2 = 𝜌3; and (𝐴3 = 𝐴2). D Let 𝜌1 = 2𝜌2 = 2𝜌3; and (𝐴3 = 𝐴2). 

  

y

x

cosLEA / , ,1

LEA  , ,2

1u

2u

cosLEA / , ,3

F

y

x

cosLEA / , ,1

LEA  , ,2

1u

2u

cosLEA / , ,3

F

y

x

cosLEA / , ,1

LEA  , ,2 1u

2u

cosLEA / , ,3

F

y

x

cosLEA / , ,1

LEA  , ,2 1u

2u

cosLEA / , ,3

F



42 

3. OPTIMIZATION OF ELASTO-PLASTIC STUCTURES 

In the middle of last century has been appeared the theory of the plastic or elasto-plastic 

design. Drucker’s (Drucker, 1958) paper of the “Variational principles in the mathematical theory of 

plasticity” and Koiter (Koiter, 1960) presentation about “General theorems for elastic-plastic solids” 

have been the basic theory of the application the elasto-plastic analysis in structural optimization. 

Plastic design offers several advantages over the traditional elastic design. With plastic 

analysis, a structure can be designed to form a preselected yield mechanism at ultimate load level 

leading to a known and predetermined response during extreme events. The main advantage of 

plastic analysis that the optimal design problem can be cast in a linear programming (LP) form under 

the following assumptions (see (Kirsch, 1981)): 

 Equilibrium conditions are referred to the undeformed geometry. 

 The loads applied to the structure are assumed to increase proportionally. 

 Constraints are related only to yield conditions and to design considerations. 

 In trusses, it is required that the yield stress will not be exceeded in any member under any load 

condition. 

 In frames, the magnitude of the bending moment in each cross section can at most be equal to the 

plastic moment. Linear relations between plastic moments as well as limitations on the plastic 

moments may be considered in the problem formulation 

 The objective function represents the weight and can be expressed in a linear combination of the 

cross-sectional variables. Cross-sectional areas of truss members and plastic moments of frame 

members are chosen as design variables.  

According to the strong simplifications assumed above it has been noted that “The plastic 

analysis cannot replace the elastic analysis but supplements it by giving useful information about the 

collapse load and the mode of the collapse”
8
. However, in special problems, such that e.g. large 

deformations, or instability consideration the plastic analysis seems very useful to give an estimated 

solution for further investigation of optimal structural design. 

                                                 

8
 Kirsch (1981) Optimum Structural Design, Concepts, Methods and Applications  
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For example, Maier (Maier, 1971) presented an incremental plastic analysis for large 

displacement structural model in order to tackle the instability phenomena. In this paper the plastic 

analysis of structures undergoing large deformations represents on the one hand a particularly 

difficult, still unsettled field of nonlinear mechanics, on the other hand an almost mandatory task for 

the engineer in many practical situations. It is not surprising therefore, that an intensive research 

effort has been and is being devoted to the many relevant problems. In the abundant literature 

available it seems possible to distinguish results mainly useful for the theoretical framework of the 

phenomenology in question and a stream of studies predominantly aimed at the numerical analysis of 

specific categories of structures
9
. 

3.1 Limit States 

Those states are called limit states whenever they happen that the structure cannot satisfy the 

certain type of requirements prescribed by the standards. The following limit states are classifying 

during the analysis and design of the elasto plastic structures (see in (Lógó, 2012)): 

Plastic limit state: the state when the entire elasto-plastic plastic structure or several members 

of it undergo unrestricted plastic deformation under constant external load is called the plastic limit 

state. The closed surface represented this state bounds the plastic limit load domain. It can be proved 

that this domain is convex seeing outwardly. 

Shakedown limit state: Due to a variable, repeated multi-parameter loading there are generally 

unrestricted, accumulated plastic deformations. In connection with these plastic deformations, 

however, residual stresses also arise and can result in such a residual stress field which prevents the 

structure from undergoing any further plastic deformations during further repeated loading. 

Plastic deformation state: in this state the plastic deformations are not accumulated and their 

magnitudes or any other measures reach a prescribed value. 

Elastic limit state: one or several places of the structure plastic deformations occur at first 

simultaneously. The closed surface represented this state bounds the elastic limit load domain. 

                                                 

9
 Maier (1971) Incremental plastic analysis in the presence of large displacements and physical instabilizing effects 
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Elastic deformation state: all parts of the structure are in elastic state and the magnitudes of 

the elastic deformations and displacements reach an allowable value. The closed surface represented 

this state bounds the elastic limited deformation domain. 

The goal of the analysis of the structures is to determine those conditions and bounds for the 

loading process at which the introduced limit states can be occurred. In case of one-parameter 

loading this goal is to determine the load multiplier.  

 In the case of analysis it needs to investigate whether the loads exceed or not the loading 

domain prescribed in the standards or whenever they are happened they have enough 

safety reserve. 

 In the case of design the materials and the dimensions of the structure should be 

determined on the way that the measure of the corresponding limit state of the structure 

subjected to the given load intensity does not exceed a limit given by the corresponding 

standards.  

During the elasto-plastic analysis an idealized material property is assumed. The relationship 

in between of the stress and strain (𝜎 − 𝜀) is linear up to yield stress (see in Figure 3.1 a). Similar 

way the bending moment-rotation relation (𝑀 − 𝜃 ) will be perfectly linear elastic-plastic (Figure 3.1 

b). At the fully plastic moment a plastic hinge is formed, and the curvature (rotation at the hinge) is 

increased without any increase in the moment The rotations at the cross section before 𝑀𝑃 is reached 

are considered to be relatively small and the equilibrium equations are referred to the undeformed 

geometry of the structure. It is assumed that plastic hinges are concentrated at critical sections with 

ductility being unlimited. In addition, the loads applied to the structure are assumed to increase 

proportionally. 

A shakedown analysis and optimum shakedown design of elasto-plastic trusses under multi-

parameter static loading are presented in (Kaliszky, 2002). To control the plastic behaviour of the 

truss, bounds on the complementary strain energy of the residual forces and on the residual 

displacements are applied and for the bars under compression critical stresses updated during the 

iteration taken into consideration. The formulation of problems is suitable for nonlinear 

mathematical programming which is solved by the use of an iterative procedure. The application of 

the method is illustrated by three test examples. 

In paper (Kaliszky, 2006) the authors pointed out that when in the design of structures 

extreme loadings such as short time, high intensity dynamic pressure (explosion), impact or 
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earthquake have to be taken into consideration then, except for special cases, the plastic reserves of 

the material can be utilized, but the development of excessive plastic deformations, residual 

displacements and the collapse have to be prevented. Following this design concept in this paper 

three appropriate methods are presented for the determination of the optimal layout of material of 

elasto-plastic structures (beams, frames, trusses and plates) subjected to extreme loading. The 

investigation is extended also to the case when in the optimal design in addition to one of the 

extreme loads the normal (working) loads can be separately or simultaneously taken into 

consideration. 

 

(a) 

 

(b) 

Figure 3.1 a) Idealized stress-strain relation, b) Idealized bending moment-curvature relation 

Basically two types of existing methods for plastic analysis are distinguished on either the 

kinematic approach or the static approach
10

. There are many papers to demonstrate the advantages 

of the plastic design in case of different special problems (Kaliszky, 2006). The theoretical and 

analytical investigations more and more numerical methods and very accurate computer programs 

have been developed which can be used to a complete time history analysis of any kind of 

dynamically loaded elasto-plastic structures taking effects of viscosity and large deformation into 

consideration. The survey of these methods is beyond the scope of this paper. In the subsequent 

chapter, only static approach will be presented for two examples, which is often used in optimal 

design formulations. 

                                                 

10
 Hodge P.G. Jr. (1959) Plastic analysis of structures, New York, McGraw-Hill Book Company 
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3.2 Plastic Analysis of Continuous Beam 

Static approach could be applied for statically indeterminate structures. In this chapter the 

steps of the plastic analysis for the statically indeterminate continuous beam structure are considered 

shown in Fig. 3.2. The static equilibrium equations must be satisfied and the inequality conditions 

related to the given plastic capacities of critical sections. In this example a uniform plastic moment is 

supposed (𝑀𝑃). According to the static theorem of plastic analysis
11

, the bending moment 

distribution at collapse is such that the corresponding load factor is the largest statically admissible 

multiplier (λ = max (λ𝑖).). The problem of collapse load analysis will be considered under 

proportional loading. 

Let the external loads given in one parametric form (𝐹1 = λF; 𝐹2 = 2λF). Consequently, the 

bending-moment distribution is computed as shown in Figure 3.2. 

 

Figure 3.2 Plastic analysis of statically indeterminate beam structure 

                                                 

11
 Kirsch U. (1981) Optimum Structural Design, Concepts, Methods and Applications 
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The equilibrium equations are given terms of the support moment 𝑀2 (see Fig. 3.2). 

 𝑀1 = λFL 4 − 𝑀2 2⁄⁄  (3.1) 

 𝑀2 = 𝑀2 (3.2) 

 𝑀3 = 2λFL 4 − 𝑀2 2⁄⁄  (3.3) 

The number of critical sections is 3 but the number of equilibrium equations is only 2. The 

equations will be extended by the limit state requirements. Therefore, the 3 inequality yield 

conditions must be satisfied. The linear programming problem of plastic analysis is to find λ and 

𝑀𝑗 (𝑗 = 1,2,3) such that 

 λ → max (3.4) 

 4𝑀1 + 2𝑀2 =  λFL (3.5) 

 4𝑀3 + 2𝑀2 =  2λFL (3.6) 

 −𝑀𝑃 ≤  𝑀𝑗 ≤  𝑀𝑃   𝑗 = 1,2,3 (3.7) 

The solution of the linear programming problem is given in Wolfram Mathematica (see in 

Table 3.1). The results are presented in Table 3.2, and demonstrated the linear programming problem 

in Figure 3.3. 

