Chapter 3

Stability Functions

3.1. Members Subjected to Bending Moments

[Horne, Merchant, 1965]

Chapter 3/2

3.2. Effect of Axial Load on Member Stiffness

3.2.1 Functions s and c: End Rotation, Far End Fixed

$$y = A \cdot \sin \kappa x + B \cdot \cos \kappa x + \frac{M_{AB}}{P} \cdot \left(\frac{x}{L} - 1\right) + \frac{M_{BA}}{P} \cdot \frac{x}{L}$$

Boundary conditions:

$$x = 0 \rightarrow y = 0;$$

 $x = L \rightarrow y = 0.$ $B = \frac{M_{AB}}{P}$ $A = -\frac{M_{AB}}{P} \cdot \frac{\cos \kappa L}{\sin \kappa L} - \frac{M_{BA}}{P} \cdot \frac{1}{\sin \kappa L}$

$$y'(x = L) = 0 \rightarrow \text{Stability function } c$$

$$c = \frac{M_{BA}}{M_{AB}} = \frac{\kappa L - \sin \kappa L}{\sin \kappa L - \kappa \cdot L \cdot \cos \kappa L} = \frac{2\alpha - \sin 2\alpha}{\sin 2\alpha - 2\alpha \cdot \cos 2\alpha}$$

$$y'(x = L) = \theta_a \quad \rightarrow \quad \text{Stability function s}$$

$$s = \frac{(1 - \kappa \cdot L \cdot \operatorname{ctg} \kappa L) \cdot \frac{1}{2} \cdot \kappa \cdot L}{\operatorname{tg} \frac{1}{2} \kappa L - \frac{1}{2} \cdot \kappa \cdot L} = \frac{(1 - 2\alpha \cdot \operatorname{ctg} 2\alpha) \cdot \alpha}{\operatorname{tg} \alpha - \alpha}$$

$$k = EI/L \quad \rightarrow \qquad M_{AB} = s \cdot k \cdot \theta_A$$
$$M_{BA} = s \cdot c \cdot k \cdot \theta_A$$
$$V = -\frac{M_{AB} + M_{BA}}{L} = -s \cdot (1+c) \cdot \frac{k}{L} \cdot \theta_A$$

 $\rho = P / P_E \qquad \alpha = \frac{\kappa L}{2} = \frac{\pi}{2} \cdot \sqrt{\rho}$

If P: tension axial load:

$$\gamma = \frac{\pi}{2} \cdot \sqrt{-\rho} = \mathbf{i} \cdot \alpha$$

$$c = \frac{2\gamma - \operatorname{sh} 2\gamma}{\operatorname{sh} 2\gamma - 2\gamma \cdot \operatorname{ch} 2\gamma}$$

$$s = \frac{(1 - 2\gamma \cdot \operatorname{cth} 2\gamma) \cdot \gamma}{\operatorname{th} \gamma - \gamma}$$

3.2.2 Function s": End Rotation, Far End Pinned

Equilibrium equations:

$$M_{AB} = s \cdot k \cdot \theta_A + s \cdot c \cdot k \cdot \theta_B$$

$$M_{BA} = s \cdot c \cdot k \cdot \theta_A + s \cdot k \cdot \theta_B = 0$$

$$M_{AB} = s \cdot (1 - c^2) \cdot k \cdot \theta_A = s'' \cdot k \cdot \theta_A$$

Pinned far end:

$$s'' = s \cdot (1 - c^2)$$

$$M_{BA} = 0 \quad \rightarrow \quad \theta_B = -c \cdot \theta_A$$

3.2.3 Sway Function s(1+c) and m: Joint Translation. **Both Ends Fixed**

Equilibrium equations:

$$M_{AB} = M_{BA} = -s \cdot (1+c) \cdot k \cdot \phi =$$
$$= -s \cdot (1+c) \cdot k \cdot \frac{\Delta}{L}$$

$$M_{AB} + M_{BA} + V \cdot L + P \cdot \Delta = 0$$

3.2.4 Functions for Joint Translation: One End Sway

$$M_{BA} = -s'' \cdot k \cdot \phi = -\frac{s''}{s'' - \pi^2 \cdot \rho} \cdot V \cdot L$$

$$V = (s'' - \pi^2 \rho) \cdot \frac{k}{L} \cdot \phi$$

 $\theta_A = (1+c) \cdot \phi$

3.2.5 No Shear Function n and o: No-shear Translation

3.2.6 Uniformly Distributed Load

(a) Both Ends Fixed

$$f = \frac{3}{\gamma^2} \cdot (\gamma \cdot \operatorname{cth} \gamma - 1)$$

(b) Far End Pinned

3.2.7 Concentrated Load

$$\rho = P / P_E$$
 $\rho_1 = r^2 \cdot \rho$ $\rho_2 = (1 - r)^2 \cdot \rho$

$$A = \frac{s_1}{r} + \frac{s_2}{1-r} \qquad B = \frac{s_1 \cdot (1+c_1)}{r^2} - \frac{s_2 \cdot (1+c_2)}{(1-r)^2} \qquad C = \frac{s_1 \cdot (1+c_1)}{r^2 \cdot m_1} + \frac{s_2 \cdot (1+c_2)}{(1-r)^2 \cdot m_2}$$

