GEODESY

Béla GADÓ
gado.bela@pte.mik.hu

Instrument parts

PLUMB-BOB, BUBBLE

Bubbles

Tubular bubble

Circular bubble

Plumb-bobs

Bubble tube scales

Adjusting screws schemes on a tubular bubble

PRIZM, MAGNIFIER, PLANPARALLEL GLASS PLAIN

Magnifier

Simple geodesic telescope

 (constant focal length)

Diaphragm (cross-hairs)

Wild-system telescope with changeable focal length

HORIZONTAL MEASUREMENTS

Angles and distances

Theodolite

Reading microscopes

Modern Teodolitos

Horizontal grid-system (EOV)

Hungarian first rank triangulated basepoints

Fictional first rank basepoint network

Point stabilisation

$$
\begin{array}{lr}
\text { Stone sizes } & 15 \times 15 \times 60 \\
& 20 \times 20 \times 70 \\
& 25 \times 25 \times 60 \\
& 25 \times 25 \times 90
\end{array}
$$

Stabilisation of 4th and 5th ranked points

Guard pin

Point stabilisation

Higher order point stabilisation with earthwork protection

Higher order point stabilisation with reinforced concrete protection

Point stabilisation

Point below surface

Detail point
$15 \times 15 \times 50$ Concrete

Setting out lines

Setting out lines with obstacles

Setting out lines with obstacles

Intersection between two points

Detail point measurement

Orthogonal

Tools:
Prism,
Measure tape

Polar
Tools:
Theodolite,
Measure tape

Orthogonal detailpoint measurement

Example drawing

Prisms

Bauerfeind

Duplex - double Bauerfeind

Prandtl

Wollaston

Polar detailpoint measurement

Surveying I.

Plane surveying. Fundamental tasks of surveying. Intersections. Orientation.

The coordinate system

Northing axis is the projection of the starting meridian of the projection system, while the Easting axis is defined as the northing axis rotated by 90° clockwise.

The whole circle bearing

How could the direction of a target from the station be defined?

Whole circle bearing: the local north is rotated clockwise to the direction of the target. The angle which is swept is called the whole circle bearing.

$$
0^{\circ} \leq W C B_{A B}<360^{\circ}
$$

Transferring Whole Circle Bearings

WCB of reverse direction:

$$
W C B_{B A}=W C B_{A B} \pm 180^{\circ}
$$

Transferring WCBs: $W C B_{A B}$ is known, α is measured, how much is $W C B_{A C}$?

$$
\begin{gathered}
\text { OACB } \\
W C B_{A C}=W C B_{A B}+\alpha \\
\text { or } \\
W C B_{A B}=W C B_{A C}-\alpha
\end{gathered}
$$

1st fundamental task of surveying

$A\left(E_{A}, N_{A}\right), W C B_{A B}$ and $d_{A B}$ is known, $B\left(E_{B}, N_{B}\right)=$?

$$
\begin{gathered}
\Delta E_{A B}=E_{B}-E_{A}=d_{A B} \cdot \sin W C B_{A B} \\
\Delta N_{A B}=N_{B}-N_{A}=d_{A B} \cdot \cos W C B_{A B} \\
\Downarrow \\
E_{B}=E_{A}+d_{A B} \cdot \sin W C B_{A B}, \\
N_{B}=N_{A}+d_{A B} \cdot \cos W C B_{A B} .
\end{gathered}
$$

2nd fundamental task of surveying

$A\left(E_{A}, N_{A}\right), B(E B, N B)$ is known, $W_{C B}^{A B}=$? and $d_{A B}=$?

$$
\begin{gathered}
d_{A B}=\sqrt{\left(E_{B}-E_{A}\right)^{2}+\left(N_{B}-N_{A}\right)^{2}} \\
\alpha=\arctan \frac{E_{B}-E_{A}}{N_{B}-N_{A}} \\
W C B_{A B}=\alpha+c
\end{gathered}
$$