In order to simplify the problem description dimensionless new variables are introduced: 

 𝑋1 = λFL 𝑀𝑃⁄   (3.8) 

 𝑋2 = 𝑀2 𝑀𝑃⁄  (3.9) 

 

NMaximize[{X1, {−1 ≤ X2 ≤ 1, −1 ≤ (X1 4⁄ − X2 2⁄ ) ≤ 1, −1 ≤ (X1 2⁄ − X2 2⁄ ) ≤ 1}}, {X1, X2}] 

 

Table 3.1: Plastic analysis of beam structure in terms of 𝑋1 and 𝑋2  
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{3. , {X1 → 3. , X2 → 1. }} 

Table 3.2: Results of plastic analysis of beam structure in terms of 𝑋1 and 𝑋2  

 

 

Figure 3.3: Graphical interpretation of the results of plastic analysis of beam in terms of 𝑋1 and 𝑋2
12 

The optimal solution is given in the intersection of the active constraint function 𝑋2 = 1, and 

𝑋2 = −2 + 𝑋1, in other words in the intersection of 𝑀2 and 𝑀3. Replaced by results of 𝑋1 and 𝑋2  in 

formula 3.8 and 3.9 the following values are obtained: 

 λ = 3𝑀𝑃 FL⁄   (3.10) 

 𝑀1 = 𝑀𝑃 4⁄  (3.11) 

 𝑀2 = 𝑀3 = 𝑀𝑃 (3.12) 

                                                 

12
 Note: The colored area denotes the borders of feasible set. 



49 

3.3 Plastic Analysis of Three-Bar Truss 

Static approach could be applied for statically indeterminate trusses as well. In order to 

demonstrate the steps of the plastic analysis for the statically indeterminate three-bar truss structure 

are considered shown in Fig. 3.4. The static equilibrium equations must be satisfied and the 

inequality conditions related to the given plastic capacities of truss elements. 

 

Figure 3.4 Plastic ultimate loads of three-bar truss elements. 

The components of the internal forces are given in 𝑥, 𝑦 coordinate system (see Fig. 3.4). 

 ∑𝐹𝑖𝑥 = 0, 𝑖 = 1,2, 3 (3.13) 

 ∑𝐹𝑖𝑦 = 0, 𝑖 = 1,2, 3  (3.14) 

 𝑆1 √2 +  𝑆2  ⁄ +  𝑆3  √2⁄ = λF (3.15) 

 𝑆1 √2 ⁄ −  𝑆3  √2⁄  = 0 (3.16) 

The following plastic stress constraints must be satisfied the yield conditions simultaneously: 

 𝑆1  ≤ 𝑆𝑃 (3.17) 

 𝑆2  ≤ 2𝑆𝑃 (3.18) 

 𝑆3  ≤ 1.5𝑆𝑃 (3.19) 
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The mathematical formulation of the plastic analysis is obtained by elimination of 𝑆1 and 𝑆3  

using the equilibrium equations and substituting into the stress constraints. 

Looking for the values of λ and 𝑆2 such that: 

 λ → max (3.20) 

 (λF −  𝑆2) √2⁄ ≤ 𝑆𝑃 (3.21) 

 𝑆2  ≤ 2𝑆𝑃 (3.22) 

 (λF −  𝑆2) √2⁄ ≤ 1.5𝑆𝑃 (3.23) 

The solution of the linear programming problem is given in Wolfram Mathematica (see in 

Table 3.3 and Table 3.4). In order to simplify the problem description dimensionless new variables 

are introduced: 

 𝑋1 = λF 𝑆𝑃⁄   (3.24) 

 𝑋2 = 𝑆2 𝑆𝑃⁄  (3.25) 

 

NMaximize[{X1, {0 ≤ X2 ≤ 2,0 ≤ (X1 − X2) Sqrt[2]⁄ ≤ 1,0 ≤ (X1 − X2) Sqrt[2]⁄

≤ 1.5}}, {X1, X2}] 

 

Table 3.3: Plastic analysis of three-bar truss in terms of 𝑋1 and 𝑋2  

 

3.414213562373095, {X1 → 3.414213562373095, X2 → 2. } 

 

Table 3.4: Results of plastic analysis of three-bar truss in terms of 𝑋1 and 𝑋2  

The results are presented in Figure 3.5, and demonstrated the linear programming problem. 



51 

 

Figure 3.3: Graphical interpretation of the results of plastic analysis of three-bar truss in terms of 𝑋1 

and 𝑋2 

The optimal solution is given in the intersection of the active constraint functions 𝑋2 = 2, and 

𝑋2 = (−2 + √2 𝑋1) √2⁄ , in other words in the intersection of 𝑆1 and 𝑆2. Replaced by results of 𝑋1 

and 𝑋2  in formula 3.24 and 3.25 the following values are obtained: 

 λ = 3.4141𝑆𝑃 F⁄   (3.26) 

 𝑆2 = 2𝑆𝑃 (3.27) 

 𝑆1 = 𝑆3 = 𝑆𝑃 (3.28) 

The results (3.26-3.28) and the Figure 3.3 demonstrate that the maximal load parameter is 

obtained when the internal loads in member 1 and 2 become equal to plastic limit simultaneously.  
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4. LINEAR PROGRAMMING FORMULATIONS 

The available methods of structural optimization may conveniently be subdivided into two 

distinctly different categories called analytical methods and numerical methods. While analytical 

methods emphasize the conceptual aspect, numerical methods are concerned mainly with the 

algorithmical aspect.
13

 

Analytical methods are usually employing the mathematical theory of calculus, in studies of 

optimal layouts or geometrical forms of simple structural elements. These methods are most suitable 

for such fundamental studies of single structural components, but are usually not intended to handle 

larger structural systems. The structural design is represented by a number of unknown functions and 

the goal is to find the form of these functions. The optimal design is theoretically found exactly 

through the solution of a system of equations expressing the conditions for optimality. 

Numerical methods usually employ a branch in the field of numerical mathematics called 

mathematical programming. The recent developments in this branch are closely related to the rapid 

growth in computing capacities. In the numerical methods, a near optimal design is automatically 

generated in an iterative manner. An initial guess is used as a starting point for a systematic search 

for better designs. The search is terminated when certain criteria are satisfied indicating that the 

current design is sufficiently close to the optimum. 

In the middle of the last century have been appeared the digital computer led to application of 

linear programming (LP) techniques to plastic design of frames (Hodge, 1959). This early numerical 

work is particularly significant in that it used mathematical programming techniques developed in 

the operations research community to solve structural design problems. During this period plastic 

design problems could be formulated as linear programming problems, and the application of 

mathematical programming techniques to structural optimization was limited to truss and frame 

structures. This type of structural optimization was focused primarily on steel frame structures and it 

did not consider stress, displacement or buckling constraints. 

In the following pages some simple LP applications are presented using simplex method. The 

theory and its computation techniques are demonstrated and compared of computer results. 

                                                 

13
 Kirsch U. (1993) Structural Optimization, Fundamentals and Applications, Springer-Verlag 
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4.1 Simplex Method 

In order to present the essence of the application of the simplex method first time an 

inequality problem is investigated. 

We are seeking for the values of the defined variables such that satisfy the following 

inequalities: 

7X2XX3 321   

12X4X2 21   

10X8X3X4 321   

Replace the former inequality constraints by an equality formulas extending with slack 

variables that will be used as starting point of the original inequality problem. 

7XX2XX3 4321   

12XX4X2 521   

10XX8X3X4 6321   

The equality equilibriums could be described in basic formula where we have to distinguish 

the basic and non-basic (slack) variables. 

10XX8X3X4

12XX4X2

7XX2XX3

6321

521

4321

065432









   

   

PPPPPPP1

 

Let a potential solution as an initial point of the original inequality problem: 

10X,12X,7X,0X,0X,0X 654321            , 

that will be described in the following vectorial formula: 

 0654 10127 PPPP   (4.1) 

where 654 ,, P  P  P  basis vectors are unit vectors. 
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Seeking for the next potential solution let introduce the basis vector 1P , which resulted the 

following basis vectors: 

 1654 423 PPPP   (4.2) 

That is resulted: 

4X,2X,3X,0X,0X,0X 1
6

1
5

1
4

1
3

1
2

1
1            . 

Multiply formula (4.2) by   and subtract from formula (4.1) we obtain: 

       01654 441021237 PPPPP   (4.3) 

Where value of   is computed as minimal quotient of initial and first step: 

3

7

X

X
min

1
i

0
i

0  , 6,5,4i      . 

Replace   actual value into the formula (4.3) the first non-trivial solution is obtained: 

 0165
3

7

3

58

3

22
PPPP   (4.4) 

That resulted already a non-zero basis vector: 

3

58
X,

3

22
X,0X,0X,0X,

3

7
X 654321            . 

Continue the iteration solution process finally we obtain non-zero values for the originally 

defined real variables. Much efficient and expressive could be to give this elimination process in a 

table form. 

Starting with the determination of minimal   value selected in last column ( 3/7 ) and the 

vector 1P  will be selected as a new basis vector. The pivot row and pivot column is described in red 

frame.  
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1P  2P  
3P  4P  

5P  6P  0P    

3 

 

-1 2 1 0 0 7 7/3 

 

2 -4 0 0 1 0 12 12/2 

-4 -3 8 0 0 1 10  

Table 4.1: Initial table 

Square the pivot entry at the intersection of the pivot column and the pivot row, and identify 

entering variable and exit variable at mean time. Divide pivot by itself in that row to obtain 1. The 

further computation is presented in Table 4.2. 

1
1P  1

2P  1
3P  

1
4P  1

5P  
1
6P  

1
0P    

1 -1/3 2/3 1/3 0 0 7/3  

0 -10/3 -4/3 -2/3 1 0 22/3  

0 -13/3 32/3 4/3 0 1 58/3  

Table 4.2: First non-trivial solution in terms of basis vectors 651 ,, P P P  

The results are obtained in terms of basis vectors ( 651 ,, P P P ) framed by blue color. The basis 

vectors 432 ,, P P P  are given in explicit formula as follows: 

2651
3

13

3

10

3

1
PPPP  , 

3651
3

32

3

4

3

2
PPPP    , 

4651
3

4

3

2

3

1
PPPP    . 

In the following subchapter a graphical interpretation will be considered in order to 

demonstrate the different options in selection of the “best” direction choice for basis change. 
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4.2 Linear Programming of 2D Problem 

In this chapter already a two dimensional optimization problem is considered, where 

inequality constraints and a two dimensional objective function are given initially. The traditional 

simplex method described firstly. Subsequently, the problem solution is demonstrated in table form, 

and finally a graphical interpretation is presented to promote the understanding of the solution 

technique. 

We are seeking for the maximal value of the two-dimensional objective function: 

  2  X80X45X,Xf 121   

Such that satisfy the following inequality constraints: 

400X20X5 21    

450X15X10 21    

0X1   

0X2   

The inequality constraints will be replaced by equality constraints such that the positivity 

criteria are kept in inequality condition.  

400XX20X5 321    

450XX15X10 421    

0Xi  , 2,1i    . 