3.2.8 Summary of Operations

	Uniform member	Uniform member with gussets
Cases	$\begin{array}{c} P \\ A \end{array} \\ \hline \\ H \\ \hline \\ H$	$\xrightarrow{P} \xrightarrow{\overline{M}_{AB}} \xrightarrow{\overline{M}_{BA}} \xrightarrow{\overline{M}_{BA}} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} \xrightarrow{P} $
	$k = \frac{EI}{L}; \rho = \frac{1}{\pi^2} \cdot \frac{P \cdot L}{k} = \frac{P}{P_E};$ $s'' = s \cdot (1 - c^2)$	$k = \frac{EI}{L}; \rho = \frac{1}{\pi^2} \cdot \frac{P \cdot L}{k} = \frac{P}{P_E}$ $D = s \cdot (1+c) - \frac{\pi^2}{2} \cdot \rho = \frac{s \cdot (1+c)}{m}$
	$M_{AB} = s \cdot k \cdot \theta_A$ $M_{BA} = c \cdot s \cdot k \cdot \theta_A = c \cdot M_{AB}$ $V = -s \cdot (1+c) \cdot \frac{k}{L} \cdot \theta_A$	$\begin{split} \overline{M}_{AB} &= \overline{s} \cdot k \cdot \theta_A; M_{BA} = \overline{c} \cdot \overline{s} \cdot k \cdot \theta_A; \\ V &= -(\overline{s} + \overline{s} \cdot \overline{c}) \cdot \frac{k}{\overline{L}} \cdot \theta_A; \\ \overline{L} &= L + g_A + g_B; \\ \overline{s} &= s + \frac{2g_A \cdot g_B}{L^2} \cdot D + s \cdot (1 + c) \cdot \frac{g_A + g_B}{L}; \\ \overline{s} &+ \overline{s} \cdot \overline{c} = \left[s \cdot (1 - c) + \frac{2g_A}{L} \cdot D \right] \cdot \frac{\overline{L}}{L} \end{split}$
	$M_{AB} = s'' \cdot k \cdot \theta_A$ $V = -s'' \cdot \frac{k}{L} \cdot \theta_A$ $\theta_B = -c \cdot \theta_A$	

Cases	Uniform member	Uniform member with gussets			
$\xrightarrow{P} \xrightarrow{M_{AB}} \xrightarrow{\phi = \Delta/L} $	$M_{AB} = M_{BA} = s \cdot (1+c) \cdot k \cdot \phi =$ $= -m \cdot \frac{V \cdot L}{2};$ $V = \frac{2s \cdot (1+c)}{m} \cdot \frac{k}{L} \cdot \phi;$	$\begin{split} \overline{M}_{AB} &= -\overline{m}_A \cdot \frac{V \cdot L}{2} ; \overline{M}_{BA} = -\overline{m}_B \cdot \frac{V \cdot L}{2} \\ V &= D \cdot \frac{k}{L^2} \cdot \Delta \\ \overline{m}_A &= m + \frac{2g_A}{L} ; \overline{m}_B = m + \frac{2g_B}{L} \end{split}$			
$\begin{array}{c} P \\ \hline \\$	$M_{BA} = -s'' \cdot k \cdot \phi =$ = $-\frac{s''}{s'' - \pi^2 \cdot \rho} \cdot V \cdot L;$ $V = (s'' - \pi^2 \cdot \rho) \cdot \frac{k}{L} \cdot \phi;$ $\theta_A = (1+c) \cdot \phi$				
$P \xrightarrow{M_{AB}} \varphi = \Delta/L$ $V = 0$ $M_{BA} \xrightarrow{\phi} = \Delta/L$ $M_{BA} \xrightarrow{\phi} V = 0$	$M_{AB} = n \cdot k \cdot \theta_A;$ $M_{BA} = o \cdot k \cdot \theta_A;$ $\phi = \frac{m}{2} \cdot \theta_A$	$\overline{M}_{AB} = \overline{n} \cdot k \cdot \theta_A; \overline{M}_{BA} = \overline{o} \cdot k \cdot \theta_A;$ $\phi = \frac{\overline{m}_A}{2} \cdot \theta_A; \overline{n} = n - \pi^2 \cdot \rho \cdot \frac{g_A}{L}; \overline{o} = o$			

3.2.10 Effect of Flexible Connections

3.2.11 Effect of Plastic Hinges

$$M_{AB} = s \cdot k \cdot \theta_{A} + c \cdot s \cdot k \cdot \theta_{B} - s \cdot (1 + c) \cdot k \cdot \phi$$

$$M_{BA} = c \cdot s \cdot k \cdot \theta_{A} + s \cdot k \cdot \theta_{B} - s \cdot (1 + c) \cdot k \cdot \phi$$

$$V = s \cdot (1 + c) \cdot \frac{k}{L} \cdot \theta_{A} + s \cdot (1 + c) \cdot \frac{k}{L} \cdot \theta_{B} - (a)$$

$$(a)$$

$$M_{AB} = M_{pl}$$

$$(b)$$

$$M_{BA} = M_{pl}$$

$$s \cdot k \cdot \theta_{A} + c \cdot s \cdot k \cdot \theta_{B} - s \cdot (1 + c) \cdot k \cdot \phi = M_{pl}$$

$$(b)$$

$$M_{BA} = M_{AB} = M_{pl}$$

$$c \cdot s \cdot k \cdot \theta_{B} - s \cdot (1 + c) \cdot k \cdot \phi = M_{pl}$$

$$(b)$$

$$M_{BA} = M_{AB} = M_{AB} = M_{pl}$$

$$M_{BA} = m_{AB} = M_{AB} = M_{pl}$$

$$M_{BA} = c \cdot M_{pl} - c^{2} \cdot s \cdot k \cdot \theta_{B} + s \cdot c \cdot (1 + c) \cdot k \cdot \phi$$