2nd fundamental task of surveying

$$
\begin{gathered}
d_{A B}=\sqrt{\left(E_{B}-E_{A}\right)^{2}+\left(N_{B}-N_{A}\right)^{2}} \\
\alpha=\arctan \frac{E_{B}-E_{A}}{N_{B}-N_{A}}, \\
W C B_{A B}=\alpha+c
\end{gathered}
$$

Quadrant	$\mathrm{E}_{\mathrm{B}}-\mathrm{E}_{\mathrm{A}}$	$\mathrm{N}_{\mathrm{B}}-\mathrm{N}_{\mathrm{A}}$	c
I.	+	+	0
II.	+	-	$+180^{\circ}$
III.	-	-	$+180^{\circ}$
IV.	-	+	$+360^{\circ}$

Intersections

Aim: the coordinates of an unknown point should be computed. Measurements are taken from two different stations to the unknown point, and the so formed triangle should be solved.

1. Compute $W_{C B}^{A B}, d_{A B}$ using the 2nd fundamental task of surveying.
2. Using the sine theorem compute $d_{A P}$ and $d_{B P}$!

$$
d_{A P}=d_{A B} \frac{\sin \beta}{\sin (\alpha+\beta)} \quad d_{B P}=d_{A B} \frac{\sin \alpha}{\sin (\alpha+\beta)}
$$

3. Compute $\mathrm{WCB}_{\mathrm{AP}}$ and $\mathrm{WCB}_{\mathrm{BP}}$:

$$
W C B_{A P}=W C B_{A B}-\alpha \quad W C B_{B P}=W C B_{B A}+\beta
$$

Foresection with inner angles

From A:

$$
\begin{aligned}
& E_{P}^{A}=E_{A}+d_{A P} \sin W C B_{A P} \quad N_{P}^{A}=N_{A}+d_{A P} \cos W C B_{A P}, \\
& \text { From B: } \\
& E_{P}^{B}=E_{B}+d_{B P} \sin W C B_{B P} \quad N_{P}^{B}=N_{B}+d_{B P} \cos W C B_{B P}, \\
& E_{P}=\frac{E_{P}^{A}+E_{P}^{B}}{2} \quad N_{P}=\frac{N_{P}^{A}+N_{P}^{B}}{2}
\end{aligned}
$$

Orientation

How can the WCB be determined from observations?
Recall the definition of mean direction:

All the angular observations refer to the index of the horizontal circle, but they should refer to the Northing instead!

Orientation

z_{A} - orientation angle

Orientation

How to find the orientation angle?
A, B are known points, $M D_{A P}$ and $M D_{A B}$ are observed.

Aim: Compute $\mathrm{WCB}^{\prime}{ }_{\text {AP }}$

Compute the orientation angle:

$$
\mathrm{z}_{\mathrm{A}}=\mathrm{WCB}_{\mathrm{AB}}-\mathrm{MD}_{\mathrm{AB}}
$$

Computing the $\mathrm{WCB}^{\prime}{ }_{\mathrm{AP}}$:

$$
W C B_{A P}^{\prime}=z_{A}+M D_{A P}
$$

Computing the mean orientation angle

In case of more orientations, as many orientation angles can be computed as many control points are sighted:

$$
\begin{aligned}
& z_{A}^{B}=W C B_{A B}-M D_{A B} \\
& z_{A}{ }^{\mathrm{C}}=W C B_{A C}-M D_{A C} \\
& z_{A}{ }^{D}=W C B_{A D}-M D_{A D}
\end{aligned}
$$

$z_{A}{ }^{B}, z_{A}^{C}$ and z_{A}^{D} are usually slightly different due observation and coordinate error.

However, the orientation angle is constant for a station and a set of observations.

Mean orientation angle:

$$
z_{A}=\frac{z_{A}^{B} \cdot d_{A B}+z_{A}^{C} \cdot d_{A C}+z_{A}^{D} \cdot d_{A D}}{d_{A B}+d_{A C}+d_{A D}}
$$

WCB vs provisional WCB

Whole circle bearing ($\mathbf{W C B}_{\mathrm{AB}}$): computed from coordinates, between two points, which coordinates are known.