The simplex method will be applied where the following basis vectors are considered: 

4501510

400205

421

321

04321







XXX

XXX 

PPPPP
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Let a potential solution as an initial point of the original LP problem 

450X,400X,0X,0X 4321        , 

that could be described by using basis vectors: 

 043 450400 PPP   (4.5) 

where 43 P  ,P  basis vectors are unit vectors. 

Let introduced basis vector 1P , according to the values of   ( 80
5

400
 , and 

45
10

450
 ) the pivot element will be the second element of basis vector 1P , that resulted: 

 143 105 PPP   (4.6) 

The following results will be obtained: 

10X,5X,0X,0X 1
4

1
3

1
2

1
1        . 

Multiply formula (4.6) by   and subtract from formula (4.5) we obtain: 

     0143 104505400 PPPP   (4.7) 

Replace   actual value into the formula (4.7) the first non-trivial solution is obtained: 

 013 45175 PPP   (4.8) 

That led to the following results: 

0X,175X,0X,45X 4321        . 

The final results of the two-dimensional problem are obtained by the following series of the 

computational steps (see in Figure 4.1 and Table 4.3). 
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Figure 4.1: The graphical interpretation of the solution steps 

1X , 2X  Results Basis equilibriums 

 0,0   450X,400X,0X,0X 4321         








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
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




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400

X

X
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01

4

3
 

 0,45   0X,175X,0X,45X 4321         


























450

400

X

X

010

15

3

1
 

 20,0   150X,0X,20X,0X 4321         


























450

400

X

X

115

020

4

2
 

 14,24   0X,0X,14X,24X 4321         


























450

400

X

X

1510

205

2

1
 

Table 4.3: The steps of the solution of the two-dimensional problem 

Subsequently, the problem solution is demonstrated in table form (Table 4.4-4.6). 

1X

2X

20 40 60 80

5

10

15

20

25

30

35

40

450X15X10 21 

400X20X5 21 

 14,24  
 20,0  

 0,45  

o

o

o
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1P  2P  
3P  4P  1

0P    

5 20 1 0 400 400/5=80 

10 

 

15 0 1 450 450/10=45 

 

Table 4.4: Initial table 

The initial result is obtained in explicit formula as follows: 

10X,5X,0X,0X 1
4

1
3

1
2

1
1        . 

1
1P  1

2P  1
3P  

1
4P  1

0P    

0 25/2 

 

1 -1/2 175 350/25=14 

 

1 3/2 0 1/10 45 90/3=30 

Table 4.5: The first step resulted 

The first non-trivial result is given in explicit formula: 

0X,175X,0X,45X 4321        . 

2
1P  

2
2P  2

3P  
2
4P  2

0P    

0 1 2/25 -4/25 350/25  

1 0 -3/25 4/25 600/25  

Table 4.6: The second step resulted 

The second step resulted already the final solution given in explicit formula: 

0X,0X,14X,24X 4321        . 
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The solution method of the linear programming problem is given in Wolfram Mathematica 

(see in Table 4.7 and Table 4.8). 

 

NMaximize[{45X1 + 80X2, {X1 > 0, X2 > 0,5X1 + 20X2 <= 400, 

10X1 + 15X2 <= 450}}, {X1, X2}] 

 

Table 4.7: The LP problem solution in terms of 𝑋1 and 𝑋2  

 

{2200. , {X1 → 24.000000000000004, X2 → 14. }} 

 

Table 4.8: The results of LP problem in terms of 𝑋1 and 𝑋2  

The graphical interpretation of the linear programming problem is computed in Wolfram 

Mathematica (see in Table 4.9 and Table 4.10) where the constraints and the objective function are 

solved in terms of 𝑋2 .  

Solve[5 ∗ X1 + 20 ∗ X2 == 400, X2] 

Solve[10 ∗ X1 + 15 ∗ X2 == 450, X2] 

Solve[45X1 + 80X2 == 2200, X2] 

Table 4.9: The graphical interpretation of LP problem in terms of 𝑋2  

g1 =
80 − X1

4
 

g2 = −
2

3
(−45 + X1) 

𝑓 =
440 − 9 ∗ X1

16
 

Table 4.10: The functions of constraints and the objective of LP problem in terms of 𝑋1  

The functions of constraints and the objective function are described in Figure 4.2. 
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Figure 4.2: The graphical interpretation of LP problem 

The final results of the two-dimensional problem are obtained using Wolfram Mathematica 

can be seen in intersection of the functions of constraints and the objective function where  𝑋1 = 24, 

𝑋2 = 14, and the optimal value of the objective function 𝑓(𝑋1, 𝑋2) = 2200. 

4.3 Linear Programming of 3D Problem 

Seeking for the maximal value of the following objective function: 

  3232 xxxx ,x ,xf 33 11   

such that satisfy the next inequality constraints of the three-dimensional problems: 

22 1  32 xxx  

5321  32 xxx  

622 1  32 xxx  

0x 1 , 0x 2 , 0x 3  
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The table form of simplex method will be applied where the objective function is placed into 

the last row. In order to transform the originally maximization problem to minimization problem we 

have to apply opposite signs. The inequality constraints will be replaced by equality constraints. Let 

introduce the following three slack variables: 4x , 5x , 6x . 

The values of the initial table are given as: 

0x 1 , 0x 2 , 0x 3 , ekkor 24 x , 55 x , 66 x . 

Selecting the basic vector ( 2P ), the pivot element will be the in the first row and second 

column see in Table 11. 

1P  2P  
3P  4P  

5P  6P  0P    

2 1 

 

1 1 0 0 2 2/1 

1 2 3 0 1 0 5 5/2 

2 2 1 0 0 1 6 6/2 

-3 -1 -3 0 0 0 0 0 

Table 4.11: Initial table 

The next step is presented in Table 12. 

1P  2P  3P  4P  5P  6P  0P    

2 1 1 1 0 0 2 2/1 

-3 0 1 

 

-2 1 0 1 1/1 

-2 0 -1 -2 0 1 2 - 

-1 0 -2 1 0 0 2  

Table 4.12: The second simplex table 
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In Table 12 the basic vector ( 3P ) and the pivot element will be chosen in the second row. 

The next step – where the pivot element will be chosen in first column and the first row – is 

presented in Table 14. 

1P  2P  
3P  4P  

5P  6P  0P    

5 

 

1 0 3 -1 0 1 1/5 

-3 0 1 -2 1 0 1 - 

-5 0 0 -4 1 1 3 - 

-7 0 0 -3 2 0 4  

Table 4.13: The third simplex table 

The final results are obtained in Table 14. According to the statement that in the last row no 

more negative sign values available, the elimination process doesn’t resulted better results. 

Therefore, the optimal solution is given as follows: 1/5x 1 , 0x 2 , 8/5x 3  04 x , 

05 x , 46 x , where the value of the objective function is 527 /f  . 

1P  2P  3P  4P  5P  6P  0P    

1 1/5 0 3/5 -1/5 0 1/5  

0 3/5 1 -1/5 2/5 0 8/5  

0 1 0 -1 0 1 4  

0 7/5 0 6/5 3/5 0 27/5  

Table 4.14: The fourth simplex table 

Let prove the validity of the results of the LP problem presented above using in Wolfram 

Mathematica (see in Table 4.15 and Table 4.16). Comparing the results obtained using Wolfram 
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Mathematica we can be stated that we get exactly the same values for the objective function and the 

design variables as by stable simplex method. 

 

NMaximize[{3X1 + X2 + 3X3, {X1 >= 0, X2 >= 0, X3 >= 0,2X1 + X2 + X3 ≤ 2, 

X1 + 2X2 + 3X3 ≤ 5,2X1 + 2X2 + X3 ≤ 6}}, 

{X1, X2, X3}] 

 

Table 4.15: The LP problem solution in terms of 𝑋1, 𝑋2 and 𝑋3 

 

{5.4, {X1 → 0.2, X2 → 0. , X3 → 1.6}} 

 

Table 4.16: The results of the LP problem in terms of 𝑋1, 𝑋2 and 𝑋3 

4.4  Theory of Primal-Dual Linear Problems 

In the previous chapter we presented that linear programming problems can be converted into 

an augmented form in order to apply the common form of the simplex algorithm. This form 

introduces non-negative slack variables to replace inequalities with equalities in the constraints. 

Every linear programming problem, referred to as a primal problem, can be converted into a 

dual problem, which provides an upper bound to the optimal value of the primal problem.  

According to the theory of duality every linear program is another called its dual. The dual of 

this dual linear program is the original linear program (which is then referred to as the primal linear 

program). Hence, linear programs come in primal/dual pairs. It turns out that every feasible solution 

for one of these two linear programs gives a bound on the optimal objective function value for the 

other (    WX gmaxfmin  ), where X  is the vector of primal variables and W  is the vector of the 

dual variables.  

The original LP problem - called primal problem - can always be formulated as one of 

choosing vector of design variables (𝑋𝑇 =  [𝑋1 𝑋2 … 𝑋𝑛]) such that (Kirsch, 1993) 

https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Slack_variable
https://en.wikipedia.org/wiki/Dual_problem
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 Z =  ∑ 𝑐𝑗𝑋𝑗 → 𝑚𝑖𝑛𝑛
𝑗=1  (4.9) 

 ∑ 𝑎𝑖𝑗𝑋𝑗 
𝑛
𝑗=1 ≥ 𝑏𝑖, 𝑖 = 1, … , 𝑚 (4.10) 

 𝑋𝑗 ≥ 0, 𝑗 = 1, … , 𝑛 (4.11) 

Note that we do not require 𝑏𝑖 ≥ 0, and that the equality constraints can also be expressed as 

inequalities. 