$$M_{BA} = c \cdot M_{pl} + s \cdot (1 - c^{2}) \cdot k \cdot (\theta_{B} - \phi)$$

$$V = \frac{s \cdot (1 + c)}{L} \cdot \left[\frac{M_{pl}}{s} + k \cdot \theta_{B} \cdot (1 - c) - k \cdot \phi \cdot \left(\frac{2}{m} - 1 - c\right)\right]$$

$$Chapter 3/19$$

3.2.12 Effect of Variable Cross-section

Cros	ss-section	m_1	Cros	m_1	
	I cross-section <i>b</i> , <i>t</i> , <i>v</i> const., <i>d</i> variable	2.12.6		Sandwich cross-section <i>b</i> , <i>v</i> const., <i>d</i> variable	2
	Closed cross-section <i>b</i> , <i>t</i> , <i>v</i> const., <i>d</i> variable	2.12.6		Lattice cross- section területe const., <i>d</i> variable	2
	Solid cross-section <i>b</i> const., <i>d</i> variable	3		Solid cross-section <i>d</i> variable	4
	Solid cross-section <i>b</i> const., <i>d</i> variable	1		Solid cross-section <i>d</i> variable	4

Values of m₁ for variable cross-sections

3.2.13 Relationship Between the Stability Functions

Chapter 3/22

 $\rho_{\mathcal{O}} = P / P_E$ (compression)

Φ4

φ2

• \$5

φ3

3

φ1

 $M_{AB} = 4\Phi_3 \cdot k \cdot \theta_A + 2\Phi_4 \cdot k \cdot \theta_B$ $M_{BA} = 2\Phi_4 \cdot k \cdot \theta_A + 4\Phi_3 \cdot k \cdot \theta_B$ $V = -6\Phi_2 \cdot k \cdot (\theta_A + \theta_B) / L$ [Majid, 1972]

 $\rho = P / P_E = \frac{P \cdot L^2}{\pi^2 \cdot EI}$ $P = \rho \cdot P_E = \frac{\rho \cdot \pi^2 \cdot k}{L}$

$$\Phi_1 = \frac{\pi}{2} \cdot \sqrt{\rho} \cdot \operatorname{ctg} \frac{\pi \cdot \sqrt{\rho}}{2} = \alpha \cdot \operatorname{ctg} \alpha = \frac{1}{m}$$
$$\Phi_2 = \frac{\alpha^2}{3 \cdot (1 - \Phi_1)} = \frac{s \cdot (1 + c)}{6}$$

 $\Phi_3 = \frac{3\Phi_2 + \Phi_1}{4} = \frac{s}{4}$ $3\Phi - \Phi$ 1

$$\Phi_4 = \frac{3\Phi_2 \Phi_1}{2} = \frac{1}{2} \cdot s \cdot c$$

$$\Phi_5 = \Phi_1 \cdot \Phi_2 = \frac{s \cdot (1+c)}{6m}$$

$$\Phi_{6} = \frac{\Phi_{3}}{\Phi_{2} \cdot (2\Phi_{3} - \Phi_{4})} = \frac{3}{s \cdot (1 - c^{2})}$$

$$\Phi_{7} = \Phi_{4} \cdot \Phi_{6} \cdot \Phi_{3} = \frac{6c}{s \cdot (1 - c^{2})}$$

$$s = \frac{(1 - 2\alpha \cdot \operatorname{ctg} 2\alpha) \cdot \alpha}{\operatorname{tg} \alpha - \alpha} = \frac{0.25\pi^{2} \cdot \rho + \Phi_{1} - \Phi_{1}^{2}}{1 - \Phi_{1}} = 4\Phi_{3} = \frac{12\Phi_{6}}{4\Phi_{6}^{2} - \Phi_{7}^{2}}$$

$$c = \frac{2\alpha - \sin 2\alpha}{\sin 2\alpha - 2\alpha \cdot \cos 2\alpha} = \frac{1}{4s} \cdot \frac{\pi^{2} \cdot \rho - 4\Phi_{1} + 4\Phi_{1}^{2}}{1 - \Phi_{1}} = \frac{1}{2} \cdot \frac{\Phi_{4}}{\Phi_{3}} = \frac{\Phi_{7}}{2\Phi_{6}}$$

$$m = \frac{2s \cdot (1 + c)}{2s \cdot (1 + c) - \pi^{2} \cdot \rho} = \frac{1}{\Phi_{1}}$$

$$n = s \cdot \left[1 - \frac{m \cdot (1 + c)}{2}\right] = 4\Phi_{3} - 3 \cdot \frac{\Phi_{2}}{\Phi_{1}}$$

$$o = s \cdot \left[\frac{m \cdot (1 + c)}{2} - c\right] = \frac{3\Phi_{2}}{\Phi_{1}} - 2\Phi_{4}$$

$$s \cdot (1 - c^{2}) = \frac{\pi^{2} \cdot \rho}{1 - n}$$

$$s \cdot (1 - c) = 2/m = 2\Phi_{1}$$

$$s \cdot (1 + c) = \frac{o - n}{m - 1} = \frac{m \cdot \pi^{2} \cdot \rho}{2 \cdot (m - 1)} = 6\Phi_{2}$$
Chapter 3/23

$y_1 = 1.57973627$
$a_2 = 0.15858587$
$a_3 = 0.02748899$
$u_4 = 0.00547540$
$a_5 = 0.00115281$
$u_6 = 0.00024908$
$u_7 = 0.00005452$

Livesley devised a method whereby this function is calculated as the sum of a power series in ρ and a rational function. This arrangement absorbs the two singularities nearest to the working range -4< ρ <4.