Provisional whole circle bearing ($\mathrm{WCB}^{\mathbf{A B}}{ }^{\mathbf{A}}$): an angular quantity, which is similar to the whole circle bearing. However it is computed from observations, by summing up the (mean) orientation angle and the mean direction.

Foresection with WCBs

What happens, when B is not observable from A ?

A, B, C and D are known points, α and β are measured.

Foresection with WCBs

The equations of the lines AP and BP:

$$
\begin{aligned}
& N_{1}=N_{A}+\left(E-E_{A}\right) \cdot \cot W C B_{A P} \\
& N_{2}=N_{B}+\left(E-E_{B}\right) \cdot \cot W C B_{B P}
\end{aligned}
$$

Foresection with WCBs

Let's compute the intersection of the lines AP and BP :
$N_{1}=N_{2}$
$E\left(\cot W C B_{A P}-\cot W C B_{B P}\right)=N_{B}-N_{A}+E_{A} \cot W C B_{A P}-E_{B} \cot W C B_{B P}$
$E_{P}=\frac{N_{B}-N_{A}+E_{A} \cot W C B_{A P}-E_{B} \cot W C B_{B P}}{\cot W C B_{A P}-\cot W C B_{B P}}$
$N_{P}=N_{A}+\left(E_{P}-E_{A}\right) \cot W C B_{A P}$

Different types of intersections

How can we use intersections, when A or B is not suitable for setting up the instrument:

α can be computed by $\alpha=180^{\circ}-\gamma-\beta$. $=>$ Foresection.

Resection

A, B, C are known control points ξ and η are observed angles

Aim: compute the coordinates of P (the station)

Resection

N

Compute the coordinates of T_{1} and T_{2} !

$$
\begin{gathered}
\frac{E_{B}-E_{A}}{N_{A}-N_{T_{1}}}=\frac{N_{B}-N_{A}}{E_{T_{1}}-E_{A}}=\cot \xi \\
\Downarrow \\
N_{T_{1}}=\frac{E_{B}-E_{A}-N_{A} \cot \xi}{\cot \xi}, \\
E_{T_{1}}=\frac{N_{B}-N_{A}+E_{A} \cot \xi}{\cot \xi} .
\end{gathered}
$$

Resection

Since T_{1}, P and T_{2} are on a straight line:

$$
\begin{aligned}
W C B_{T_{1} P} & =W C B_{T_{1} T_{2}} \\
W C B_{B P} & =W C B_{T_{1} T_{2}}+90^{\circ} \\
& \downarrow
\end{aligned}
$$

Foresection with WCBs

Resection - the dangerous circle

What happens, if all the four points are on one circumscribed circle?

Arcsection

A, B are known control points,
$D_{A P}$ and $D_{B P}$ are measured.
Aim: compute the coordinates of P!

Using the cosine theorem, compute the angle α :

$$
\begin{gathered}
D_{B P}^{2}=D_{A P}^{2}+d_{A B}^{2}-2 D_{A P} d_{A B} \cos \alpha \\
\Downarrow \\
\alpha=\arccos \frac{D_{A P}^{2}+d_{A B}^{2}-D_{B P}^{2}}{2 D_{A P} d_{A B}} .
\end{gathered}
$$

Arcsection

Compute $\mathrm{WCB}_{\mathrm{AB}}$ from the coordinates of A and B ,

$$
\begin{gathered}
\mathrm{WCB}_{\mathrm{AP}}=\mathrm{WCB}_{\mathrm{AB}}-\alpha \\
\downarrow
\end{gathered}
$$

1st fundamental task of surveying

Thank You for Your Attention!

Surveying I. (BSc)

Trigonometric heighting.
Distance measurements, corrections and reductions

How could the height of skyscrapers be measured?