 ∑ 𝑎𝑘𝑗𝑋𝑗 
𝑛
𝑗=1 = 𝑏𝑘 (4.12) 

That can be replaced by the following two inequalities 

 ∑ 𝑎𝑘𝑗𝑋𝑗 
𝑛
𝑗=1 ≥ 𝑏𝑘,   − ∑ 𝑎𝑘𝑗𝑋𝑗 

𝑛
𝑗=1 ≥ −𝑏𝑘 (4.13) 

The dual problem of the previously defined primal problem (4.9-4.11) can be stated as 

follows 

 𝑔(𝑊) =  ∑ 𝑏𝑖𝑊𝑖 → 𝑚𝑎𝑥𝑚
𝑖=1  (4.14) 

 ∑ 𝑎𝑖𝑗𝑊𝑖 
𝑚
𝑗=1 ≥ 𝑐𝑗, 𝑗 = 1, … , 𝑛 (4.15) 

 𝑊𝑖 ≥ 0, 𝑖 = 1, … , 𝑚 (4.16) 

In matrix form, we can express the primal – dual formulation of linear programming problem 

as seen in Table 4.17: 

THE PRIMAL PROBLEM THE DUAL PROBLEM 

  XcX
Tf   

 n2 X ,...,X ,X1X  

bAX   

0X  

  bWW
Tg   

 m2 W ,...,W ,W1W  

cWA T  

 

Table 4.17: The primal – dual formulation of the LP 
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4.5  The Dual Problem 

In order to present the computation of a primal – dual pair let consider the example of chapter 

4.2. Determine the dual problem and prove that the optimal solution of the objective function results 

exactly the same value. The formulation of the primal – dual pair is given in Table 4.18. The optimal 

solution is presented in Table 4.19 using simplex method. 

THE PRIMAL PROBLEM THE DUAL PROBLEM 

 

  min! XXf T  21 8045XcX  

 8045 T
c  

 

  max! WWg T  21 450400bWW  

?T W  

 

bAX  ,  n2 X ,...,X ,X1X  

4501510

400205

421

321





XXX

XXX
 

0X  

 

cWA T ,  m2 W ,...,W ,W1W  

0  W

0  W

80 WW

 WW

2 







1

21

21

1520

45105

 

Table 4.18: The primal – dual formulation of the LP 4.2 

The results of the primal problem is as follows 0X,0X,14X,24X 4321        , the 

objective function   2200Xf . 

 

2
1P  2

2P  2
3P  

2
4P  2

0P  

0 1 2/25 -4/25 14 

1 0 -3/25 4/25 24 

Table 4.19: The simplex table of the LP 4.2 

Solution of the dual problem using simplex table is presented in Table 4.20-Table 22. 
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𝑊1  𝑊2  𝑊3  𝑊4   𝑐  

5 10 1 0 45 

20 15 0 1 80 

-400 -450    

Table 4.20: The initial simplex table of the dual problem 

𝑊1  𝑊2  𝑊3  𝑊4   𝑐  

0.5 1 0.1 0 4.5 

12.5 0 -1.5 1 12.5 

-175 0 45 0 2025 

Table 4.21: The second simplex table of the dual problem 

𝑊1  𝑊2  𝑊3  𝑊4   𝑐  

0 1 0.16 -0.04 4 

1 0 -0.12 0.08 1 

0 0 24 14 2200 

Table 4.20: The final simplex table of the dual problem 

The results of the dual problem is as follows 𝑊1 = 4, 𝑊2 = 1, 𝑊3 = 0, 𝑊4 = 0, the 

objective function   2200Xf . We have to note that the last row contents the solution of the 

primal problem, in the column of slack variables: 𝑋1 = 24, 𝑋2 = 14. 

It is already stated that the primal - dual pair of an LP results the same value for the objective 

function. Moreover it is proven that enough to solve one problem using simplex table because the 

results for both problems can be seen in the final simplex table. 
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5. OPTIMIZATION SUBJECT TO STRUCTURAL INSTABILITY 

The constrained truss optimization where structural instability is considered simultaneously 

requires the solution of the equilibrium path and the detection of critical points on the equilibrium 

path i.e. bifurcation or limit points. The simple iteration strategies for computation of the equilibrium 

path do not provide an accurate tool for the stability point computation since the basis is an 

incremental procedure. Therefore, in the neighborhoods of the singular points the simple iteration 

process became unstable.
14

 

To avoid these difficulties, the arc length procedures or continuation methods are applied in 

the finite element literature, e.g. (Criesfield, 1981), (Schweizerhoff, 1986). The basis for this 

procedure is an extension of the nonlinear set of equilibrium equations by a constraint condition that 

introduces additional information about stability points. Such extended systems facilitate the 

computation of limit or bifurcation points directly, e.g. (Wriggers, 1988). In this chapter a higher 

order path-following method (Csébfalvi, 1998) is proposed based on the perturbation technique of 

the stability theory and a non-linear modification of the classical linear homotopy method. 

The nonlinear function of the total potential energy for conservative systems can be 

expressed in terms of nodal displacements and the load parameter. The equilibrium equations are 

given from the principle of stationary value of total potential energy. The stability investigation is 

based on the eigenvalue analysis of the Hessian matrix. In each step of the path-following process, 

we get information about the displacement, stresses, local, and global stability of the structure. With 

the help of the higher-order predictor-corrector algorithm, we are able to compute an arbitrary load 

deflection path and detect the different type of stability points. During the optimization process, a 

truss design is characterized by its maximal load intensity factor along the equilibrium path. 

The proposed third order predictor-corrector method has been successfully used for several 

problems. The shallow truss dome problem is a very good example of stability loss. The dome of 

Figure 5.1, if subjected to vertical forces at the given nodes, deforms until it loses stability at the first 

turning point. After passing this point, the dome exhibits a more complicated behavior, when we 

consider the global snap-through. 

                                                 

14 Csébfalvi A. (1998) A nonlinear path-following method for computing the equilibrium curve of structures, Annals of Operations 

Research, 81, 15-24 
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5.1 Stationary Principle of Potential Energy 

The optimization subjected to stability constrains requires a nonlinear consideration of the 

structural behavior based on the principle of minimum potential energy function. 

In this chapter a nonlinear path-following method is given for the analysis of nonlinear 

instability problems. The proposed method is based on the perturbation technique of stability theory 

(see (Koiter, 1960) and (Thompson, 1984)), and on the nonlinear modification of the classical linear 

homotopy method. The essence of the classical homotopy method is to reduce the solution of 

nonlinear equilibrium equation to that of first-order implicit ordinary differential equations. The 

introduction of higher-order prediction makes it possible to approximate the curve of the equilibrium 

path, so that the proposed pathfollowing method is able to compute the information of direct methods 

and then compute not only points but also segments of the equilibrium path. The curve 

approximation simplifies the computation of stability points.
15

 

The nonlinear function of the total potential energy for conservative systems can be expressed 

in terms of nodal displacements and the load parameter: 

 𝑉(𝑢𝑖, 𝜆), 𝑖 = 1, 2, … , 𝑁 (5.1) 

where 𝑉(𝑢𝑖 , 𝜆) is the nonlinear total potential energy function, 𝑢𝑖 , , 𝑖 = 1, 2, … , 𝑁 the vector of 

the nodal displacements, the 𝜆 is the load intensity factor, and 𝑁 is the degree of the freedom. 

The equilibrium equations are given from the principle of stationary value of total potential 

energy: 

 𝑉,𝑖 (𝑢𝑖 , 𝜆) = 0, 𝑖 = 1, 2, … , 𝑁 (5.2) 

where the subindices (),𝑖 of V following the coma denote the partial derivatives by the displacement  

𝑢𝑖 , , 𝑖 = 1, 2, … , 𝑁. 

With the introduction of a common notation of nodal displacements and the load intensity 

factor, the equilibrium equations are replaced by the following formula. 

                                                 

15
 Csébfalvi A. (1998) A nonlinear path-following method for computing the equilibrium curve of structures, Annals of 

Operations Research 
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 𝑉,𝑖 (𝑦𝑘) = 0, 𝑘 = 1, 2, … , 𝑁 + 1 (5.3) 

where (𝑦𝑘)’s signify the N +1 dimensional solution vector. 

The stability investigation is based on the eigenvalue computation of the Hessian matrix. In 

each step of the path-following process, we get information about the displacement, stresses, local, 

and global stability of the structure. 

The theoretical background of the instability computation is presented in (Csébfalvi, 1998). 

This paper prove that the introduction of higher-order prediction makes it possible to approximate 

the curve of the equilibrium path, so that the proposed pathfollowing method is able to compute the 

information of direct methods and then compute not only points but also segments of the equilibrium 

path. The curve approximation simplifies the computation of stability points. 

Within the predictor step, we compute the solution of an implicit ODE problem. The corrector 

phase means the solution of a nonlinear equation system. 

Let consider the following shallow space truss dome (see in Figure 5.1) where the 

computation of critical points could be very crucial point of the instability investigation. 

The theory and the results of the equilibrium curve investigation - obtained using the higher-

order predictor-corrector algorithm - are presented in (Csébfalvi, 1998).  

In order to compare the results of the linear, quadratic and cubic approximation are presented 

in Figure 5.2-5.4. The estimated equilibrium path points are marked by dots in the curve. In each 

case, the number of iterations was 50. It is worth mentioning what the total number of corrector 

iteration steps were in each case. 

The benefit of the method proposed is confirmed by the nonlinear stability analysis of beams 

and snap-through analysis of medium size three-dimensional truss and frames. The suggested 

numerical method can be easily incorporated into a computer program for nonlinear finite element 

analysis, and it is believed to enhance the accuracy of the program. The success of the method 

proposed for large-scale problems still needs verification. 
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Figure 5.1: The shallow truss-dome problem 

 

Figure 5.2: The equilibrium path of shallow truss-dome problem – first order approximation 
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Figure 5.3: The equilibrium path of shallow truss-dome problem – second order approximation 

 

 

Figure 5.4: The equilibrium path of shallow truss-dome problem – third order approximation 
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The total potential energy contents two parts, the internal energy (strain energy) and external 

energy functions in terms of the vector of design variables and state variables namely here the vector 

of nodal displacements. 

     FDDXDX
T , U , V   (5.4) 

where  DX  , U  is the strain energy function in terms of the generalized vector of 

displacements ND . NF  is the vector of external loads, where N  is the number of freedom.  

The equilibrium equations are given from the principle of stationary value of total potential 

energy in terms of the vector of design variables and state variables namely here the vector of nodal 

displacements: 
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where the load is given by the multiplication of a basic value and a load intensity factor. 

The number of equilibrium equations will be exactly same as the number of freedom, e.g. the 

number of elements of nodal displacement vector. The second part of the equilibrium equations 

contents only the external loads. Therefore, in the following formulas only the strain energy 

formulation will be considered. 

The strain energy of one element – supposed linear elastic material law - is formulated as 

follows. 
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where ee AE   M,...,,e 21  is the rod stiffness, eE  is the elasticity modulus, eA  is the cross-

section of the elements, M  the number of elements. eL  is the length of the elements, and eL  is the 

shortening or elongation of the elements depending on the sign of the internal forces. 

The shortening or elongation of the elements will be computed in terms of the original 

coordinates of the geometry and the nodal displacements. 

