Chapter 2

Plane Buckling of Struts

Iványi: Stability

2.1. Critical Load of the Euler-column (Equilibrium Method)

2.1.1 Fundamental Solution

Compression load:

Boundary conditions:

 $x = 0 \rightarrow y = 0;$ $x = L \rightarrow y = 0.$

First of these conditions:

$$B = 0$$
 $y = A \cdot \sin kx$

Second of these conditions:

 $A \cdot \sin kL = 0$

- Trivial solution: A = 0
- Critical solution: $\sin kL = 0$

 $k \cdot L = n \cdot \pi$ $n = 1, 2, \dots$

$$P = \frac{n^2 \cdot \pi^2 \cdot EI}{L^2} \qquad y = A \cdot \sin \frac{n \cdot \pi \cdot x}{L}$$
$$n = 1: \left[P_E = \frac{\pi^2 \cdot EI}{L^2} \right] \qquad y = A \cdot \sin \frac{\pi x}{L}$$

Effective length: l = L

Tension load: $EI \cdot y'' - P \cdot y = 0; \quad k^2 = \frac{P}{EI}$ $y = K \cdot e^{m \cdot x}$ $K \cdot e^{m \cdot x} \cdot (m^2 - k^2) = 0$ $m = \pm k$ $y = C_1 \cdot e^{k \cdot x} + C_2 \cdot e^{-k \cdot x}$ $e^{\pm k \cdot x} = \operatorname{ch} kx \pm \operatorname{sh} kx$ $A = C_1 - C_2;$ $B = C_1 + C_2,$ $y = A \cdot \operatorname{sh} kx + B \cdot \operatorname{ch} kx$ No stability problem!

2.1.2 Effect of Approximations

(a) Axial deformations:

Direct axial compression:

Eigenvalue:

$$\varepsilon_{0} = \frac{P_{kr} \cdot L}{EA} \qquad (1 + \varepsilon_{0}) \cdot k \cdot L = n \cdot \pi$$

$$M(x) = -EI \cdot \frac{1 + \varepsilon_{0}}{\rho} = -EI \cdot (1 + \varepsilon_{0}) \cdot y'' = P \cdot y \qquad n = 0,1,2,\dots$$

$$y'' + k^{2} \cdot y = 0 \qquad n = 1:$$

$$k^{2} = \frac{P}{EI \cdot (1 + \varepsilon_{0})} \qquad P_{kr} = \pi^{2} \cdot \frac{EI}{x^{2}} \cdot \frac{1}{x^{2}}$$

Boundary conditions:

 $\begin{array}{ll} x=0 & \longrightarrow & y=0; \\ x=L\cdot(1+\varepsilon_0) & \longrightarrow & y=0. \end{array}$

Condition of buckling:

$$\sin(1+\varepsilon_0)kL = 0$$

 $P_{kr} = \pi^2 \cdot \frac{EI}{L^2} \cdot \frac{1}{1 - \frac{P_{kr}}{EA}}$

$$\frac{P_{kr}}{EA} = \frac{\sigma_{kr}}{E}$$

"52" steel: 0.17%

Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával (b) Effect of Shear Deformations on Critical Loads

Approximation:

(c) Effect of Large Deformations

Chapter 2 / 6

0.3

0.2

Ν

0,4

y_c/ℓ

2.2. Higher-Order Differential Equation for Columns

$$EI \cdot y'' + P \cdot y = -V \cdot x + M_A$$

$$V = \frac{M_A + M_B}{L}$$

$$EI \cdot y^{IV} + P \cdot y'' = 0$$

$$k^2 = P / EI$$

$$y^{IV} + k^2 \cdot y'' = 0$$

$$y = C_1 \cdot \sin kx + C_2 \cdot \cos kx + C_3 \cdot x + C_4$$

Fixed – Free Column

Boundary conditions:

$$x = 0 \quad \rightarrow \quad y = 0; \qquad y' = 0;$$

$$x = L \quad \rightarrow \quad y'' = 0; \qquad y''' + k^2 \cdot y' = 0.$$

 $\begin{bmatrix} 0 & 1 & 0 & 1 \\ k & 0 & 1 & 0 \\ \sin kL & \cos kL & 0 & 0 \\ 0 & 0 & k^2 & 0 \end{bmatrix} \cdot \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \end{bmatrix} = \mathbf{0}$