The principle of trigonometric heighting

The principle of trigonometric heighting

$$
m=?
$$

The principle of trigonometric heighting

The principle of trigonometric heighting

The principle of trigonometric heighting

$$
m=h+\Delta m-\ell=h-\ell+d \cot z
$$

Trigonometric levelling

Trigonometric levelling

Trigonometric levelling

Trigonometric levelling

Trigonometric levelling

Trigonometric levelling

Trigonometric levelling

Advantage:

- the instrument height is not necessary;
- non intervisible points can be measured, too.

Trigonometric heighting

Advantages compared to optical levelling:

- A large elevation difference can be measured over short distances;
- The elevation difference of distant points can be measured (mountain peaks);
- The elevation of inaccessible points can be measured (towers, chimneys, etc.)

Disadvantages compared to optical levelling:

- The accuracy of the measured elevation difference is usually lower.
- The distance between the points must be known (or measured) in order to compute the elevation difference

The determination of the heights of buildings

The determination of the heights of buildings

The determination of the heights of buildings

The determination of the heights of buildings

The horizontal distance is observable, therefore:

$$
\begin{gathered}
\Delta m=d_{A P} \cot z_{A} \\
m=l_{O}+d_{A P} \cot z_{A}
\end{gathered}
$$

Determination of the height of buildings

The distance is not observable.

Determination of the height of buildings

Using the sine-theorem:

$$
\begin{gathered}
\frac{d_{A P}}{\sin \beta}=\frac{a}{\sin (180-\alpha-\beta)} \Rightarrow d_{A P}=a \frac{\sin \beta}{\sin (\alpha+\beta)} \\
\frac{d_{B P}}{\sin \alpha}=\frac{a}{\sin (180-\alpha-\beta)} \Rightarrow d_{B P}=a \frac{\sin \alpha}{\sin (\alpha+\beta)}
\end{gathered}
$$

Determination of the height of buildings

Determination of the height of buildings

Determination of the height of buildings

Using the observations in pont B :

$$
\begin{gathered}
m^{B}=l_{O}^{B}+d_{B P} \cot z_{B} \\
m=\frac{\left(m^{A}+m^{B}\right)}{2}
\end{gathered}
$$

Surveying I.
 Tacheometry

Principle of tacheometry

Tacheometry

„Fast measurement" - measurement of horizontal and vertical coordinates of detail points in one step.

Principle of tacheometry

The horizontal position of the detail point is computed using the polar coordinates (WCB \& d_{h}), while the elevation is measured using trigonometric heighting.

Principle of tacheometry

Horizontal coordinates:

- $\left(\mathrm{N}_{\mathrm{A}}, \mathrm{E}_{\mathrm{A}}\right)$ and $\left(\mathrm{N}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}\right)$ are known;
- $\varphi_{A P I} d_{A P}$ is measured.

Exercise: compute the coordinates of \mathbf{P}

- $\mathrm{WCB}_{A T}$ is computed (2nd fundamental task of surveying;
- WCB ${ }_{A P}$ is computed by transfering the WCB from AT to AP
$\left(W_{C B}^{A P}=W C B_{A T}+\varphi_{A P}\right)$;
- the horizontal coordinates of P are computed by the 1st fundamental task of surveying

Principle of tacheometry

Vertical coordinates:

$$
\Delta h_{A P}=h_{I}+d_{s} \cos \zeta_{A P}-h_{S}
$$

Measuring the slope distance

Older instruments: use the optical method (stadia lines) to measure the distance. The maximal range is $150-200 \mathrm{~m}$, and the accuracy $15-20 \mathrm{~cm}$.

Latest instruments: EDMs are used to measure the slope distance. The maximal range is usually $2-3 \mathrm{~km}$, accuracy is $1-2 \mathrm{~cm}$.

Electronic tacheometers (Total Stations)

Important features:

- automated distance measurements and angular observations;
- the observations can be corrected for the effect of systematic error, and reduced to the MSL;
- the data can be recorded for later use;
- observation software enables the instrument to compute coordinates and stake out.