       2
e

2
e

2
eze,eye,exe,ee ΔzΔyΔxΔuΔzΔuΔyΔuΔxΔL   (5.7) 
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where eΔx , eΔy , eΔz  are the components of the element in z y, x,  coordinate system. The 

displacements ( d1,d2,de, uuΔu  ),  zy,x,d   of the element is computed in the 3D space. 

Substituting into the strain energy function 

       22
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2
e

2
ee,zeye,ee,xe

e

ee
e ΔzΔyΔxΔuΔzΔuΔyΔuΔx
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1
U   (5.8) 

The equilibrium equations are given by differentiation in terms of nodal displacements 

        F









 



 2
e

2
e

2
ee,zeye,ee,xe

e

ee

j

ΔzΔyΔxΔuΔzΔuΔyΔuΔx
L

AE
 

2

1

u
 (5.9) 

After the solution of (5.9) equilibrium equation system the nodal displacements resulted 

directly. Substituting the obtained displacements into the equilibrium equation system the stress 

constraints and displacements already could be formulated as follows: 

 
U

e  0  (5.10) 

 0 e
L
e   (5.11) 

 
U
kk

L
k uuu  ,  N,...,,k 21  (5.12) 

We have to note that in this case the constraints are given always in implicit form because the 

displacements depend on the actual value of the cross sectional areas of the structural elements. 

Therefore, the optimization problem could be solved using only heuristic or metaheuristic methods. 

If the local stability consideration is required as well than we need further criteria for Euler 

buckling mode or any others when we have e.g. thin-walled structures: 

  B
e

E
e

LL
e  ,  ,  max   , (5.13) 

where 
E
e   is the Euler buckling constraints, and 

B
e  is given by the design code. 
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5.2 Nonlinear Modelling of Three-Bar Truss 

In this chapter the geometrically nonlinear structural modelling is presented and the 

computation of the structural constraints and the mathematical formulation will be defined for 

minimal weight design subject to stress and displacements constraints of a simple three-bar truss (see 

in Figure 5.5). 

 

Figure 5.5: The initial data of three-bar truss nonlinear problem 

The structure is given in 𝑥𝑦 coordinate system. The nodes and elements are numbering as 

shown in Figure 5.5. The loads are acting on the free join (1) and its direction is given in 𝑥𝑦 

coordinate system. The computation is based on the nonlinear equilibrium equation system in terms 

of nodal displacements as defined in chapter 5.1.  

Previously we stated that in case of nonlinear modelling the structural constraints will be 

implicit functions of design variables and state variables as well. Consequently, only heuristic 

solution methods can be applied where an initial design is supposed. The initial design is randomly 

selected from the range of cross-sectional areas. Starting from the total potential energy function 

differentiate by the nodal displacements, we get the structural constraints. 

The computation formula of a deformed element is given by the subroutine of Table 5.1-

Table 5.2. The steps of the modelling and computation is given in Table 5.3-Table 5.9. 

123

1

234

H

L L

x

y



76 

LoadedTruss: = Module[{𝑖, left, right, x1, y1, x2, y2}, 

deformedtruss = {}; 

 

Do[ 

left = element[𝑖, 1]; right = element[𝑖, 2]; 

x1 = deformedpoint[left, 1]; y1 = deformedpoint[left, 2]; 

x2 = deformedpoint[right, 1]; y2 = deformedpoint[right, 2]; 

AppendTo[deformedtruss, Graphics[{RGBColor[1,0,0], Line[{{x1, y1}, {x2, y2}}]}]]; 

, {𝑖, 1, 𝑒}]; 

Return[deformedtruss]; 

]; 

 

PlaneTruss: = Module[{𝑖, left, right, x1, y1, x2, y2, Radius}, 

radius = 0.5; 

startingtruss = {}; 

 

Do[left = element[𝑖, 1]; right = element[𝑖, 2]; 

 

x1 = startingpoint[left, 1]; y1 = startingpoint[left, 2]; 

x2 = startingpoint[right, 1]; y2 = startingpoint[right, 2]; 

 

AppendTo[startingtruss, 

 

Graphics[{Thickness[𝑦[𝑖] 𝐻⁄ ], RGBColor[0,0,0], Line[{{x1, y1}, {x2, y2}}]}]]; 

AppendTo[startingtruss, 

 

Table 5.1: Nonlinear computation of trusses – Part 1 
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Graphics[{EdgeForm[Thin], White, Rectangle[{(2 ∗ x1 + 4 ∗ x2) 6⁄ − radius 2⁄ , 

(2 ∗ y1 + 4 ∗ y2) 6⁄ − radius 2⁄ }, {(2 ∗ x1 + 4 ∗ x2) 6⁄ + radius 2⁄ , 

(2 ∗ y1 + 4 ∗ y2) 6⁄ + radius 2⁄ }]}]]; 

 

AppendTo[startingtruss, 

 

Graphics[{RGBColor[0,0,0], Text[StyleForm[𝑖, FontSize−> 10, 

FontWeight−> "Bold"], {(2 ∗ x1 + 4 ∗ x2) 6⁄ , (2 ∗ y1 + 4 ∗ y2) 6⁄ }]}]];, 

{𝑖, 1, 𝑒}]; 

 

Do[x1 = startingpoint[𝑖, 1]; y1 = startingpoint[𝑖, 2]; 

If[𝑖 == 1, 

 

AppendTo[startingtruss, Graphics[{White, Disk[{x1, y1}, radius 2⁄ ]}]], 

AppendTo[startingtruss, 

 

Graphics[{LightGray, Disk[{x1, y1}, radius 2⁄ ]}]]]; 

AppendTo[startingtruss, 

 

Graphics[{Thin, RGBColor[0,0,0], Circle[{x1, y1}, radius 2⁄ ]}]]; 

 

AppendTo[startingtruss, Graphics[{RGBColor[0,0,0], Text[StyleForm 

[𝑖, FontSize−> 10, FontWeight−> "Bold"], {x1, y1}]}]]; 

, {𝑖, 1, 𝑝}]; 

 

Return[startingtruss]; ]; 

 

Table 5.2: Nonlinear computation of trusses – Part 2 
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crlf = "\n"; 

Echo = False; 

𝑝 = 4; 

𝑒 = 3; 

𝑑 = 2; 

𝑛 = 2; 

Clear[𝑥, 𝑦, 𝐿, 𝑅, 𝐻, 𝐿, 𝑃, 𝛼, LO, LD]; 

points = Array[point, {𝑝, 𝑑}]; startingpoints = Array[startingpoint, {𝑝, 𝑑}]; 

𝐻 = 4; 

𝐿 = 3; 

point[1,1] = 0; 

point[1,2] = 𝐻; 

point[2,1] = +𝐿; 

point[2,2] = 0; 

point[3,1] = 0; 

point[3,2] = 0; 

point[4,1] = −𝐿; 

point[4,2] = 0; 

 

Do[Do[startingpoint[𝑖, 𝑗] = point[𝑖, 𝑗], {𝑗, 1, 𝑑}], {𝑖, 1, 𝑝}]; 

elements = Array[element, {𝑒, 2}]; 

element[1,1] = 1; 

element[1,2] = 2; 

element[2,1] = 1; 

element[2,2] = 3; 

element[3,1] = 1; 

element[3,2] = 4; 

 

Table 5.3: Initial data of three-bar truss – Part 1 
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Clear[𝑦]; 

Table[𝑦[𝑖], {𝑖, 𝑒}]; 

Clear[𝑥]; 

Table[𝑥[𝑖], {𝑖, 𝑛}]; 

Clear[𝑠]; 

Table[𝑠[𝑖], {𝑖, 𝑒}]; 

Clear[load]; 

Table[load[𝑖], {𝑖, 𝑛}]; 

Clear[LO, LD]; 

Do[ 

bal = element[ea, 1]; job = element[ea, 2]; 

LO[ea] = 0; 

Do[LO[ea] = LO[ea] + (point[bal, 𝑗] − point[job, 𝑗])^2, {𝑗, 1, 𝑑}]; 

LO[ea] = Sqrt[LO[ea]]; 

If[Echo, Print["LO[", ea, "]  = ", LO[ea]]]; 

, {ea, 1, 𝑒}]; 

point[1,1] = point[1,1] − 𝑥[1]; 

point[1,2] = point[1,2] − 𝑥[2]; 

Do[Do[deformedpoint[𝑖, 𝑗] = point[𝑖, 𝑗], {𝑗, 1, 𝑑}], {𝑖, 1, 𝑝}]; 

𝑆 = {}; 

Do[ 

bal = element[𝑖, 1]; job = element[𝑖, 2]; 

LD[𝑖] = 0; 

Do[LD[𝑖] = LD[𝑖] + (point[bal, 𝑗] − point[job, 𝑗])^2, {𝑗, 1, 𝑑}]; 

LD[𝑖] = Sqrt[LD[𝑖]]; 

𝑠[𝑖] = (LD[𝑖] − LO[𝑖]) LO[𝑖]⁄ ∗ modulus; AppendTo[𝑆, 𝑠[𝑖]]; 

If[Echo, Print["LD[", ea, "]  = ", LD[ea]]]; 

, {𝑖, 1, 𝑒}]; 

Table 5.4: Initial data of three-bar truss – Part 2 



80 

If[Echo, Print["S = ", 𝑆]]; 

Clear[𝑊, OWF, PEF]; 

𝑊 = 𝑦[1] ∗ LO[1] + 𝑦[2] ∗ LD[2] + 𝑦[3] ∗ LD[3]; 

OWF = 𝑥[1] ∗ load[1] + 𝑥[2] ∗ load[2]; 

PEF = 0; Do[PEF = PEF + 𝑦[𝑖] ∗ (LD[𝑖] − LO[𝑖])^2 LO[𝑖]⁄ , {𝑖, 𝑒}]; 

PEF = modulus ∗ PEF 2⁄ − OWF; 

If[Echo, Print["PEF(BEF)  = ", PEF]]; 

PEF = Simplify[PEF]; 

If[Echo, Print["PEF(AFT)  = ", PEF]]; 

PEF 

PX = 600; 

PY = 1200; 

load[1] = PX; 

load[2] = PY; 

modulus = 200 ∗ 10^6; 

density = 1; 

𝑦[1] = 0.004; 𝑦[2] = 0.003; 𝑦[3] = 0.004; 

𝑌 = {}; Do[AppendTo[𝑌, 𝑦[𝑖]], {𝑖, 1, 𝑒}]; 

plot1 = Show[PlaneTruss, ImageSize → 300]; Print[plot1]; 