ρ	S	С	SC	s(1+c)	m	$\frac{2s(1+c)}{m}$	s″	$s'' - \pi^2 \rho$	f	<i>f</i> "
0.00	4.000	0.500	2.000	6.000	1.000	12.000	3.000	3.000	1.000	1.500
0.05	3.934	0.513	2.017	5.950	1.043	11.407	2.900	2.406	1.008	1.525
0.10	3.867	0.526	2.034	5.901	1.091	10.814	2.797	1.810	1.017	1.552
0.15	3.799	0.540	2.052	5.850	1.145	10.220	2.691	1.210	1.026	1.580
0.20	3.730	0.555	2.070	5.800	1.205	9.626	2.581	0.607	1.035	1.609
0.25	3.660	0.571	2.089	5.749	1.273	9.030	2.467	0.000	1.044	1.639
0.30	3.589	0.588	2.109	5.697	1.351	8.434	2.350	-0.611	1.053	1.672
0.35	3.517	0.605	2.129	5.646	1.441	7.837	2.228	-1.226	1.063	1.706
0.40	3.444	0.624	2.150	5.594	1.545	7.239	2.102	-1.846	1.073	1.742
0.45	3.370	0.644	2.171	5.541	1.669	6.641	1.971	-2.471	1.083	1.781
0.50	3.294	0.666	2.194	5.488	1.817	6.041	1.834	-3.101	1.093	1.821
0.55	3.218	0.689	2.217	5.435	1.998	5.441	1.691	-3.737	1.104	1.865
0.60	3.140	0.714	2.241	5.381	2.223	4.840	1.541	-4.380	1.115	1.911
0.65	3.061	0.740	2.266	5.327	2.514	4.238	1.385	-5.031	1.126	1.960
0.70	2.981	0.769	2.291	5.272	2.900	3.636	1.220	-5.689	1.138	2.013
0.75	2.899	0.800	2.318	5.217	3.441	3.032	1.046	-6.356	1.150	2.070
0.80	2.816	0.833	2.346	5.162	4.253	2.428	0.862	-7.034	1.162	2.131
0.85	2.731	0.869	2.374	5.106	5.604	1.822	0.667	-7.722	1.175	2.197
0.90	2.645	0.909	2.404	5.049	8.307	1.216	0.460	-8.423	1.188	2.268
0.95	2.557	0.952	2.435	4.992	16.413	0.608	0.238	-9.138	1.202	2.346
1.00	2.467	1.000	2.467	4.935	±∞	-0.002	0.000	-9.870	1.216	2.432
1.10	2.283	1.111	2.536	4.818	-7.902	-1.220	-0.534	-11.391	1.245	2.628
1.20	2.090	1.249	2.610	4.700	-3.847	-2.443	-1.169	-13.013	1.277	2.871
1.30	1.889	1.424	2.691	4.580	-2.495	-3.671	-1.944	-14.774	1.310	3.176
1.40	1.678	1.656	2.779	4.457	-1.818	-4.904	-2.922	-16.740	1.346	3.575
1.50	1.457	1.973	2.875	4.332	-1.411	-6.141	-4.215	-19.019	1.385	4.118
1.60	1.224	2.435	2.980	4.204	-1.139	-7.383	-6.032	-21.823	1.427	4.902
1.70	0.978	3.166	3.096	4.074	-0.944	-8.630	-8.825	-25.604	1.473	6.135
1.80	0.717	4.497	3.224	3.941	-0.798	-9.882	-13.783	-31.548	1.522	8.368
1.90	0.439	7.661	3.367	3.806	-0.683	-11.140	-25.351	-44.104	1.576	13.653
2.00	0.143	24.682	3.525	3.668	-0.591	-12.404	-86.858	-106.59	1.636	42.013
2.10	-0.176	-21.074	3.702	3.526	-0.516	-13.674	77.838	57.112	1.701	-34.154
2.20	-0.519	-7.511	3.901	3.382	-0.452	-14.950	28.782	7.069	1.774	-11.551
2.30	-0.893	-4.623	4.127	3.234	-0.398	-16.232	18.185	-4.515	1.855	-6.721
2.40	-1.301	-3.370	4.383	3.083	-0.352	-17.522	13.472	-10.215	1.946	-4.613
2.50	-1.750	-2.673	4.678	2.928	-0.311	-18.818	10.754	-13.920	2.049	-3.429
2.60	-2.249	-2.231	5.018	2.769	-0.275	-20.123	8.948	-16.713	2.167	-2.668
2.70	-2.809	-1.928	5.415	2.606	-0.243	-21.435	7.631	-19.017	2.302	-2.136
2.80	-3.445	-1.708	5.884	2.439	-0.214	-22.756	6.606	-21.029	2.459	-1.742
2.90	-4.176	-1.543	6.444	2.268	-0.188	-24.086	5.767	-22.855	2.645	-1.436