Operation of Total Stations

- Centering and leveling the instrument by the operator
- observing the slope distance $\left(d_{s}\right)$, correcting the effect of the reflector constant, the frequency error and the meteorological correction;
- the horizontal (Hz) and vertical (V) angles are read, and the effects of the collimation and index error are accounted for;
- the horizontal distance $\left(d_{h}\right)$ and the elevation difference is ($\Delta \mathrm{h}$) is computed (instrument and signal height must be entered previously);
- the data set $\left(d_{s}, H z, V\right)$ or $\left(H z, d_{h}, \Delta h\right)$ is logged.

Important software of Total Stations

1. Free station establishment

The station coordinates are computed using angular and distance observations to known points (resection, arc-section and their combination). In most cases the orientation is also done.
2. Determination of the elevation of the station
by trigonometric heighting to known stations.
3. Orientation of the horizontal circle
by taking horizontal angle observations to known stations.
4. Computation of rectangular coordinates (N, E)
using the polar coordinates (provisional WCB and horizontal distance)

Important software of Total Stations

5. Tie distance

The horizontal distance between two measured detail points can be computed using their coordinates.
6. Remote object
by measuring the horizontal distance to the vertical of a remote object, and the zenith angle.

Detail surveys using tacheometry

Preparation

- densification of control network;
- finding suitable places for free station establishment.

Detail survey

- detail points of:
- buildings;
- linear objects (e.g. electric poles);
- rectangular buildings;
- arcs;
- topography.

Detail surveys using tacheometry

Identifying the detail points

- drawing a sketch of the area, and marking the detail points on it with ID numbers;
- recording the coordinates or observations with the same ID numbers;
- ensure that the two numberings are identical;

Mapping the survey

- marking the positions of the detail points in a given scale;
- the elevation of topographic points should be written
on the map;
- contour lines are interpolated between the measured topographic points.

Thank You for Your Attention!

Surveying I.

Traversing

Principle of Traversing

- Determine the WCB of the first leg;
- measure the length of the first leg;
- compute the coordinates of the traverse point No. 1, using the 1st fundamental task of surveying;
- measure the deflection angle at point 1 ;
- compute the WCB of the second leg;
- continue with step 2.

Types of traverse lines

Closed Loop

Unclosed
- Free traverse

- Inserted traverse

- Closed line traverse

Computation of the closed line traverse

Controlling the angular observations:

- sum of the inner angles

$$
W C B_{S 1}+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{E}+90^{\circ}+90^{\circ}
$$

- theory

$$
[(n+2)-2] \cdot 180^{\circ}
$$

Computation of the closed line traverse

Angular misclosure:

$$
\begin{gathered}
\Delta \beta=n \cdot 180^{\circ}-\left(W C B_{S 1}+\beta_{1}+\beta_{2}+\beta_{3}+\beta_{E}+90^{\circ}+90^{\circ}\right) \\
\Downarrow \\
\Delta \beta=(n-1) \cdot 180^{\circ}-\left(\sum_{i=0}^{n-1} \beta_{i}\right), \\
\text { where } \beta_{0}=W C B_{S 1}
\end{gathered}
$$

How to correct for the angular error?
The accuracy of the angular observations can supposed to be at the same level, therefore the same correction should be applied to each observed angle (n).

$$
v \beta=\frac{\Delta \beta}{n} \quad \beta_{i}^{\prime}=\beta_{i}+v \beta
$$

Computation of the closed line traverse

Controlling the distance observations:

- the computed coordinate differences between S and E should be equal to the known coordinate differences

Computation of the closed line traverse

Compute the provisional WCB of the traverse legs:

$$
W C B_{i, i+1}=W C B_{i-1, i}+\beta_{i} \mp 180^{\circ}
$$

Easting and Northing coordinate differences:

$$
\begin{aligned}
& \Delta E_{i, i+1}=d_{i, i+1} \cdot \sin W C B_{i, i+1}, \\
& \Delta N_{i, i+1}=d_{i, i+1} \cdot \cos W C B_{i, i+1} .
\end{aligned}
$$

The coordinate misclosure:

$$
\begin{aligned}
& \Delta \Delta E=\left(E_{E}-E_{S}\right)-\sum_{i=0}^{n-2} d_{i, i+1} \cdot \sin W C B_{i, i+1} \\
& \Delta \Delta N=\left(N_{E}-N_{S}\right)-\sum_{i=0}^{n-2} d_{i, i+1} \cdot \cos W C B_{i, i+1}
\end{aligned}
$$

The linear misclosure:

$$
\Delta L=\sqrt{\Delta \Delta E^{2}+\Delta \Delta N^{2}}
$$

Computation of the closed line traverse

How to correct for the coordinate misclosure?