Table 5.5: Computation of three-bar truss – Part 1 

Clear[eqn, eqnm, jac, jacm]; 

Quet[ 

Do[𝑦[𝑖] =. , {𝑖, 1, 𝑒}]; 

]; 

 

eqnm = Array[eqn, {𝑛}]; jacm = Array[jac, {𝑛, 𝑛}]; 

 

Table 5.6: Computation of three-bar truss – Part 2 
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Do[eqn[𝑖] = 𝐷[PEF, 𝑥[𝑖]], {𝑖, 𝑛}]; 

If[Echo, Print["eqnm = ", MatrixForm[eqnm]]]; 

If[Echo, Print["S = ", MatrixForm[𝑆]]]; 

Do[jac[𝑖, 𝑗] = 𝐷[eqn[𝑖], 𝑥[𝑗]], {𝑖, 𝑛}, {𝑗, 𝑛}]; 

If[Echo, Print["jacm = ", MatrixForm[jacm]]]; 

Clear[dedy, dedym]; 

dedym = Array[dedy, {𝑛, 𝑒}]; 

Do[dedy[𝑖, 𝑗] = 𝐷[eqn[𝑖], 𝑦[𝑗]], {𝑖, 𝑛}, {𝑗, 𝑒}]; 

If[Echo, Print["dedym = ", MatrixForm[dedym]]]; 

 

𝑆 = {}; 

Do[𝑠[𝑖] = (LD[𝑖] − LO[𝑖]) LO[𝑖]⁄ ∗ modulus; AppendTo[𝑆, 𝑠[𝑖]], {𝑖, 𝑒}]; 

If[Echo, Print["S = ", MatrixForm[𝑆]]]; 

Clear[dsdx, dsdxm]; 

dsdxm = Array[dsdx, {𝑒, 𝑛}]; 

Do[dsdx[𝑗, 𝑖] = 𝐷[𝑠[𝑗], 𝑥[𝑖]], {𝑗, 𝑒}, {𝑖, 𝑛}]; 

If[Echo, Print["dsdxm = ", MatrixForm[dsdxm]]]; 

If[Echo, Print["OWF(C)  = ", OWF]]; 

Quiet[Do[𝑦[𝑖] =. , {𝑖, 1, 𝑒}]; Do[𝑥[𝑖] =. , {𝑖, 1, 𝑛}]]; 

 

FixedAngle = True; 

goal = 0; Do[goal = goal + LO[𝑖] ∗ 𝑦[𝑖], {𝑖, 1, 𝑒}]; 

rels = {}; Do[AppendTo[rels, Quiet[eqn[𝑖] == 0, Set::write]], {𝑖, 1, 𝑛}]; 

vars = {}; 

cony = {𝑦[1] == 0.004, 𝑦[2] == 0.003, 𝑦[3] == 0.004}; 

Do[AppendTo[vars, 𝑦[𝑖]], {𝑖, 1, 𝑒}]; 

Do[AppendTo[vars, 𝑥[𝑖]], {𝑖, 1, 𝑛}]; 

 

Table 5.7: Computation of three-bar truss – Part 3 
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ExactSolution = NMinimize[{goal, {rels, cony}}, vars, 

Method → {"RandomSearch", Method → "InteriorPoint", "SearchPoints" → 10, 

Print["ExactSolution = ", Chop[ExactSolution, 0.0001]]; 

 

𝑋 = {}; Do[𝑥[𝑖] = Replace[𝑥[𝑖], ExactSolution[[2]]]; AppendTo[𝑋, 𝑥[𝑖]], {𝑖, 1, 𝑛}]; 

𝑌 = {}; Do[𝑦[𝑖] = Replace[𝑦[𝑖], ExactSolution[[2]]]; AppendTo[𝑌, 𝑦[𝑖]], {𝑖, 1, 𝑒}]; 

 

{𝑋, 𝑌, 𝑆} = Chop[{𝑋, 𝑌, 𝑆},0.0001]; 

Print["Y = ", PaddedForm[𝑌, {8,4}]]; 

Print["X = ", PaddedForm[𝑋, {8,4}]]; 

Print["S = ", PaddedForm[𝑆, {8,4}]]; 

 

plot2 = Show[{LoadedTruss, PlaneTruss}, ImageSize → 300]; Print[plot2]; 

 

Table 5.8: Computation of three-bar truss – Part 4 

"ExactSolution = "{0.052000000000000005, {𝑦[1] → 0.004, 𝑦[2] → 0.003, 𝑦[3] → 0.004, 

𝑥[1] → 0.005213447826819619, 𝑥[2] → 0.0033843597515275537}} 

 

"Y = "{"0.0040", "0.0030", "0.0040"} 

"X = "{"0.0052", "0.0034"}X = 

"S = "{"16977.0510", " − 169047.9700", " − 233403.9200"}S = 

 

Table 5.9: Results of nonlinear three-bar truss optimization problem 
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5.3 Nonlinear Modelling of 24-Bar Dome Truss 

The 24-bar truss behavior has been already presented in chapter 5.1. In this session the 

computational details will be discuss. The geometry is given in Figure 5.6 and in Table 5.10-Table 

5.11. 

 

Figure 5.6: The joints and elements of the shallow truss-dome structure 

The example is based on the results of (Criesfield, 1981) obtained four different critical points 

on the primary equilibrium path if the following load values are considered: 0.5 at the central node 

and 1.0 unit at nodes 2-7. 

The first singular point is a single bifurcation (λ1 = 8.68), while the following two are double 

bifurcation points (λ2 = 10.26, and λ3 = 15.67). Only the fourth singular point is a simple limit 

point (λ4 = 18.40) that confirms the hazardous of the theories and methods which are able to tackle 

only snap-through phenomenon.  

In this paper, a weight optimization is considered subjected to global stability constraints. The 
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cross-sections as design variables are involved into three groups (Figure 5.6). The load intensity 

factor is changing from zero to one.  

Nodes X [ cm ] Y [ cm ] Z [ cm ] 

1 0 0 8.216 

2 12.50 21.65063509 6.2.16 

3 25.00 0 6.216 

8 0 50.00 0 

9 43.330127019 25.00 0 

Table 5.10: Initial coordinates of 24-bar shallow space truss 

Design variables  002001 .; .Ai   )(
2cm ;  321 ,,i  

Load cases Nodes Z 

1 1 kN 005.  

 2, 3, 4, 5, 6, 7  kN 0010.  

Material properties Modulus of elasticity 2kN/cm  10000E   

Table 5.11: Initial data of 24-bar shallow space truss 

Using the proposed hybrid metaheuristic method, where the number of generations is 10 and 

the population size is 100, two optimization problems are considered. 

Case 1: 

In first case, a sizing optimization problem is solved for minimal volume optimization 

subjected to structural stability. The structure is loaded up to the maximal load intensity factor while 

the smallest eigenvalue becomes zero. The obtained best solution for the grouped design variables 

are the following: 𝐴1 = 1.000; 𝐴2 = 1.321; 𝐴3 = 1.119. The optimal volume in this case is 

𝑉𝑜𝑝𝑡 = 773.127. 

Case 2: 

In the second case, a sizing-shaping optimization problem is presented. The three sizing 

variables are extended with three shift variables namely the vertical position of all free joints (

721 ,...,,; iZi ), and the horizontal position of the joints 2-7 ( 72,...,; jR j ). In this case, the same 

proposed hybrid metaheuristic method has been applied, with the number of generations 10 and the 

population size 100. The obtained best solution is the following: 𝐴1 = 1.000; 𝐴2 = 1.378; 𝐴3 =

1.084; 𝑍1 = 7.685;  𝑍2−7 = 6.121; 𝑅2−7 = 24.665. The optimal volume is 𝑉𝑜𝑝𝑡 = 765.699 and the 

lowest eigenvalue is zero for three digits in the best solution. 
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6. UNCERTAINTIES IN STRUCTURAL OPTIMIZATION 

In the real-world structural optimization problems, the optimal performance obtained using 

conventional deterministic methods can be dramatically degraded in the presence of sources of 

uncertainty. The source of uncertainty may be the variability of applied loads, spatial positions of 

nodes, material properties, and so on. Various approaches have been developed to account for 

different types of uncertainty in structural design and optimization methods. Generally speaking, 

these methods are mainly based on two kinds of uncertainty models: probabilistic (stochastic) or 

possibilistic (fuzzy) models. 

Based on stochastic uncertainty models of mechanical parameters, various techniques were 

proposed by ( (Marti, 1999), (Rozvany, 2001), (Choi, 2001), (Lógó, 2007)) for evaluation and 

estimation of failure probabilities that can be utilized in the reliability-based structural design 

methods. 

Based on the probability distribution of the random data, and using decision theoretical 

concepts, optimization problems under stochastic uncertainty are converted into appropriate 

deterministic substitute problems. Due to the occurring probabilities and expectations, approximate 

solution techniques must be applied. Several deterministic and stochastic approximation methods are 

provided by (Marti, 2005). A fuzzy optimization approach for geometrical nonlinear space trusses 

was presented by (Kelesoglu, 2005). Assuming uncertain-but-bounded parameters (Ben-Haim, 1990) 

developed the so-called convex model, with which (Pantelides, 1989) proposed a robust truss 

optimization method. For various classes of convex optimization problems, a unified methodology of 

robust optimization was developed by (Ben-Tal, 2002). Calafiore (Calafiore, 2004) proposed a 

method for finding the ellipsoidal bounds of the solution set of uncertain linear equations by using 

the semidefinite program (SDP), which was presented originally by (Wolkowicz, 2000). We have to 

mention the pioneer works of (Achtziger, 1992) and (Achtziger, 1997) as well, related to truss 

topology design and topology optimization of discrete structures, which contain the basic theoretical 

backgrounds on the field of the truss topology optimization. 

The multiple-load truss topology and sizing optimization was presented first time by 

(Achtziger, 1998). Similar work was presented by (Alvarez, 2005) for minimization of the expected 

compliance as an alternative approach for multiple load truss optimization, which seems also very 

useful to tackle the uncertain optimization problems. In a recent paper, (Dunning, 2011) introduced a 

new probabilistic approach for robust topology optimization to minimize the volume-constrained 
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expected compliance with uncertainty in loading magnitude and applied direction, where 

uncertainties are assumed normally distributed and statistically independent. The presented model 

was formulated as a statistical model, which after some manipulation was replaced by an equivalent 

multiple load problem in the function of the number of perturbed loads. 