Stability functions for compressive forces

ρ	S	С	SC	<i>s</i> (1+ <i>c</i>)	m	$\frac{2s(1+c)}{m}$	<i>s</i> ″	$s'' - \pi^2 \rho$	f	f "
0.00	4.000	0.500	2.000	6.000	1.000	12.000	3.000	3.000	1.000	1.500
-0.05	4.065	0.488	1.984	6.049	0.961	12.592	3.097	3.591	0.992	1.476
-0.10	4.130	0.477	1.968	6.098	0.925	13.183	3.192	4.179	0.984	1.453
-0.15	4.194	0.466	1.953	6.147	0.893	13.773	3.284	4.765	0.976	1.431
-0.20	4.257	0.455	1.938	6.195	0.863	14.363	3.374	5.348	0.969	1.410
-0.25	4.319	0.445	1.924	6.243	0.835	14.952	3.462	5.929	0.961	1.389
-0.30	4.380	0.436	1.910	6.290	0.809	15.541	3.548	6.509	0.954	1.370
-0.35	4.441	0.427	1.896	6.337	0.786	16.129	3.632	7.086	0.947	1.351
-0.40	4.501	0.418	1.883	6.384	0.764	16.716	3.714	7.661	0.940	1.333
-0.45	4.561	0.410	1.870	6.431	0.743	17.303	3.794	8.235	0.933	1.316
-0.50	4.619	0.402	1.858	6.477	0.724	17.889	3.872	8.807	0.926	1.299
-0.55	4.678	0.395	1.845	6.523	0.706	18.474	3.950	9.378	0.920	1.283
-0.60	4.735	0.387	1.834	6.569	0.689	19.059	4.025	9.947	0.913	1.267
-0.65	4.792	0.380	1.822	6.614	0.673	19.643	4.099	10.514	0.907	1.252
-0.70	4.848	0.374	1.811	6.659	0.658	20.227	4.172	11.081	0.901	1.238
-0.75	4.904	0.367	1.800	6.704	0.644	20.810	4.243	11.646	0.895	1.223
-0.80	4.959	0.361	1.789	6.749	0.631	21.393	4.314	12.209	0.889	1.210
-0.85	5.014	0.355	1.779	6.793	0.618	21.975	4.383	12.772	0.883	1.197
-0.90	5.068	0.349	1.769	6.837	0.606	22.556	4.451	13.333	0.878	1.184
-0.95	5.122	0.343	1.759	6.881	0.595	23.138	4.518	13.894	0.872	1.171
-1.00	5.175	0.338	1.749	6.924	0.584	23.718	4.583	14.453	0.867	1.159
-1.10	5.280	0.328	1.731	7.010	0.564	24.877	4.712	15.569	0.856	1.136
-1.20	5.382	0.318	1.713	7.096	0.545	26.035	4.837	16.681	0.846	1.115
-1.30	5.483	0.309	1.697	7.180	0.528	27.190	4.959	17.789	0.836	1.094
-1.40	5.583	0.301	1.680	7.263	0.513	28.344	5.077	18.894	0.826	1.075
-1.50	5.681	0.293	1.665	7.346	0.498	29.496	5.192	19.997	0.817	1.056
-1.60	5.777	0.286	1.651	7.427	0.485	30.646	5.305	21.096	0.808	1.039
-1.70	5.871	0.279	1.637	7.508	0.472	31.794	5.415	22.193	0.799	1.022
-1.80	5.965	0.272	1.623	7.588	0.461	32.941	5.523	23.288	0.791	1.006
-1.90	6.056	0.266	1.610	7.667	0.450	34.086	5.628	24.380	0.783	0.991
-2.00	6.147	0.260	1.598	7.745	0.440	35.229	5.731	25.470	0.775	0.976
-2.10	6.236	0.254	1.586	7.822	0.430	36.371	5.832	26.559	0.767	0.962
-2.20	6.324	0.249	1.575	7.899	0.421	37.511	5.932	27.645	0.760	0.949
-2.30	6.411	0.244	1.564	7.975	0.413	38.650	6.029	28.729	0.752	0.936
-2.40	6.496	0.239	1.554	8.050	0.405	39.787	6.125	29.812	0.745	0.924
-2.50	6.581	0.235	1.544	8.125	0.397	40.923	6.219	30.893	0.739	0.912
-2.60	6.664	0.230	1.534	8.198	0.390	42.058	6.311	31.972	0.732	0.900
-2.70	6.747	0.226	1.525	8.271	0.383	43.191	6.402	33.050	0.725	0.889
-2.80	6.828	0.222	1.516	8.344	0.377	44.323	6.491	34.126	0.719	0.879
-2.90	6.908	0.218	1.507	8.416	0.370	45.453	6.579	35.201	0.713	0.869

Készült az ERFP – DD2002 – HU – B – 01 szerzősésszámú projekt támogatásával

Stability functions for

tension forces

$\begin{bmatrix} M_{AB} \\ M_{BA} \end{bmatrix} = k \cdot \begin{bmatrix} 4\phi_3 & 2\phi_4 \\ 2\phi_4 & 4\phi_3 \end{bmatrix} \cdot \begin{bmatrix} \theta_A \\ \theta_B \end{bmatrix}$	Flexibility and stiffness method:
$k^{-1} \cdot \begin{bmatrix} 4\phi_3 & 2\phi_4 \\ 2\phi_4 & 4\phi_3 \end{bmatrix}^{-1} = \frac{1}{k} \cdot \begin{bmatrix} \phi_6 / 3 & -\phi_7 / 6 \\ -\phi_7 / 6 & \phi_6 / 3 \end{bmatrix}$ $\phi_6 = \frac{\phi_3}{\phi_2 \cdot (2\phi_3 - \phi_4)}$	(a) $EI \cdot \theta_{A} = \frac{1}{3} \cdot M_{AB} \cdot L \cdot \beta$ $\frac{\theta_{A}}{M_{AB}} = \frac{\beta \cdot L}{3EI} \qquad \frac{\theta_{A}}{M_{AB}} = \infty$
$\phi_7 = \phi_4 \cdot \phi_6 \cdot \phi_3$	(b)
$\begin{bmatrix} \theta_A \\ \theta_B \end{bmatrix} = \frac{L}{6EI} \cdot \begin{bmatrix} 2\phi_6 & -\phi_7 \\ -\phi_7 & 2\phi_6 \end{bmatrix} \cdot \begin{bmatrix} M_{AB} \\ M_{BA} \end{bmatrix}$	$\frac{M_{AB}}{\theta_A} = \frac{EI}{L} \cdot (1 - c^2) \cdot s \qquad \frac{M_{AB}}{\theta_A} = 0$