- coordinate error is caused by the distance observations;
- the accuracy of distance observations is proportional with the distance.

Corrections of the computed coordinate differences:

$$
\begin{aligned}
& v \Delta E_{i, i+1}=\frac{d_{i, i+1} \cdot \Delta \Delta E}{\sum_{i=0}^{n-2} d_{i, i+1}}, \\
& v \Delta N_{i, i+1}=\frac{d_{i, i+1} \cdot \Delta \Delta N}{\sum_{i=0}^{n-2} d_{i, i+1}}
\end{aligned}
$$

Computation of the closed line traverse

Computing the corrected coordinate differences:

$$
\begin{aligned}
& \Delta E_{i, i+1}^{\prime}=\Delta E_{i, i+1}+v \Delta E_{i, i+1} \\
& \Delta N_{i, i+1}^{\prime}=\Delta N_{i, i+1}+v \Delta N_{i, i+1} .
\end{aligned}
$$

Computing the final coordinates:

$$
\begin{aligned}
& E_{i+1}=E_{i}+\Delta E_{i, i+1}^{\prime} \\
& N_{i+1}=N_{i}+\Delta N_{i, i+1}^{\prime}
\end{aligned}
$$

Computation of the inserted traverse

S and E are known, the distances and the deflection angles are measured.

No corrections for the angles (due to the lack of orientations at the endpoints).

Corrections to the distance observations can be computed due to the given endpoints.

Computation of the inserted traverse

The coordinates are computed as a free traverse by using an abritrary starting WCB (WCB*).

Computation of the inserted traverse

Computing the correction to the starting WCB:

$$
\Delta W C B=W C B_{S E}-W C B_{S E^{*}}
$$

Computing the correction to the length of the traverse legs (scale factor):

$$
m=\frac{d_{S E}}{d_{S E^{*}}}
$$

Computation of the inserted traverse

Computing the coordinates as a free traverse using the following values:

$$
\begin{aligned}
& W C B_{S 1}=W C B^{*}+\triangle W C B, \\
& d_{i, i+1}^{\prime}=m \cdot d_{i, i+1} .
\end{aligned}
$$

Localizing blunders in the observations

Distance observations

Compute the WCB of the linear misclosure. The blunder is made most likely on the traverse leg, which has a similar provisional WCB.

Angular observations

If only one blunder occurs in the observations, it can be localized in case of a closed line traverse.

Compute the traverse as a free traverse in the direction of $\mathrm{S}->\mathrm{E}$ and $\mathrm{E}->\mathrm{S}$ as well. The blunder is made at the station, which has similar coordinates in both solutions.

Thank You for Your Attention!

DETERMINATION OF HEIGHTS

Relative height

Adriatic and Baltic height

Theory of levelling

$$
\Delta m=\left(l_{A}+l_{A}^{\prime}\right)-\left(l_{B}+l_{B}^{\prime}\right)
$$

if the level stands same distance from the levelling rods then
$l_{A}^{\prime}=l_{B}$
thus
$\Delta m=l_{A}+l_{A}^{\prime}-l_{B}-l_{B}^{\prime}=l_{A}-l_{B}$

Tilting level (levelling instrument)

Rules of leveling

Automatic
levelling
instrumet

Magassági alappontok

Falitárcsa

Szintezési gomb

Faliłábla

Line levelling

Line levelling measurement log

Point ID	Distance	Reading		Height difference	
		Backsight	Foresight	Rise	Fall
A		0516			1302
K_{1}	60x		1818		
K_{1}		0822		0360	
K_{2}	60x		0462		
K_{2}		1804		1285	
B	58x		0529		
Sum:		3142		1645	1302
Height	ference:	0343		0343	