6.1 Load Direction Uncertainty of Trusses 

In this chapter, using a recently developed unified approach (Csébfalvi, 2018) we present 

benchmark results for structural optimization when the only source of uncertainty is the variability of 

the applied load directions. The novel worst-direction-oriented unified approach can be applied to a 

broad class of engineering optimization problems. In each case, the central element of the solution 

searching algorithm is a standard deterministic multi-load structure optimization problem, which 

using an appropriate method, can be solved within reasonable time. The essence of the novel 

conception is independent from the theoretical description of the directional uncertainty, which may 

be either probabilistic (stochastic) or possibilistic (fuzzy). 

In the presented unified approach (non-probabilistic and non-possibilistic), the varying load 

directions are handled by quadratic and linear constrains, which describe spherical regions around 

the nominal loads. Naturally the applied load direction handling method can be replaced by any other 

uncertainty representation form, which can be described by an appropriate combination of linear or 

quadratic (linearizable) relations. 

The result of the optimization is a structure design with minimum performance measure 

which is invariant to the investigated uncertainty type and satisfies the constraints with a given 

constraint tolerance. In order to demonstrate the viability, variability and efficiency of the proposed 

new approach, we present problem-specific models and algorithms with detailed and well-illustrated 

benchmark results for topology optimization of 2D continuum structures and cross-section size 

optimization of 2D truss structures with displacement and stress constraints. It will be demonstrated 

that in each case the computational cost of the new approach is comparable with its deterministic 

equivalent because its central element is a problem-dependent deterministic multi-load structure 

optimization problem and the problem-dependent worst-load-direction searching algorithm can be 

formulated as a much smaller linearly and quadratically constrained quadratic or a quadratically 

constrained linear programming problem which can be solved by several ways efficiently. 
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Generally, the standard deterministic truss weigh minimization problem with cross-sectional areas of 

the bars as continuous design variables and nodal point displacements and element stresses as 

response variables can be written as follows: 

   minaw   (6.1) 

 aaa   (6.2) 

   up,auu   (6.3) 

   σp,aσσ   (6.4) 

   0p,ae   (6.5) 

where n  is the number of bars,  na  a a ,,,a 21  is the vector of the design variables, 

 aw  is the weight of the structure, m  is the total number of displacements (degrees of freedom), 

 mppp ,,,p 21   is the vector of applied loads,  muuu ,,,u 21   and  n    ,,,σ 21 are the 

implicit response variables (nodal point displacements and element stresses). The vector of 

equilibrium equations is denoted by          e      e  e  m p,a,,p,a,p,ap,ae 21 . In the formulations, 

the under-bar (upper-bar) symbol always means lower (upper) bound. In the case of plane trusses, 

each applied load can be described in the following form:    m      i   pypx p iii ,,,,, 21 , where 

ipx ( ipy ) means the horizontal x-direction (vertical y-direction) load components. 

In the traditional deterministic formulation p  is a constant vector (the loads are nominal 

loads). In this paper, we considered the following uncertainty on the loading: In addition to the 

nominal loading, each node is subjected to a load having random direction and constant intensity. 

The additional uncertain load vector r , where  mrrr ,,,r 21  can be described in the following 

parametric form: 

       m    i  , ry rx   ry rx  Rr
iiiiii ,,,, 21122   (6.6) 

where iR  is the load intensity. 
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According to the modification, the goal is to minimize the weight of the truss on the set of the 

feasible rpd     load combinations. In the following let D  denote the feasible load combinations. 

It is worth noting that after adding r  to p  we get a mathematical program with infinite number of 

constraints since because each quadratic equation define a continuous set with uncountable infinite 

number of elements. The result of the optimization will be a robust minimal-weight truss design, 

which is invariant to the investigated load uncertainty type. 

6.2 Weight Minimization of Trusses with Varying Load 

Directions 

In order to avoid dealing with infinite number of constraints we have to replace the original 

problem with a more tractable equivalent algorithm based on a finite number of constraint sets. 

The essence of the presented algorithm is very simple. Fixing the design variables according 

to the optimal nominal solution we solve step by step mn  minimization and mn  maximization 

problems on set of the feasible loads selecting exactly one response variable as an objective function 

in each step. 

If the  mn2  dimensional pareto-front is feasible then the robust algorithm terminates and 

the nominal solution will be the optimal robust solution. 

Otherwise we append the constraint sets of the detected unfeasible loads to the constraint set 

of the nominal load, solve the weight minimization problem on the extended constraint set and repeat 

the pareto-front investigation. 

According to the verbal description of the essence of the algorithm the mathematical 

formulation of the generic step may be the following: 

Let   i s   d,,d,d 21  the set of the load sets at the start of step i , where     i ,,21 . In this 

case we have to solve the following weight minimization problem for a : 

   minaw   (6.7) 

 aaa   (6.8) 

   ud,auu  j  ,   i s   j ,,, 21  (6.9) 
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   σd,aσσ  j  ,   i s   j ,,, 21  (6.10) 

   0d,ae j  ,   i s   j ,,, 21  (6.11) 

Having solution a  we have to solve the following mn  minimization and mn  

maximization problems on the set of the feasible loads: 

  maxmin o  (6.12) 

 σuo  (6.13) 

   0d,ae j   (6.14) 

 Dd  (6.15) 

After that the selection of the unfeasible loads (the sample update) is straightforward. 

The feasibility of a load Dd  for a given σuo  response variable value may be checked 

by the following non-smooth function of the "normalized" constraint violation terms: 

  o,o 


max  (6.16) 

where 

  















 








 


o

oo

o

oo
100 0 100 0o,o ,max,,max


 (6.17) 

A pareto-front is feasible, if    where   is the maximum allowable percentage constraint 

violation. In the present study, an extremely small %1  tolerance was applied. 

6.3 Robust Optimization of Ten-Bar Truss 

In this section, we present detailed computational results for the well-known ten-bar truss 

weight minimization problem to illustrate the essence the presented new robust approach. According 

to the usual assumptions, the length of each vertical and horizontal bar is 360 in. The constraints 

involve the stress in each member and the displacements at the nodes. The elements (nodes) are 

numbered by consecutive positive integers. The design variables  10213510      i  ai ,,,,.   are 
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the cross-sectional areas of the bars. The allowable element stresses  10   2 1   ,,,, ii  are 50  ksi 

and the nodal displacements  821      i  ui ,,,,   are limited to 5  in the horizontal and vertical 

directions. The displacements are indexed by consecutive positive integers in increasing node-

direction order. For example, 1u  and 2u describe the horizontal and vertical displacements of node 

one. The density of the material is
3lb/in  0.1 and the elasticity modulus is ksi 101.0 4E . 

A rightward horizontal load of 100 kips acts at node 1, a vertical downward loads of 100 kips 

acts at nodes 2, a vertical upward loads of 100 kips acts at nodes 3, and a leftward horizontal load of 

100 kips acts at node 4. According to the definition, the nominal loading pattern can be described by 

the set of its yx  coordinate pairs: 

                 01101001100 ,,,,,,,p  . 

In our benchmark problem each nominal load    421     i  pypx p iii ,,,,,   is perturbed by 

an additional load of 30 kips with a totally random direction  42120     i  i ,,,,   . The 

perturbation load set r  can be described by the previously introduced quadratically constrained 

parametric form: 

    421130 22     i  , ry rx   ryrx  
iiii ,,,,r  . 

We have to note, that the introduced loading pattern with different parameters and 

assumptions was previously investigated by several authors, for example, by (Ben-Tal, 2002) and 

(Calafiore, 2004). Unfortunately, due to the missing or misleading parameter descriptions, we were 

unable to reproduce correctly their results from the papers. Therefore, retaining the original loading 

pattern, we developed a similar but new example in a correctly and therefore reproducible form and 

presented its exact solution, which can be used for testing the quality of exact and heuristic solution 

procedures to be developed in the future. 

We have to note, that the size of perturbing load is large enough and its directional variability 

is maximal, therefore this “overemphasized academic” example may be a challenging test problem 

for all possible computational approaches. 

In Figure 6.1, we show the structure of our benchmark problem. In the applied visualization, 

the free (fixed) nodes are represented by white (grey) circles, the elements by white squares. The 
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possible perturbation load directions are visualized by dotted circles. In this figure, the perturbation 

load directions have no real meanings because these are only illustrations. 

In Figure 6.2 we show a feasible nominal design, which is probably one of the best solutions 

of the problem due to the applied “global” problem solving technique. In the graphical 

representation, each bar thickness is proportional to its cross-sectional area. The label of the figure 

presents the weight of the structure, the set of the cross-sectional areas, the set of the nodal-point 

displacements, and the set of the element stresses. 

When we solved the problem, the Wolfram Mathematica 8.0 package was used, which is an 

excellent prototyping tool with a wide-range of state-of-the-art optimization solvers and other useful 

features. In the presented study, a very general and stable optimization tool, namely, the NMinimize 

solver was used with the following settings: 

Method{"RandomSearch", Method"InteriorPoint","SearchPoints"10}. 

According to our preliminary experiences, NMinimize with these settings behaves as a 

“global solver”, which in a nonlinear developing environment is a very useful result. We note that 

setting: Method"InteriorPoint" means a state-of-the-art nonlinear interior point solver. 

Starting from the nominal solution the algorithm identified 19 feasible loads, for which at 

least one response variable is unfeasible on the set of feasible loads. In the pareto-front searching 

process also NMinimize was used with the previously presented robust and efficient settings. We 

have to emphasize that in its original form we have to solve a set of partly quadratically and partly 

linearly constrained optimization problems with a linear objective. 

In this problem the quadratic constraints define the spherical regions around the nominal 

loads and the linear constraints define the equilibrium conditions for fixed design variables. Because 

the quadratic constraints can be approximated by a set of piecewisely linear constraints with arbitrary 

accuracy, therefore we get a standard linear programming problem, which using an interior point 

solver can be solved extremely quickly. 
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Figure 6.1: The structure and the loading pattern of the benchmark problem. 

 

Figure 6.2: The best feasible nominal design. 
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After inserting the worst loads we get a multi-load problem with 20191  load cases. Solving 

this problem and checking the pareto-front for each response variable in each direction we get a 

solution, which is invariant to the allowed load perturbations. The fast convergence reveals that the 

presented robust approach is efficient, and theoretically and practically may be competitive with 

other previous approaches presented in literature. 