Non-trivial solution:
$$\cos kL = 0$$

 $k \cdot L = \frac{(2n-1) \cdot \pi}{2}$ $n = 1, 2, 3...$

$$P_{kr} = \frac{\pi^2 \cdot EI}{4L^2}$$
Effective length: $l = 2L$

2.3. Effective Length of Compression Members

2.3.1 Intermediate Restraints

(a) Single Restraint

Equilibrium condition:

A

Left-hand side Equation:

$$+B+C=0$$

 $-C\cdot\frac{L_2}{L}\cdot x_1 + P\cdot y_1 + EI\cdot y_1''=0$

$$\sum M_C = A \cdot L_1 - B \cdot L_2 = 0$$

$$A = -C \cdot \frac{L_2}{L} \qquad B = -C \cdot \frac{L_1}{L}$$

Right-hand side Equation:

$$-C \cdot \frac{L_1}{L} \cdot x_2 + P \cdot y_2 + EI \cdot y_2'' = 0$$

$$k^{2} = P / EI$$

$$y_{1} = A_{1} \cdot \sin kx_{1} + B_{1} \cdot \cos kx_{1} + \frac{C}{P} \cdot \frac{L_{2}}{L} \cdot x_{1};$$

$$y_{2} = A_{2} \cdot \sin kx_{2} + B_{2} \cdot \cos kx_{2} + \frac{C}{P} \cdot \frac{L_{1}}{L} \cdot x_{2}.$$
Boundary conditions:

Doundary conditions.

$$x_{1} = 0 \rightarrow y_{1} = 0$$

$$x_{2} = 0 \rightarrow y_{2} = 0$$

$$B_{1} = B_{2} = 0$$

$$x_{1} = L_{1} \rightarrow y_{1} = C/c$$

$$x_{2} = L_{2} \rightarrow y_{2} = C/c$$

$$y_{1}' = -y_{2}'$$

$$\frac{C}{P} \cdot \left(\frac{L_1 \cdot L_2}{L} - \frac{P}{c}\right) + A_1 \cdot \sin kL_1 = 0;$$
$$\frac{C}{P} \cdot \left(\frac{L_1 \cdot L_2}{L} - \frac{P}{c}\right) + A_2 \cdot \sin kL_2 = 0;$$
$$\frac{C}{P} + A_1 \cdot k \cdot \cos kL_1 + A_2 \cdot k \cdot \cos kL_2 = 0,$$

$$\frac{L}{4} - \frac{P}{c} \neq 0 \qquad C = 0 \qquad A_1 = -A_2$$

Second solution:

Chapter 2 / 12

(b) Continuous Restraint

$$m^2 = \frac{L^2}{\pi^2} \cdot \sqrt{\frac{c}{EI}}$$

 $\left|P_{kr} = 2 \cdot \sqrt{c \cdot EI}\right|$

$$\frac{\mathrm{d}}{\mathrm{d}\,m}\left(m^2 + \frac{L^4 \cdot c}{m^2 \cdot \pi^4 \cdot EI}\right) = 2m - \frac{2L^4 \cdot c}{m^3 \cdot \pi^4 \cdot EI} = 0$$

Chapter 2 / 15

Half-through Bridge (U-frame)

 δ – horizontal deflection:

U-frame stiffness:

$$2\delta = 2 = \frac{A \cdot h^2 \cdot d}{EI_0} + 2 \cdot \frac{1}{3} \cdot \frac{A \cdot h^3}{EI_y}$$

$$A = \frac{1}{\frac{d \cdot h^2}{2EI_0} + \frac{h^3}{3EI_y}}$$

2.3.2 Elastically Restrained Column

 $y = \frac{M}{P} \cdot \left(\frac{x}{L} - \frac{\sin kx}{\sin kL}\right)$

$$\theta = \frac{M \cdot L}{4EI}$$
$$\frac{M \cdot L}{4EI} = -\frac{M}{k \cdot EI} \cdot \left(\frac{1}{k \cdot L} - \frac{1}{tgkL}\right)$$
$$\frac{k \cdot L}{4} = -\left(\frac{1}{k \cdot L} - \frac{1}{tgkL}\right)$$

2.4. Effect of Loading System

2.4.1 Initially Bent Columns

Initial deformation:

$$y_0 = e_0 \cdot \sin \frac{\pi x}{L}$$
$$EI \cdot y'' + P \cdot (y_0 + y) = 0$$
$$k^2 = P / EI$$
$$y'' + k^2 \cdot y = -k^2 \cdot e_0 \cdot \sin \frac{\pi x}{L}$$

Homogenous and particular solutions:

$$y = y_{h} + y_{p}$$

$$y_{h} = A \cdot \sin kx + B \cdot \cos kx$$

$$y_{p} = C \cdot \sin \frac{\pi x}{L} + D \cdot \cos \frac{\pi x}{L}$$

$$P_{E} = \frac{\pi^{2} \cdot EI}{L^{2}}$$

$$C = \frac{e_{0}}{\psi - 1} = \frac{e_{0} \cdot \alpha}{1 - \alpha}$$

$$y_{p} = \frac{e_{0} \cdot \alpha}{1 - \alpha} \cdot \sin \frac{\pi x}{L}$$

$$y_{p} = A \cdot \sin kx + B \cdot \cos kx + \frac{\alpha}{1 - \alpha} \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$

$$y = A \cdot \sin kx + B \cdot \cos kx + \frac{\alpha}{1 - \alpha} \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$
Boundary conditions:
$$y = A \cdot \sin kx + B \cdot \cos kx + \frac{\alpha}{1 - \alpha} \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$

$$y = A \cdot \sin kx + B \cdot \cos kx + \frac{\alpha}{1 - \alpha} \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$
Boundary conditions:
$$y = A \cdot \sin kx + B \cdot \cos kx + \frac{\alpha}{1 - \alpha} \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$
Boundary conditions:
$$y = 0$$

$$x = L \rightarrow y = 0$$

$$x = L \rightarrow y = 0$$

$$B = 0$$

$$x = L \rightarrow y = 0$$

$$B = 0$$

$$x = L \rightarrow y = 0$$

$$A \cdot \sin kL = 0$$

$$B = 0$$

$$y_{T} = y_{0} + y = \left(1 + \frac{\alpha}{1 - \alpha}\right) \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$

$$y_{T} = y_{0} + y = \left(1 + \frac{\alpha}{1 - \alpha}\right) \cdot e_{0} \cdot \sin \frac{\pi x}{L}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e_{0}}{1 - \alpha} \cdot \frac{e_{0}}{1 - \alpha}$$

$$B = \frac{e$$

2.4.2 Beam-Column with Lateral Loads

Boundary conditions:

$$x = 0 \quad \rightarrow \quad y = 0 \quad B = 0$$

$$x = L/2 \quad \rightarrow \quad y' = 0 \quad A = \frac{Q}{2k \cdot P} \cdot \frac{1}{\frac{\log kL}{2}}$$

$$y = \frac{Q}{2P \cdot k} \cdot \left[\frac{\sin kx}{\cos \frac{kL}{2}} - k \cdot x\right]$$

Midspan Deflection:

$$y_{\max} = \frac{Q}{2P \cdot k} \cdot \left[\frac{\sin \frac{kL}{2}}{\cos \frac{kL}{2}} - \frac{k \cdot L}{2} \right]$$

$$y_{\max} = \frac{Q}{2P \cdot k} \cdot (\operatorname{tg} u - u) \qquad u = k \cdot L/2$$

$$y_{\text{max}} = \frac{Q \cdot L^3}{48EI} \cdot \frac{3 \cdot (\lg u - u)}{u^3}$$