Profile levelling

Hosszszelvény jegyzőkönyv

Pont jele	Táv. (m)	Lécleolvasások			Maqassáq	
		kôzép	elöre	látsík	pont	
A	0,0	2345			52,345	50,000
2	26,8		0660			51,68
3	60,5		1250			51,10
4	124,8		1530			51,82
$\mathrm{~K}_{1}$				1545		50,800
$\mathrm{~K}_{1}$		0331			51,131	
6	190,0		1880			49,25
7	220,5		1430			49,70
8	265,6		2880			48,25
9	303,4		0250			50,88
$\mathrm{~B}=\mathrm{K}_{2}$	324,82			0111		51,020
$\mathrm{~K}_{2}$	0,0	1216			52,236	
11	38,0		2080			50,16
12	110,0		0630			51,61
13	140,8		0260			51,98
$\mathrm{~B} \equiv \mathrm{~K}_{3}$	154,43			1435		50,801
	$[\mathrm{~h}]$	3892	$[\mathrm{e}]$	3091		
		$\Delta=$	0801		$\Delta=$	0801

Cross-section levelling

Area levelling

Területszintezési jegyzőkönyv

kezdó magasság 8. cövek:
lécleolvasás:
látsík: 151,367 m 151,37 m

Lineáris interpoláció példa területszintezésből szintvonalas térkép készítésére Linear interpolation example for creating a contourline map from area (grid) leveling

$X / 2 \mathrm{~cm}=30 \mathrm{~mm} / 13 \mathrm{~cm}$
$X=30 \mathrm{~mm} * 2 \mathrm{~cm} / 13 \mathrm{~cm}=4,6 \mathrm{~mm}$
$Y=30 \mathrm{~mm} * 11 \mathrm{~cm} / 13 \mathrm{~cm}=25,4 \mathrm{~mm}$
$X+Y=4,6 m m+25,4 \mathrm{~mm}=30 \mathrm{~mm}$

Surveying I.

Setting out straight lines, angles, points in given elevation, center line of roadworks and curves.

Setting out points with geometric criteria:

- straight lines: the points must be on a straight line, which is defined by two marked points;
- horizontal angles: one side of the angle is already set out, the other side should be set out;

Setting out points with defined horizontal coordinates:

- setting out points with defined horizontal coordinates in a local or national coordinate system;
- setting out points with defined elevation (local or national reference system)

Setting out straight lines

Alignment from the endpoint

Alignment (AC' distance is observable)

Alignment (AC' distance is not observable)

$$
\begin{gathered}
c_{1}=\frac{\varepsilon_{1}}{\varepsilon_{1}+\varepsilon_{2}} \cdot c \quad c_{2}=\frac{\varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}} \cdot c \quad c_{1}+c_{2}=c \\
c_{A}^{\circ} \\
c_{0}^{\prime}
\end{gathered}
$$

Alignment (C is located on the extension of $A B$ line)

Set out the extension of the line in Face Left!

Set out the extension of the line in Face Right!

Setting out straight lines

Setting out straight lines

($A C^{\prime}$ and $B C^{\prime}$ distance is observable)

Setting out straight lines

(AC ' and BC^{\prime} distance is NOT observable)

Let's use the formula of the previous case for \mathbf{c}_{1} and $\mathbf{c}_{\mathbf{2}}$!

Setting out straight lines through obstacles

Setting out horizontal angles

Compute ε and measure the distance a.
The linear correction c can be computed using ε and a.