Chapter 3/29

Comparison of Force (Flexibility) and Displacement (Stiffness) Method

3.3. Assessment of Sway-Preventing Action in Frames

Standard cases for single-storey portal frames:

Final general solution:

$$\pi^{2} \cdot \rho = k_{T} + s \cdot (1+c) \cdot \frac{2 + s \cdot (1-c) \cdot \left(\frac{1}{k_{A}} + \frac{1}{k_{B}}\right)}{1 + s \cdot \left(\frac{1}{k_{A}} + \frac{1}{k_{B}}\right) + \frac{s^{2} \cdot (1-c^{2})}{k_{A} \cdot k_{B}}} \qquad \pi^{2} \cdot \rho = k_{T} + K(\rho)$$

Sway stiffness needed to prevent sway

Specific Sway Prevented Derivations

3.3.2 Application of Sway-Stiffness Approximation

(a) Braced Panels The tension braces considered active $N = P_K \cdot \frac{L}{\sqrt{L^2 + (l + \Lambda_E)^2}} \approx P_K \cdot \frac{L}{\sqrt{L^2 + l^2}};$ $P_B = P_K \cdot \frac{l + \Delta_K}{\sqrt{L^2 + (l + \Delta_K)^2}} \approx P_K \cdot \frac{l}{\sqrt{L^2 + l^2}}.$ $\frac{\Delta_K}{\Delta_R} = \frac{l + \Delta_B}{\left(I^2 + (l + \Lambda_{-1})^2\right)} \approx \frac{l}{\sqrt{I^2 + l^2}}$ $\varepsilon_{K} = \frac{\Delta_{K}}{\sqrt{L^{2} + L^{2}}} = \frac{l}{L^{2} + l^{2}} \Delta_{B}$ $P_{K} = EA_{K} \cdot \frac{l}{L^{2} + L^{2}} \cdot \Delta_{B}$ $K_T = EA_K \cdot \frac{l^2}{\left(l^2 + l^2\right)^{3/2}} = \frac{P_B}{\Lambda_T} > \frac{A_{oszlop} \cdot \sigma_H}{L}$

Components of force P_K acting on point B'_2 :

Chapter 3/37

(b) Portals with Single loads P $I_g = \infty$ B_2 B $K_T = \frac{3EI_0}{L^3} > \frac{P}{L}$ **I**0 0 $\rho_1 = \frac{P \cdot L^2}{\pi^2 \cdot EI_0} < \frac{3}{\pi^2} \approx 0.3$ 111111 777777 $\Delta \mathbf{B}$ ► P_B $\mathsf{P}_{\mathsf{B}} = \frac{3\mathsf{E}\mathsf{I}}{\mathsf{L}^3} \Delta_{\mathsf{B}}$ $\rho_1 < 0.3$ $K_{T} = \frac{3EI_{0}}{I^{3}}$ The sway-free design load would 111111 be ρ =0.25 and so a min. 20% increase is possible.

Chapter 3/39

3.4. Effect of Semi-Rigid Connections

3.4.1 Member of a Braced Frame

Column c1:

$$M_{A,c1} = \frac{EI_{c1}}{L_{c1}} \cdot (s_i \cdot \theta_A + s_i \cdot c_i \cdot \theta_B)$$

Column c2:

$$M_{A,c2} = \frac{EI_{c2}}{L_{c2}} \cdot (s_i \cdot \theta_A + s_i \cdot c_i \cdot \theta_B)$$
$$M_{B,c2} = \frac{EI_{c2}}{L_{c2}} \cdot (s_i \cdot c_i \cdot \theta_A + s_i \cdot \theta_B)$$

Column c3:

$$M_{B,c3} = \frac{EI_{c3}}{L_{c3}} \cdot (s_i \cdot c_i \cdot \theta_A + s_i \cdot \theta_B)$$

 $\overline{\Theta}_A = \Theta_A - \frac{M_{A,b1}}{\Gamma}$

Beam b1:

$$M_{A,b1} = \frac{EI_{b1}}{L_{b1}} \cdot (4\overline{\theta}_A - 2\overline{\theta}_A) = \frac{EI_{b1}}{L_{b1}} \cdot 2\overline{\theta}_A =$$
$$= \frac{EI_{b1}}{L_{b1}} \cdot \frac{1}{1 + \frac{2EI_{b1}}{L_{b1}}} \cdot 2\theta_A = \frac{EI_{b1}}{L_{b1}} \cdot \alpha_{f,b1} \cdot 2\theta_A$$

Subassembly model for braced frame

$$\alpha_{f,b1} = \frac{1}{1 + \frac{2EI_{b1}}{L_{b1} \cdot S_{b1}}}$$

Beam b2:

$$M_{A,b2} = \frac{EI_{b2}}{L_{b2}} \cdot \alpha_{f,b2} \cdot 2\theta_A$$

Beam b3:

$$M_{A,b3} = \frac{EI_{b3}}{L_{b3}} \cdot \alpha_{f,b3} \cdot 2\theta_B$$

Beam b4:

$$M_{A,b4} = \frac{EI_{b4}}{L_{b4}} \cdot \alpha_{f,b4} \cdot 2\theta_B$$

$$G'_{A} = \frac{\sum_{i(A)} \frac{EI_{ci}}{L_{ci}}}{\sum_{i(A)} \alpha_{f,bi} \cdot \frac{EI_{bi}}{L_{bi}}} \qquad G'_{B} = \frac{\sum_{i(B)} \frac{EI_{ci}}{L_{ci}}}{\sum_{i(B)} \alpha_{f,bi} \cdot \frac{EI_{bi}}{L_{bi}}}$$