Chapter 2/21

Deflection with Lateral Load:

$$y_{\text{max},0} = \frac{Q \cdot L^3}{48EI}$$

$$y_{\text{max}} = y_{\text{max},0} \cdot \frac{3(\text{tg}\,u - u)}{u^3}$$

$$\text{tg}\,u = u + \frac{1}{3} \cdot u^3 + \frac{2}{15} \cdot u^5 + \frac{17}{315} \cdot u^7 + \dots$$

$$y_{\text{max}} = y_{\text{max},0} \cdot \left(1 + \frac{2}{5} \cdot u^2 + \frac{17}{105} \cdot u^4 + \dots\right)$$

$$k^2 = P/EI \quad \text{and} \quad u = k \cdot L/2$$

$$u^2 = \frac{P \cdot L^2}{4EI} = 2,46\frac{P}{P_E}$$

$$y_{\max} = y_{\max,0} \cdot \left[1 + 0.987 \cdot \frac{P}{P_E} + 0.998 \cdot \left(\frac{P}{P_E}\right)^2 + \dots \right] \approx$$
$$\approx y_{\max,0} \cdot \left[1 + \frac{P}{P_E} + \left(\frac{P}{P_E}\right)^2 + \dots \right]$$

Since the sum of the geometric series inside the brackets is $1/[1 - P/P_E]$:

$$y_{\max} = y_{\max,0} \cdot \frac{1}{1 - \frac{P}{P_E}}$$

Restricted Superposition:

Bending moment at midspan:

$$M_{\text{max}} = M_0 + P \cdot \delta = \frac{Q \cdot L}{4} + P \cdot \delta$$

$$M_{\text{max}} = \frac{Q \cdot L}{4} + \frac{P \cdot Q \cdot L^3}{48EI} \cdot \frac{1}{1 - \frac{P}{P_E}}$$
$$M_{\text{max}} = M_0 \cdot \frac{1 - 0.18 \cdot \frac{P}{P_E}}{1 - \frac{P}{P_E}}$$
$$M_{\text{max}} = M_0 \cdot \frac{1 - \delta \cdot \frac{P}{P_E}}{1 - \frac{P}{P_E}}$$

Beam-Column Load–Deflection Characteristics

[Dischinger, 1937]

Chapter 2 / 23

Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Load Cases	M ₀	δ
	$P \cdot e_0$	0
	$P \cdot e$	0.273
$\begin{array}{c c} P & & P \\ \hline \\$	$\frac{Q \cdot L}{4}$	-0.189
q P mm	$\frac{q \cdot L^2}{8}$	0.0324
	$\frac{0.128q \cdot L^2}{2}$	0.0324
$P \longrightarrow L/2 \longrightarrow P$	$\frac{Q \cdot L}{8}$	-0.189
$P \rightarrow 1 \qquad P \rightarrow $	$\frac{q \cdot L^2}{24}$	"1": +0.121 "2": –0.362 <i>Chapter 2 / 24</i>

-

, hinda

2.5.1 Early Development of Inelastic Column Theories

[Engesser, 1889]

Original Engesser Theory

2.5.2 Reduced Modulus Theory

[Considére, 1891] [Jasinsky, 1895] [Engesser, 1898]

2.5.4 Tangent Modulus Theory

Tangent Modulus Concept

Progressive stress distribution as column is loaded

Chapter 2 / 36

Buckling as of Engesser - Karman - Shanley

2.6. Critical Load of the Euler Column – Energy Method 2.6.1 Conservation of Energy Principle

A conservative system is in equilibrium if the strain energy stored is equal to the work performed by the external loads.