Setting out coordinated points

Setting out coordinated points

1. Tape surveying (offset surveys)
2. Setting out with polar coordinates (radiation)

Offset surveys

The optical square

Offset surveys - computation of chainage and offset

Offset surveys - computation of coordinates

Setting out with polar coordinates (radiation)

Setting out points with given elevation

VI. Setting out the centerline of roadworks

- Given: $S, E, T_{1}, T_{2}, \ldots T_{n}$, and $r_{1}, r_{2}, \ldots r_{n}$,
- 2nd fundamental task: $\quad d_{K 1}, d_{12}, \ldots, d_{n V} \quad \delta_{K 1}, \delta_{12}, \ldots, \delta_{n V}$

Tangent-length: $\quad t_{i}=r_{i} \tan \frac{\varphi_{i}}{2}$
Length of arc: $\quad A_{i}=2 r_{i} \pi \cdot \frac{\varphi_{i}^{\circ}}{360^{\circ}}$

2. Stationing (computation of chainages)

- The station of $S: \quad 0+00$
- Round stations between S and $C S_{1}$
- $C S_{1}$ station: $\quad d_{K 1}-t_{1}$

- $C E_{1}$ station $=C S_{1}$ Station + Length of Arc
- $C E_{1} \ldots C S_{2}$ first round station is S_{1}, the station of $C E_{1}$ should be rounded upwards (amount of rounding is Δ_{1});
- $C S_{2}$ station $=C E_{1}$ station $+d_{12}-\left(t_{1}+t_{2}\right)$
- between $C E_{1}$ and $C S_{2}$ round stations should be computed

- $C E_{n} \ldots E$ section: first station is S_{n}, the value is the upward rounded station of $C E_{n}$
- Station of $E=C e_{n}+\left(d_{n V}-t_{n}\right)$
- Round stations between $C E_{n}$ és E

3. Computing the coordinates of CL points (stations) - along the straight lines

- Coordinates can be computed based on the distance between the traverse points (Ti) and the WCB between the traverse points.

4. Setting out the CL points:

- Using polar setting out (radiation) from the traverse points.

5. The setting out of principal points on the curves:

Measure the tangent length from T! Thus the CS and CE points can be found:

$$
t=r \tan \frac{\varphi}{2}
$$

With the distance \boldsymbol{T} - $\boldsymbol{C M}$ the points CM can be found:

$$
\mathrm{d}_{\mathrm{T}-\mathrm{CM}}=\mathrm{r} / \cos (\phi / 2)-\mathrm{r}
$$

Curve length can be calculated from:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{arc}}=\mathrm{r} * \phi_{\mathrm{rad}} \\
& \text { where: } \\
& \phi_{\mathrm{rad}}=\phi / 180^{*} \mathrm{p}
\end{aligned}
$$

5. The setting out of principal points on the curves:

Measure the tangent length from T! Thus the CS and CE points can be found:

$$
t=r \tan \frac{\varphi}{2}
$$

With the distance \boldsymbol{c} the points A and and B can be found:

$$
c=r \tan \frac{\varphi}{4}
$$

CM is exactly between A and B.

5. The setting out of principal points on the curves:

The point CM can be set out from the chord CS$C E$:

$$
\begin{aligned}
& y=r \sin \frac{\varphi}{2} \\
& x=r-r \cos \frac{\varphi}{2}
\end{aligned}
$$

5. The setting out of principal points on the curves:

When T is not suitable for

observations, then the points A^{\prime} and B^{\prime} are set out.

The distance $\quad e=A^{\prime} B^{\prime}$ is measured, And the complementer angle of α and β.

The distances $A^{\prime} T$ and B^{\prime} are computed (sine-theorem)

The a' and b' distances are computed, and the points CS and CE are computed.
6. Setting out the detail points on the curves

Detail points with equal distance:

$$
\begin{aligned}
& \alpha^{\prime}=\frac{\varphi}{n} \\
& y_{k}=r \sin k \alpha^{\prime} \\
& x_{k}=r-r \cos k \alpha^{\prime}
\end{aligned}
$$

Detail points with equal Δy diff.:

$$
\begin{aligned}
\Delta y & =\frac{y_{I V}}{n}=\frac{r \sin \varphi}{n} \\
y_{k} & =k \cdot \Delta y \\
x_{k} & =r-\sqrt{r^{2}-y_{k}^{2}}
\end{aligned}
$$