We have to note, that (Calafiore, 2004) used a sample of 1,651 to get a probabilistically robust 

solution using a similar problem for the ten-bar problem. In Figure 6.3, we show the “worst-feasible-

direction” from the identified 19 “bad-feasible-direction”, for which the relative percent error is 

951503.  for the tension stress of element 8 on the set of the feasible load combinations using the 

nominal cross-sections in the pareto-front searching process: 

 

Figure 6.3: The worst-feasible-load-direction combination for  8max  

In Figure 6.4 we show the optimal solution, which we get in two steps with %1  relative 

percent error setting. We have to mention it again, that our solution is a really invariant to the 

1 2

3 4

5 6

7

8

9

10

1

2

3

4

5

6

w 1094.83

a 6.64738 , 3.45936 , 8.35303 , 2.68778 , 0.1, 0.868859 , 0.735994 , 0.1, 3.8011, 1.22875

u 1.18928 , 16.0314 , 1.35645 , 16.7539 , 0.644707 , 21.0975 , 0.177086 , 13.4668

17.9085 , 15.127, 4.91905 , 32.76, 211.965 , 20.07, 189.498 , 301.975 , 32.5339 , 54.597

503.951



94 

uncertain loading directions within the given tolerance, which in other words, means that on the set 

of the directional load perturbations the probability of the failure is exactly zero. 

 

Figure 6.4: The best robust solution given by two steps. 

In this context, failure can be defined in a very simple way: there is a feasible load 

combination, for which at least one response variable is unfeasible in at least one direction. 

6.4 Volume Minimization with Varying Load Directions 

Without loss of generality, we formulate our newly developed topology optimization model 

for continuum structures with uncertain load directions only for two-dimensional (2D) continuum 

problems. The standard topology optimization problem of continuum structures can be described as 

follows: 

   minKUUx  c   (6.18) 

   0V V x  (6.19) 

 FKU   (6.20) 
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 10  x  (6.21) 

where c  is the compliance, U and F  are the global displacement and load vectors, 

respectively, K is the global stiffness matrix, x  is the vector of design variables (the element 

densities),  xV  and 0V  are the material volume and design domain volume, respectively, and   is 

the prescribed volume fraction. The 2D design domain is assumed to be rectangular and discretized 

with square elements with four nodes per element and two degrees of freedoms (DOFs) per node. 

Both nodes and elements are numbered column-wise from left to right, and the DOFs 12 n  and n2  

correspond to the horizontal and vertical displacement of node n , respectively. The optimization 

problem (1) can be solved by, for example, the well-known and the most widely used optimality 

criteria method or any other appropriate nonlinear solver (see, for example, (Liu, 2014)). 

As it was demonstrated by (Andreassen, 2011), it is very easy to extend the algorithm to 

account for multiple load cases. In the case of m  load cases, the load and displacement vectors can 

be defined as m column vectors and the objective function will be the sum of m  compliances: 

   minKUUx  c
m

i

ii 
1

 (6.22) 

   0V V x  (6.23) 

 ii FKU  ,  m     i ,,, 21  (6.24) 

 10  x  (6.25) 

Now, we will show that the multi-load compliance-minimization model, after simple 

modifications can be used to solve our directional uncertainty problem. Let  αFF  , where 

ααα  , denotes a load vector with varying load directions. In this paper, we assume that each 

nominal load direction is an inner point of its angle set. 

First, we rewrite the standard single load optimization model according to the varying load 

directions. The theoretical formulation of the modified optimization problem can be described as 

follows: 

   minKUUx  c   (6.26) 
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   0V V x  (6.27) 

  αFKU   (6.28) 

 ααα   (6.29) 

 10  x  (6.30) 

According to the modification, the goal is to minimize the compliance of the structure for all 

the feasible loads  αF , where ααα  . It is worth noting again, that after inserting the ααα   

relation we get a mathematical program with infinite number of constraints since set α  is in general 

a continuous set with uncountable infinite number of elements. 

The result of the optimization will be a compliance-minimal design for the prescribed 

volume fraction, which is invariant to the investigated load uncertainty type. As we are only 

interested in linear elastic structures, the stiffness matrix K and its inverse 1
K  will be symmetrical. 

Let us denote by αp  the number of the external point loads with directional uncertainty. 

Here we assume that all uncertain variables i ,  p    i ,,, 21  are statistically independent. An 

uncertain load with magnitude if ,  p    i ,,, 21  can be written in terms of two orthogonal loads. 

For simplicity we assume that one load is defined in the horizontal x  direction, and the other in the 

vertical y  direction: 

          f ff  f ff iiii

y

iiiii

x

ii  sin,,cos,f   (6.31) 

Let us assume that the two-dimensional design domain is discretised by 
yx e  e   square 

elements. According to the usual convention, we construct the    112  yx ee  dimensional 

sparse load vector F  with maximum p2  nonzero entries such that odd entries of the vector 

correspond to horizontal loads and even entries to vertical loads. 

6.5 Optimization of Cantilever Beam with Uncertain Loads 

In this chapter, we present a new benchmark problem with two directionally uncertain 

external loads, to show the essence of the solution searching process. The example, shown in Figure 

6.5, is a cantilever beam, with a ground structure of mm mm mm 14080   and two unit loads acting 
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in the bottom-middle and bottom-end positions witch are denoted by if ,  21   i ,  from left to right in 

the given order. 

We suppose, that the uncertain load directions form an arc around the nominal loads: 

 3003027030270240 0     α  i ,  21   i , . The Young’s modulus is 10 E , the 

Poisson’s ratio is 30. , and the starting volume fraction, used in the nominal problem solving 

process, is 2500 . . The penalization power is 3p  and we use sensitivity filtering with filter 

radius 51.min r . In this example, our goal is the following: we try to find a volume-fraction-minimal 

solution which is invariant to the uncertain load directions with tolerance 051. . 

The constant 1.05 allows maximum 5% fluctuation in the compliance space around the 

nominal compliance 0c . The compliance-minimal nominal solution, where 292780 .c  , is presented 

in Figure 6.6. In the algorithm, the nominal solution with     2702701     , 2 ,  will be the 

starting base of the optimal solution searching process. In Figure 6.7, we show the shape of the 

compliance-minimal nominal solution. In Figure 6.8, to illustrate the change of the compliances on 

the set of the feasible load directions, we show the generated compliance values on the grid points of 

a 6161  grid using the nominal stiffness matrix 0K . This grid is fine enough to get good quality 

approximations for the load direction sets: 
 300240   α  i  ,  21   i , . 

The worst load directions of the nominal design with     24924021     ,,    and 

36320.c 
 are shown in Figure 6.9. In the worst direction 151.  which is not satisfies the 

requirement, therefore the nominal design is a not acceptable solution of the problem. 

The starting base of the optimization with the nominal volume fraction 2500 .  is presented 

in Figure 10. In Figure 11, we show the best shape of the first iteration with 3000. . The worst 

load direction after the first iteration is shown in Figure 12 with     56    224921 ,,    and 

7595.2c 
. In the worst direction 061.  which is not tolerable (but not so bad) value. The 

starting base of the second iteration with two “dangerous” load direction sets and the result of the 

second iteration with 3010.  is presented in Figure 13-14. In Figure 15, we show the worst load 

directions after the second iteration     25424621     ,,    and 4992.2c 
. In the worst direction 

051.  which satisfies the requirement therefore the algorithm terminates. In Figure 16, we show 

the generated optimal compliance values on the grid points after two iterations. 
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When we try to compare the optimal design with the nominal design, which was presented in 

Figure 6.7, then our first impression is that these designs are practically the same. Fortunately, the 

unified visualization of the nominal and robust compliances may help to detect the real differences 

between the nominal and optimal shapes and understand the rearrangement mechanism of the 

optimal solution searching process (see Figure 16). 

 

Figure 6.5: The design domain, boundary conditions, and external loads with directional uncertainty for the 

optimization of a cantilever beam 

 

The result of the optimization is a more balanced shape, which tries to reach a nearly flat one 

according to the given tolerance. 
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Figure 6.6: The compliance-minimal nominal solution with nominal compliance 292780 .c   

 

 

Figure 6.7: The compliance shape of the nominal solution on the set of the feasible load directions 



100 

 

Figure 6.8: The worst load directions of the nominal design 

 

Figure 6.9: The starting base of the optimization 
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Figure 6.10: The best shape after the first iteration on the set of the feasible loads 

 

Figure 6.11: The worst direction after the first iteration 
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Figure 6.12: The starting base of the second iteration with two bad directions 

 

Figure 6.13: The optimal shape after the second iteration 
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Figure 6.14: The tolerable worst load direction after the second iteration 

 

Figure 6.15: The optimal compliance shape after the second iteration 
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Figure 6.16: The common plot of the nominal and optimal compliance shapes 

As a conclusion, we could be note, that the results good demonstrate the fact, that the optimal 

design searching process, using the presented simple and easy-to-understand rearrangement strategy, 

finds a really good solution very quickly with a very small volume fraction increment 0510. .  

When we solved the problem, the MATLAB package was used, which is an excellent 

developing tool with a state-of-the-art optimization solver and other useful features, for example, for 

sparse matrix manipulations and visualizations. In the presented study, a very general and stable 

optimization tool, namely, the fmincon solver was used to solve the multi-load volume fraction 

minimization problem and the worst-load-direction searching sub-problems. The applied structural 

model (SIMP), with straightforward modifications, based on the 88 lines long efficient topology 

optimization code developed in MATLAB by (Andreassen, 2011). 

The final conclusion of this chapter will be the following statements. The essence of the novel 

conception is independent from the theoretical description of the directional uncertainty, which may 

be either probabilistic (stochastic) or possibilistic (fuzzy). 

In the presented unified (non-probabilistic and non-possibilistic) approach, the varying load 

directions are described by quadratic constrains, which define a spherical region around the nominal 

loads. Naturally the applied load direction handling method can be replaced by any other uncertainty 

representation form, which can be described by an appropriate combination of linear or quadratic 

(linearizable) relations. 
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The result of the optimization is a design with minimum performance measure which is 

invariant to the investigated uncertainty type and satisfies the constraints with a given tolerance. In 

order to demonstrate the viability, variability and efficiency of the proposed new approach, we 

presented problem-specific models and algorithms with benchmark results for cross-section size 

optimization of 2D truss structures with displacement and stress constraints and topology 

optimization of 2D continuum structures with worst compliance constraint. In each case, the 

computational cost of extension of the standard deterministic model to a model which scopes with 

uncertain load directions is comparable with its deterministic equivalent. 
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