 \Rightarrow For an axially loaded bar it remains perfectly straight, the external work is given:

$$L_k = \frac{1}{2} P \cdot \Delta_a \qquad \Delta_a = \frac{P \cdot L}{EA}$$

Strain energy stored in the member:

$$L_b = \frac{P^2 \cdot L}{2EA} \qquad \qquad \frac{P^2 \cdot L}{2EA} \equiv \frac{P^2 \cdot L}{2EA}$$

$$L_k = L_b \qquad \qquad \Delta_b = S - L$$

$$ds = \sqrt{dx^{2} + dy^{2}} = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \cdot dx$$

$$S = \int_{0}^{L} \sqrt{1 + \left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)^2} \,\mathrm{d} x$$

Column shortening due to axial compression and bending

Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával Binomial theorem:

$$(a+b)^n = a^n + \frac{n}{1!} \cdot a^{n-1} \cdot b + \frac{n \cdot (n-1)}{2!} \cdot a^{n-2} \cdot b^2 + \dots$$

If deformations are assumed to be small.

$$S = \int_{0}^{L} \left[1 + \frac{1}{2} \cdot \left(\frac{\mathrm{d} y}{\mathrm{d} x} \right)^{2} \right] \mathrm{d} x$$
$$\Delta_{b} = S - L = \frac{1}{2} \cdot \int_{0}^{L} \left(\frac{\mathrm{d} y}{\mathrm{d} x} \right)^{2} \mathrm{d} x$$

External work:

$$L_k = P \cdot \Delta_b = \frac{P}{2} \cdot \int_0^L \left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)^2 \mathrm{d} x$$

Strain energy:

$$L_{b} = \frac{1}{2} \cdot \int_{0}^{L} \frac{M^{2}}{EI} dx = \frac{1}{2} \cdot \int \frac{P_{kr}^{2} \cdot y^{2}}{EI} dx = \frac{1}{2} \cdot P_{kr}^{2} \cdot \int_{0}^{L} \frac{y^{2}}{EI} dx$$
$$L_{b} = \frac{1}{2} \cdot \int_{0}^{L} M \cdot \frac{1}{\rho} dx \qquad M = \frac{EI}{\rho} \quad \frac{1}{\rho} \approx -\frac{d^{2} y}{dx^{2}}$$

$$L_b = \frac{EI}{2} \cdot \int_0^L \left(\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right)^2 \mathrm{d} x$$

Grammel-quotient:

Rayleigh-quotient:

$$P_{cr,G} = \frac{\int_{0}^{L} {y'^2 dx}}{\int_{0}^{L} {\frac{y^2}{EI} dx}} \qquad P_{cr,R} = \frac{\int_{0}^{L} {EI \cdot y''^2 dx}}{\int_{0}^{L} {y'^2 dx}}$$
$$y = A \cdot \sin \frac{\pi x}{L}$$
$$L_k = \frac{A^2 \cdot P \cdot \pi^2}{2L^2} \cdot \int_{0}^{L} \cos^2 \frac{\pi x}{L} dx = \frac{A^2 \cdot P \cdot \pi^2}{4L}$$
$$L_b = \frac{A^2 \cdot EI \cdot \pi^4}{2L^4} \cdot \int_{0}^{L} \sin^2 \frac{\pi x}{L} dx = \frac{A^2 \cdot EI \cdot \pi^4}{4L^3}$$
$$\boxed{L_k = L_b} \longrightarrow \qquad \boxed{P_{kr} = \frac{\pi^2 \cdot EI}{L^2}}$$

2.6.2 Calculus of Variations

The calculus of variations is a generalisation of the max. or min. problem of ordinary calculus. It seeks to determine a function y=y(x) that extremizes a definite integral: $I = \int_{1}^{x_2} f(x, y, y', ..., y^{(n)}) dx = \text{extr!}$

Thus the calculus of variations is not a computational tool for solving a problem. It is only a device for obtaining the governing equations of the problem.

Nearly function:
$$\overline{y}(x) = y(x) + \varepsilon \cdot \eta(x)$$

$$\delta^{2} \Pi_{0} = \int_{0}^{L} \left[\frac{EI}{2} \cdot (y'' + \varepsilon \cdot \eta'')^{2} - \frac{P}{2} \cdot (y' + \varepsilon \cdot \eta')^{2} \right] dx$$
Extremum value: $\frac{d(\delta^{2}\Pi)}{d\varepsilon} \Big|_{\varepsilon=0} = 0$
 $\frac{d(\delta^{2}\Pi)}{d\varepsilon} = \int_{0}^{L} \left[EI \cdot (y'' + \varepsilon \cdot \eta'') \cdot \eta'' - P \cdot (y' + \varepsilon \cdot \eta') \cdot \eta' \right] dx$
 $\varepsilon = 0$: $\int_{0}^{L} (EI \cdot y'' \cdot \eta'' - P \cdot y' \cdot \eta') dx = 0$
Second term: $\int_{0}^{L} y' \cdot \eta' dx = -\int_{0}^{L} \eta \cdot y'' dx$
First term: $\int_{0}^{L} y'' \cdot \eta'' \cdot dx = [y'' \cdot \eta']_{x=0}^{L} + \int_{0}^{L} \eta \cdot y^{IV} dx$

$$\int_{0}^{L} (EI \cdot y^{IV} + P \cdot y'') \cdot \eta \,\mathrm{d} \, x + [EI \cdot y'' \cdot \eta']_{x=0}^{L} = 0$$

0

0

$$\int_{0}^{L} (EI \cdot y^{IV} + P \cdot y'') \cdot \eta \, dx = 0$$

$$[EI \cdot y'' \cdot \eta']_{x=0}^{L} = 0$$

$$\eta'(x = 0) \neq 0 \qquad \eta'(x = L) \neq 0$$

$$\eta(x) \neq 0 \qquad \eta'(x = 0)$$

$$\eta'(x = L)$$

$$EI \cdot y^{IV} + P \cdot y'' = 0$$

Natural boundary condition:

$$EI \cdot y''|_{x=0} = 0$$
 $EI \cdot y''|_{x=L} = 0$

Geometric boundary condition:

$$y(x=0) = 0$$
 $y(x=L) = 0$

2.6.3 Buckling Load of Column with Variable Cross-section Rayleigh–Ritz Method

Buckled shape: $y = a \cdot \sin \frac{\pi x}{L}$ [Koranyi, 1965] Strain energy: $L_b = 2 \cdot \left| \frac{EI_0}{8} \cdot \int_{0}^{L/4} (y'')^2 \, \mathrm{d} \, x + \frac{EI_0}{2} \cdot \int_{L/4}^{L/2} (y'')^2 \, \mathrm{d} \, x \right|$ $\int_{-L/4}^{L/4} (y'')^2 dx = \frac{a^2 \cdot \pi^4}{L^4} \cdot \int_{-1}^{L/4} \sin^2 \frac{\pi x}{L} dx = \frac{0.045a^2 \cdot \pi^4}{L^3}$ $\int_{L/4}^{L/2} (y'')^2 dx = \frac{a^2 \cdot \pi^4}{L^4} \cdot \int_{L/4}^{L/2} \sin^2 \frac{\pi x}{L} dx = \frac{0,205a^2 \cdot \pi^4}{L^3}$ $L_b = 0.216 \cdot \frac{EI_0 \cdot a^2 \cdot \pi^4}{r^3}$

External work:

$$L_{k} = -\frac{P}{2} \cdot \int_{0}^{L} (y')^{2} dx = -\frac{P \cdot a^{2} \cdot \pi^{2}}{2L^{2}} \cdot \int_{0}^{L} \cos^{2} \frac{\pi x}{L} dx = -\frac{P \cdot a^{2} \cdot \pi^{2}}{4L}$$

Column with varying moment of inertia

$$\delta^2 \Pi = 0,216 \cdot \frac{EI_0 \cdot a^2 \cdot \pi^4}{L^3} - \frac{P \cdot a^2 \cdot \pi^2}{4L}$$

$$\frac{\mathrm{d}(\delta^2 \Pi)}{\mathrm{d}\,a} = 0.432 \cdot \frac{EI_0 \cdot a \cdot \pi^4}{L^3} - \frac{P \cdot a \cdot \pi^2}{2L} = 0$$

$$a \cdot \left(0,864 \cdot \frac{EI_0 \cdot \pi^2}{L^2} - P\right) = 0$$

Critical load:

$$P_{kr} = 0.864 \cdot \frac{\pi^2 \cdot EI_0}{L^2}$$

Exact answer [Timoshenko, Gere, 1961]:

$$P_{kr} = 0.65 \cdot \frac{\pi^2 \cdot EI_0}{L^2}$$

Error is about 33%.

If deflection curve is:

$$y = a_1 \cdot \sin \frac{\pi x}{L} + a_2 \cdot \sin \frac{3\pi x}{L}$$

Critical load:

$$P_{kr} = 0,735 \cdot \frac{\pi^2 \cdot EI_0}{L^2}$$

Error is about 13%.

2.7. Design of Columns

2.7.1 Historical Background

 $y_0 = e_0 \cdot \sin \frac{\pi x}{L}$

2.7.2 Ayrton–Perry formula (1886)

[Rondal, Maquoi, 1979]

Deflection at midspan: $e = e_0 \cdot \frac{1}{1 - \alpha} = e_0 \cdot \frac{1}{1 - P/P_E}$ First yield limit state: $\frac{P}{P_v} + \frac{M}{M_v} = 1$

Initial deformation:

$$M = P \cdot e = P \cdot \frac{e_0}{1 - P / P_E}$$

 $\frac{P}{P_{y}} + \frac{P \cdot e_{0}}{\left(1 - \frac{P}{P_{E}}\right) \cdot M_{y}} = 1$

$$\begin{split} \eta &= e_0 \cdot \frac{A}{W} & \text{[Robertson, 1925]:} \quad \eta = 0,003 \cdot \lambda \\ \eta &= b_0 \cdot A/W_z & b_0 = L/\gamma \\ W_z &= I_z/\nu & \lambda = L/i_z \\ \eta &= \frac{\lambda}{\gamma \cdot i_z/\nu} \\ \varphi &= P/P_y \rightarrow \varphi + \frac{\varphi}{1 - \varphi \cdot \overline{\lambda}^2} \cdot \eta = 1 \\ (1 - \varphi) \cdot (1 - \varphi \cdot \overline{\lambda}^2) &= \eta \cdot \varphi \\ \overline{\lambda^2} \cdot \varphi^2 - (1 + \eta + \overline{\lambda}^2) \cdot \varphi + 1 = 0 \\ \hline \varphi &= \frac{(1 + \eta + \overline{\lambda}^2) - \sqrt{(1 + \eta + \overline{\lambda}^2)^2 - 4\overline{\lambda}^2}}{2\overline{\lambda}^2} \\ \end{split}$$

$$\begin{split} \text{[Robertson, 1925]:} \quad \eta = 0,003 \cdot \lambda \\ \eta &= b_0 \cdot A/W_z & b_0 = L/\gamma \\ W_z &= I_z/\nu & \lambda = L/i_z \\ \eta &= \frac{\lambda}{\gamma \cdot i_z/\nu} \\ \hline U \text{theil, 1947]:} \quad \eta &= \frac{C}{\pi^2 \cdot E} \cdot f_y \cdot \lambda^2 \\ C &= \frac{1}{12} & \eta = C \cdot \overline{\lambda}^2 \\ \hline Q \text{[Dwight, 1972]:} \quad \eta &= \alpha \cdot (\lambda - \lambda_0) \\ \hline P &= \alpha \cdot (\overline{\lambda} - \overline{\lambda}_0) \\ \eta &= \alpha \cdot (\overline{\lambda} - \overline{\lambda}_0) \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \hline Q \text{[Rondal, Maquoi, 1978]:} \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \eta &= \alpha \cdot \overline{\lambda}_0 \\ \eta &= \alpha \cdot \sqrt{\overline{\lambda^2} - \overline{\lambda}_0^2} \\ \eta &= \alpha \cdot \overline{\lambda}_0 \\ \eta &= \alpha \cdot \overline{\lambda}$$