For non-trivial solution:

$$\det \begin{bmatrix} s_i + \frac{2}{G'_A} & s_i \cdot c_i \\ s_i \cdot c_i & s_i + \frac{2}{G'_B} \end{bmatrix} = 0$$

For joint equilibrium at A:

$$M_{A,c1} + M_{A,c2} + M_{A,b1} + M_{A,b2} = 0$$

 $k \cdot L = L \cdot \sqrt{\frac{P}{EI}} = \pi \cdot \sqrt{\frac{P}{P_E}} = \frac{\pi}{\nu}$

For joint equilibrium at B:

$$M_{A,c2} + M_{A,c3} + M_{A,b3} + M_{A,b4} = 0$$

$$\begin{bmatrix} s_i + \frac{2}{G'_A} & s_i \cdot c_i \\ s_i \cdot c_i & s_i + \frac{2}{G'_B} \end{bmatrix} \cdot \begin{bmatrix} \theta_A \\ \theta_B \end{bmatrix} = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

$$\frac{G'_A \cdot G'_B}{4} \cdot \left(\frac{\pi}{\nu}\right)^2 + \frac{G'_A + G'_B}{2} \cdot \left(\frac{\pi}{1 - \frac{\nu}{\nu}}\right) + 2 \cdot \frac{\mathrm{tg}\frac{\pi}{\nu}}{\frac{\pi}{\nu}} - 1 = 0$$

Nomogram to Determine the Effective Length Factor for Braced Frames

3.4.2 Member of an Unbraced Frame

Column c1:

$$M_{A,c1} = \frac{EI_{c1}}{L_{c1}} \cdot (s_i \cdot \theta_A + s_i \cdot c_i \cdot \theta_B - s_i \cdot (1 + c_i) \cdot \Delta / L_{c1})$$

Column c2:

$$M_{A,c2} = \frac{EI_{c2}}{L_{c2}} \cdot (s_i \cdot \theta_A + s_i \cdot c_i \cdot \theta_B - s_i \cdot (1 + c_i) \cdot \Delta / L_{c2})$$
$$M_{B,c2} = \frac{EI_{c2}}{L_{c2}} \cdot (s_i \cdot c_i \cdot \theta_A + s_i \cdot \theta_B - s_i \cdot (1 + c_i) \cdot \Delta / L_{c2})$$

Column c3:

$$M_{B,c3} = \frac{EI_{c3}}{L_{c3}} \cdot (s_i \cdot c_i \cdot \theta_A + s_i \cdot \theta_B - s_i \cdot (1 + c_i) \cdot \Delta / L_{c3})$$

Beam b1:

$$\overline{\theta}_{A} = \theta_{A} - \frac{M_{A,b1}}{S_{j,b1}} \quad \alpha_{k,b1} = \frac{1}{1 + \frac{6EI_{b1}}{L_{b1} \cdot S_{b1}}}$$

4

$$M_{A,b1} = \frac{EI_{b1}}{L_{b1}} \cdot (4\overline{\theta}_A + 2\overline{\theta}_A) = \frac{EI_{b1}}{L_{b1}} \cdot 6\overline{\theta}_A = \frac{EI_{b1}}{L_{b1}} \cdot \alpha_{k,b1} \cdot 2\theta_A$$

Beam b2:

$$M_{A,b2} = \frac{EI_{b2}}{L_{b2}} \cdot \alpha_{k,b2} \cdot 2\theta_A$$

Beam b3:

$$M_{A,b3} = \frac{EI_{b3}}{L_{b3}} \cdot \alpha_{k,b3} \cdot 2\theta_B$$

Beam b4:

$$M_{A,b4} = \frac{EI_{b4}}{L_{b4}} \cdot \alpha_{k,b4} \cdot 2\theta_B$$

For joint equilibrium at A:

$$M_{A,c1} + M_{A,c2} + M_{A,b1} + M_{A,b2} = 0$$

For joint equilibrium at B:

$$M_{A,c2} + M_{A,c3} + M_{A,b3} + M_{A,b4} = 0$$

For storey sway equilibrium:

$$M_{A,c2} + M_{B,c2} + P \cdot \Delta = 0$$

Matrix equation of equilibrium:

$$\begin{bmatrix} s_i + \frac{6}{G'_A} & s_i \cdot c_i & -s_i \cdot (1 + c_i) \\ s_i \cdot c_i & s_i + \frac{6}{G'_B} & -s_i \cdot (1 + c_i) \\ -\frac{6}{G'_A} & -\frac{6}{G'_B} & (k_{c2} \cdot L_{c2})^2 \end{bmatrix} \cdot \begin{bmatrix} \theta_A \\ \theta_B \\ \Delta / L_{c2} \end{bmatrix} = \mathbf{0}$$
$$G'_A = \frac{\sum_{i(A)} \frac{EI_{ci}}{L_{ci}}}{\sum \alpha_{i(A)} \frac{EI_{bi}}{L_{ci}}} \qquad G'_B = \frac{\sum_{i(B)} \frac{EI_{ci}}{L_{ci}}}{\sum \alpha_{i(B)} \frac{EI_{bi}}{L_{ci}}}$$

$$G'_{A} = \frac{\sum_{i(A)} \overline{L_{ci}}}{\sum_{i(A)} \alpha_{k,bi}} \cdot \frac{EI_{bi}}{L_{bi}}} \qquad G'_{B} = \frac{\sum_{i(B)} \overline{L_{ci}}}{\sum_{i(B)} \alpha_{k,bi}} \cdot \frac{EI_{bi}}{L_{bi}}}$$

From the condition of non-trivial solution existence:

$$\frac{G'_A \cdot G'_B \cdot \left(\frac{\pi}{\nu}\right)^2 - 36}{6 \cdot (G'_A + G'_B)} - \frac{\frac{\pi}{\nu}}{\operatorname{tg}\frac{\pi}{\nu}} = 0$$

Nomogram to Determine the Effective Length Factor for Unbraced Frames

$$R=0=KD$$

For a nontrivial solution, we must have

 $\det |\boldsymbol{K}| = 0$

By assuming $EI/LR_{ki} = 0.1$ where R_{ki} is the initial stiffness of the connections, the critical load can be obtained by trial and error as 1.56 EIL^2 .

3.5. Examples for Use of Stability Functions

3.5.1 Second-Order Bending Moments

(a) Determine in detail the equilibrium equations for the frame:

$$M_{A} = (s_{1} \cdot k_{1} + s_{2}'' \cdot k_{2}) \cdot \theta_{A} - s_{1} \cdot (1 + c_{1}) \cdot \frac{k_{1}}{l_{1}} \cdot \Delta = \frac{q_{2} \cdot l_{2}^{2}}{8};$$

$$V = -s_{1} \cdot (1 + c_{1}) \cdot \frac{k_{1}}{l_{1}} \cdot \theta_{A} + \left[\frac{2s_{1} \cdot (1 + c_{1})}{m_{1}} \cdot \frac{k_{1}}{l_{1}^{2}} + (s_{3}'' - \pi^{2} \cdot \rho_{3}) \cdot \frac{k_{3}}{l_{3}^{2}}\right] \cdot \Delta = 0.$$

(b) Show the condition of the normal forces:

$$N_{1} = \frac{5}{8} \cdot q \cdot l_{1} = 200 \text{ kN}; \quad P_{E1} = \frac{\pi^{2} \cdot EI_{1}}{l_{1}^{2}} = 2000 \text{ kN}; \quad \rho_{1} = \frac{N_{1}}{P_{E1}} = 0,1;$$

$$N_{1} \approx 0; \qquad \qquad \rho_{2} = 0;$$

$$N_{3} = \frac{3}{8} \cdot q \cdot l_{3} = 120 \text{ kN}; \quad P_{E3} = \frac{\pi^{2} \cdot EI_{3}}{l_{3}^{2}} = 1200 \text{ kN}; \quad \rho_{3} = \frac{N_{3}}{P_{E3}} = 0,1;$$

$$\rho_2 = 0;$$

= 1200kN; $\rho_3 = \frac{N_3}{P_{E3}} = 0,1;$
EI = 0,1;

$$k_1 = \frac{EI_1}{l_1} = 800$$
 kNm; $k_2 = \frac{EI_2}{l_2} = 1500$ kNm; $k_3 = \frac{EI_3}{l_3} = 480$ kNm.

80 kN/m A (2) (1) (3) B (1)

$$l_1 = l_2 = l_3 = 4 \text{ m}$$

 $EI_1 = 3200 \text{ kNm}^2$
 $EI_2 = 6000 \text{ kNm}^2$
 $EI_3 = 1920 \text{ kNm}^2$

(c) Define the displacements: $\Delta = 0.0607 \text{ m}; \quad \theta_A = 0.0305.$

(d) Define the internal forces at the bar ends:

$$M_{1A} = M_{2A} = s_1 \cdot k_1 \cdot \theta_A - s_1 \cdot (1 + c_1) \cdot \frac{k_1}{l_1} \cdot \Delta = 22.75 \text{ kNm};$$

$$M_{1B} = s_1 \cdot c_1 \cdot k_1 \cdot \theta_A - s_1 \cdot (1 + c_1) \cdot \frac{k_1}{l_1} \cdot \Delta = -21.65 \text{ kNm};$$

$$M_{3C} = -s_3'' \cdot \frac{k_3}{l_3} \cdot \Delta = -20.27 \text{ kNm}.$$

$$N_2 = V_3 = (s_3'' - \pi^2 \cdot \rho_3) \cdot \frac{k_3}{l_3^2} \cdot \Delta = 3.28 \text{ kN}$$

(compression)

$$\rho_2 = 0,001 \approx 0 : \text{O.K.}$$

(e) Sketch the figures of the internal forces: 21.65 20.27 \text{ kNm};

3.5.2 Critical Force

(b) Show the condition of the normal forces:

$$\rho_1 = \rho_3 \approx 0$$

(c) Define the critical force:

$$det \begin{vmatrix} 375 & | & -150 \\ -150 & | & 700 + 150s_2'' \end{vmatrix} = 0$$

$$\rho_2 = 1.5 \rightarrow s_2'' = -4.215$$

$$det = +116.25$$

$$\rho_2 = 1.6 \rightarrow s_2'' = -6.032$$

det = -3972.0
det
 $f_{1.5}$ $f_{1.6}$ ρ

$$P_{cr,2} = \rho_2 \frac{\pi^2 \cdot EI_2}{l_2^2} = 1.503 \cdot \frac{\pi^2 \cdot 600}{16} = 556.0 \text{ kN}$$

(d) Calculate the effective length factor for column #2:

