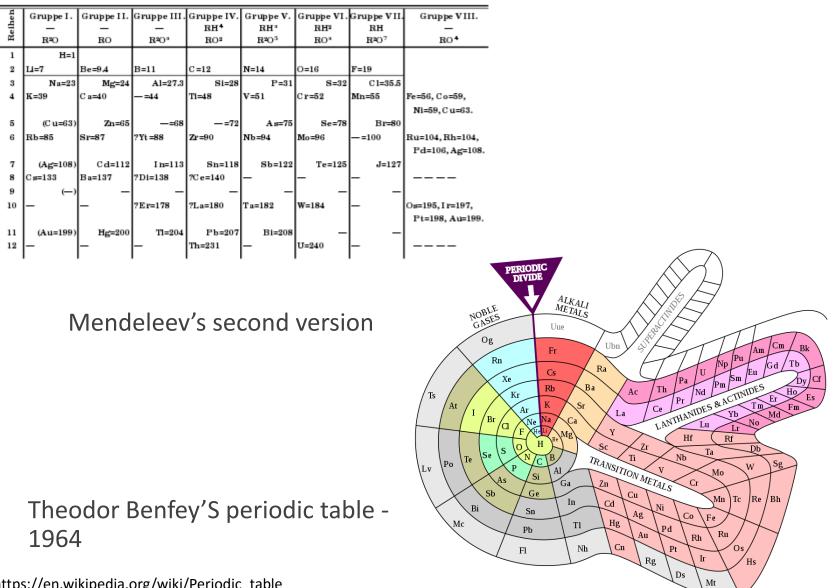
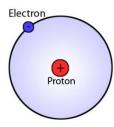

Periodic table of elements

https://en.wikipedia.org/wiki/Periodic_table

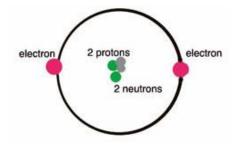

DMITRI MENDELEEV – RUSSIAN CHEMIST, PHYSICIST

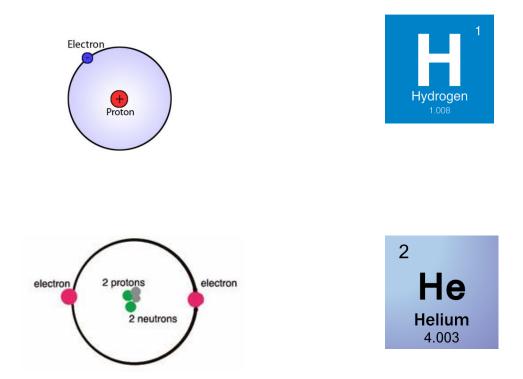
AN ATTEMPT TOWARDS THE CHEMICAL CONCEPTION OF THE ETHER

https://en.wikipedia.org/wiki/Periodic_table

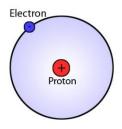


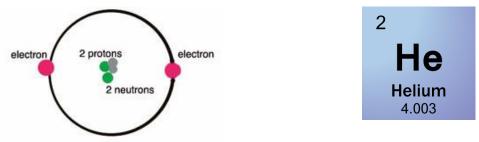
https://en.wikipedia.org/wiki/Periodic table


										iodic t									
		2 Alkaline earth metals	3		4	5	6	7	8	9	10	11	12	13	14	15 Pnicto- gens	16 Chalco- gens	17 Halo- gens	18 Noble gases
eriod 1	Hydro- gen 1 H																		He- lium 2 He
2	Lith- ium 3 Li	Beryl- lium 4 Be												Boron 5 B	Carbon 6 C	Nitrogen 7 N	Oxygen 8 O	Fluorine 9 F	Neor 10 Ne
3	So- dium 11 Na	Magne- sium 12 Mg												Alumin- ium 13 Al	Silicon 14 Si	Phos- phorus 15 P	Sulfur 16 S	Chlorine 17 Cl	Argo 18 Ar
4	Potas- sium 19 K	Calcium 20 Ca	Scan- dium 21 Sc		Tita- nium 22 Ti	Vana- dium 23 V	Chrom- ium 24 Cr	Manga- nese 25 Mn	Iron 26 Fe	Cobalt 27 Co	Nickel 28 Ni	Copper 29 Cu	Zinc 30 Zn	Gallium 31 Ga	Germa- nium 32 Ge	Arsenic 33 As	Sele- nium 34 Se	Bromine 35 Br	Kryp ton 36 Kr
5	Rubid- ium 37 Rb	Stront- ium 38 Sr	Yttrium 39 Y		Zirco- nium 40 Zr	Nio- bium 41 Nb	Molyb- denum 42 Mo	Tech- netium 43 Tc	Ruthe- nium 44 Ru	Rho- dium 45 Rh	Pallad- ium 46 Pd	Silver 47 Ag	Cad- mium 48 Cd	Indium 49 In	Tin 50 Sn	Anti- mony 51 Sb	Tellur- ium 52 Te	Iodine 53 I	Xeno 54 Xe
6	Cae- sium 55 Cs	Barium 56 Ba	Lan- thanum 57 La	*	Haf- nium 72 Hf	Tanta- lum 73 Ta	Tung- sten 74 W	Rhe- nium 75 Re	Os- mium 76 Os	Iridium 77 Ir	Plat- inum 78 Pt	Gold 79 Au	Mer- cury 80 Hg	Thallium 81 Tl	Lead 82 Pb	Bismuth 83 Bi	Polo- nium 84 Po	Astatine 85 At	Rado <mark>86</mark> Rn
7	Fran- cium 87 Fr	Radium 88 Ra	Actin- ium 89 Ac	**	Ruther- fordium 104 Rf	Dub- nium 105 Db	Sea- borgium 106 Sg	Bohr- ium 107 Bh	Has- sium 108 Hs	Meit- nerium 109 Mt		Roent- genium 111 Rg		Nihon- ium 113 Nh	Flerov- ium 114 Fl	Moscov- ium 115 Mc	Liver- morium 116 Lv	Tenness- ine 117 Ts	Oganesso 118 Og
				*	Cerium 58 Ce	Praseo- dymium 59 Pr	Neo- dymium 60 Nd		Sama- rium 62 Sm	Europ- ium 63 Eu	Gadolin- ium 64 Gd	Ter- bium 65 Tb	Dyspro- sium 66 Dy	Hol- mium 67 Ho	Erbium 68 Er	Thulium 69 Tm	Ytter- bium 70 Yb	Lute- tium 71 Lu	
				**	Thor- ium 90 Th	Protac- tinium 91 Pa	Ura- nium 92 U	Neptu- nium 93 Np	Pluto- nium 94 Pu	Ameri- cium 95 Am	Curium 96 Cm	Berkel- ium 97 Bk	Califor- nium 98 Cf	Einstei- nium 99 Es	Fer- mium 100 Fm	Mende- levium 101 Md	Nobel- ium 102 No	Lawren- cium 103 Lr	

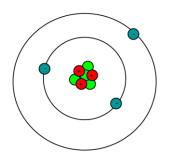

black=solid green=liquid red=gas gray=unknown Color of the atomic numbershows state of matter(at 0 °C and 1 atm)													
Primordial From decay Synthetic Border shows natural occurrence of the element													
Background color shows subcategory in the metal–metalloid–nonmetal trend:													
		Me	etal					Nonmetal		Unknown			
Alkali metal	Alkaline earth metal	Lanthanide	Actinide	Transition metal	Post- transition metal	Metalloid	Polyatomic nonmetal	Diatomic nonmetal	Noble gas	chemical properties			

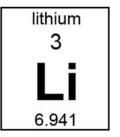
https://en.wikipedia.org/wiki/Periodic_table



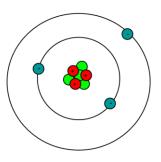


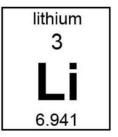
Hydrogen: 1 proton, 1 electron





Helium: 2 electrons, 2 protons, 2 neutrons




The first energy level can hold a maximum of 2 electrons

Lithium: 3 electrons, 3 protons, 4 neutrons

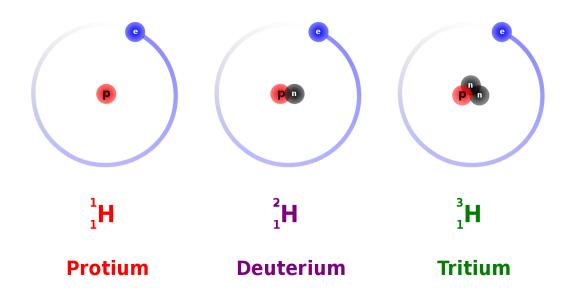
On the outher level (shell) 1 electron: the Li element is placed in the 1st Group of the periodic table

Atomic number and atomic mass

AMU: atomic mass units: one twelwth of the mass of a carbon-12 atom (1AMU = $1.66053904 \times 10^{-27}$ kilograms)

Unified atomic mass: aproximately the mass of one nucleon (proton or neutron)

S: 32 protons + neutrons

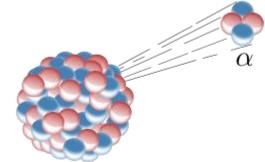

Fe: 56 protons + neutrons

Isotopes

Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom.

Isotopes

Isotopes are variants of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons in each atom.

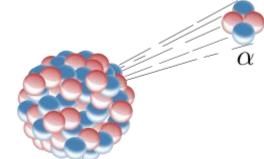


Radioactive isotope

Radioactive decay is the process by which an unstable atomic nucleus loses energy by emitting radiation, in form of an alpha particle, beta particle, neutrino. A material containing such unstable nuclei is considered radioactive

for example: alpha decay

 $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$

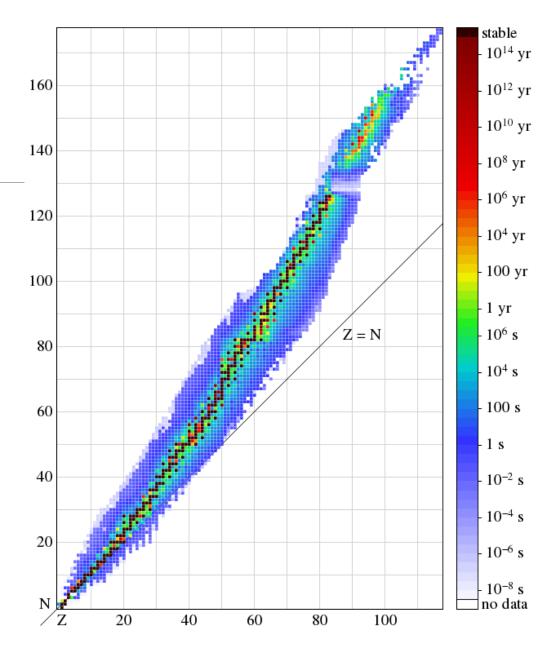

Radioactive isotope

Radioactive decay is the process by which an unstable atomic nucleus loses energy by emitting radiation, in form of an alpha particle, beta particle, neutrino. A material containing such unstable nuclei is considered radioactive

for example: alpha decay

$${}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$$

$${}^{238}_{92}U \rightarrow {}^{234}_{90}Th + {}^{4}_{2}He$$



Stable isotopes

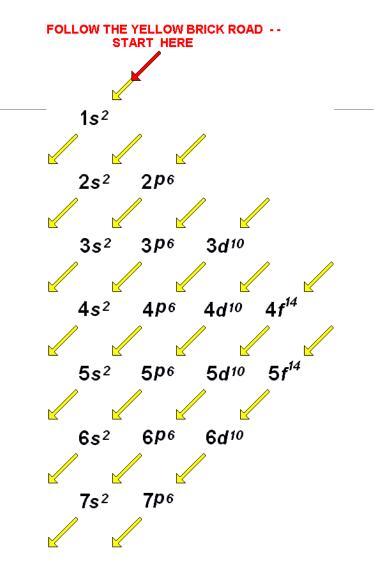
Primordial isotopes

- □ Stable isotopes: **non-radioactive** isotopes
 - an element can have more then one stable isotope
 - eg. ³⁵Cl and ³⁷Cl
 - Hydrogen and Deuterium
 - □ different stable isotopes show similar chemical properties
- Primordial isotopes: nuclides found on Earth that have existed in their current form since before Earth was formed
 - were formed in the Big Bang
 - they are the stable nuclides plus the long-lived fraction of radionuclides (half-life longer than the age of the Earth: 4.6 billion years)
 - only 286 such nuclides are known (253 + 33)

Nuclides

Periodically changing characteristics

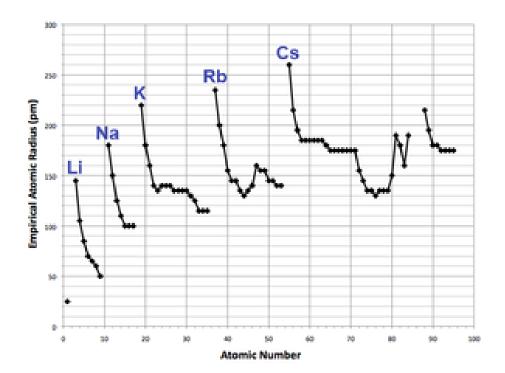
- Electron configuration
- Atomic radii
- Ionization energy
- Electronegativity
- Electron affinity
- Metallic character
- Linking or bridging groups


Electron configuration

organization of electrons on electron shells

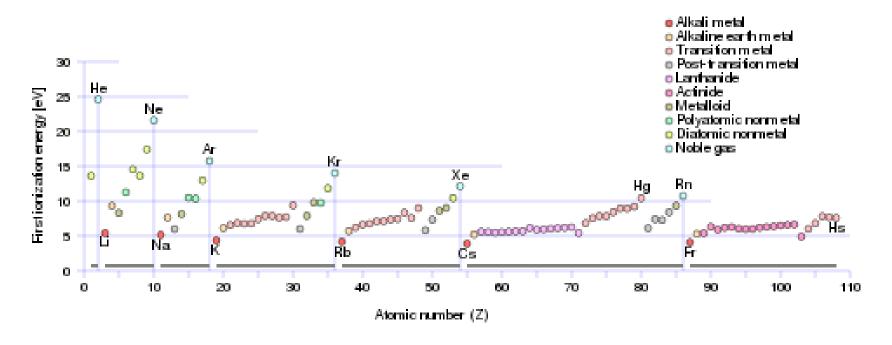
the number of electrons and shells is increasing with the number of rows, and columns

the filling up of the electron shells and subshells with electrons takes place according to the Madelung rule


❑ shells/subshells/nr. of electrons on a shell → see Quantum mechanical atomic modell

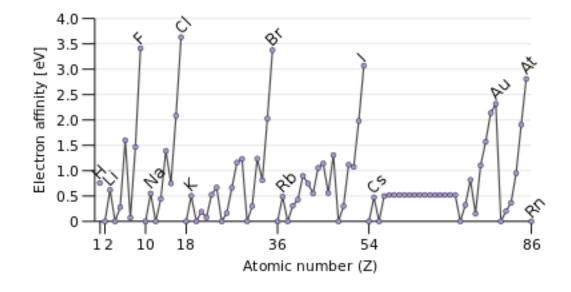
Atomic radius

- decrease along the period
- increase along each group
- I provide important evidence for the Quantum theory

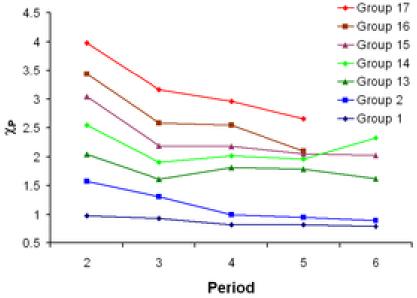

it is explained by the weak interaction between the nucleus and the electron shell (the characteristics of the electron shell – subshells/nr of electrons on shells energy levels – affect the interaction between the nucleus and the electron shell)

Ionization energy

□ the first ionization energy is the necessary energy for removing one electron from the electron shell (second for removing a second electron)

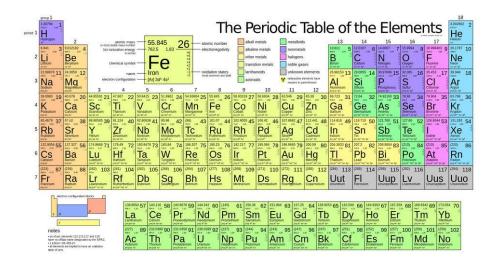

great jumps occur at ionizing the noble gas atoms

Electron affinity


the amount of the energy released, when an electron is added to the neutral atom to form a negative ion

when a shell is completed, the amount of released energy is increased

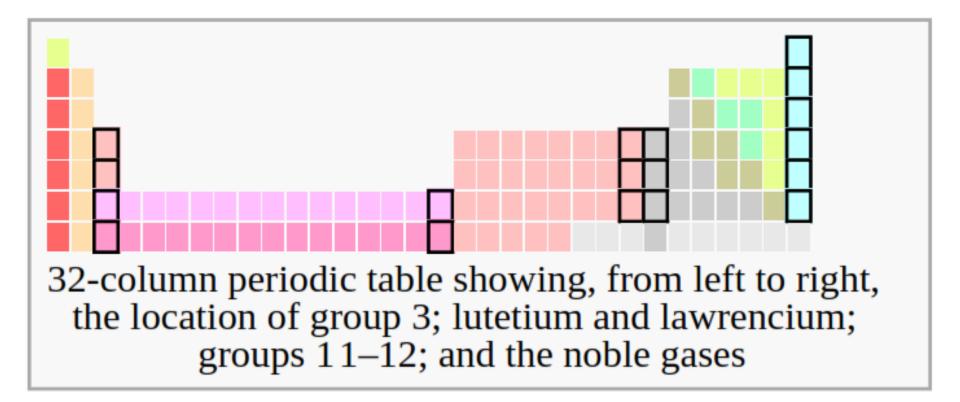
Electronegativity

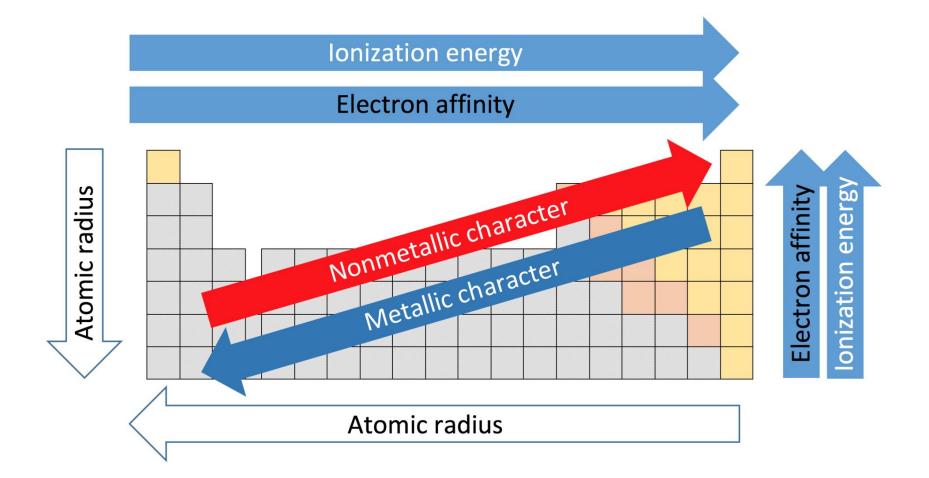

- □ is the tendency of an atom to attract electrons
- □ affected by the **atomic radii** and the **number of electrons**
- affected by the number of electrons on the last shell valence electrons
- F is the most electronegative
- Cs is the least electronegative

Metallic character

- the lower is the
 - electronegative character
 - electron affinity

the more METALLIC character the element has

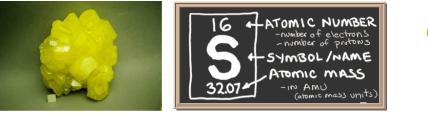

										iodic t									
		2 Alkaline earth metals	3		4	5	6	7	8	9	10	11	12	13	14	15 Pnicto- gens	16 Chalco- gens	17 Halo- gens	18 Noble gases
eriod 1	Hydro- gen 1 H																		He- lium 2 He
2	Lith- ium 3 Li	Beryl- lium 4 Be												Boron 5 B	Carbon 6 C	Nitrogen 7 N	Oxygen 8 O	Fluorine 9 F	Neor 10 Ne
3	So- dium 11 Na	Magne- sium 12 Mg												Alumin- ium 13 Al	Silicon 14 Si	Phos- phorus 15 P	Sulfur 16 S	Chlorine 17 Cl	Argo 18 Ar
4	Potas- sium 19 K	Calcium 20 Ca	Scan- dium 21 Sc		Tita- nium 22 Ti	Vana- dium 23 V	Chrom- ium 24 Cr	Manga- nese 25 Mn	Iron 26 Fe	Cobalt 27 Co	Nickel 28 Ni	Copper 29 Cu	Zinc 30 Zn	Gallium 31 Ga	Germa- nium 32 Ge	Arsenic 33 As	Sele- nium 34 Se	Bromine 35 Br	Kryp ton 36 Kr
5	Rubid- ium 37 Rb	Stront- ium 38 Sr	Yttrium 39 Y		Zirco- nium 40 Zr	Nio- bium 41 Nb	Molyb- denum 42 Mo	Tech- netium 43 Tc	Ruthe- nium 44 Ru	Rho- dium 45 Rh	Pallad- ium 46 Pd	Silver 47 Ag	Cad- mium 48 Cd	Indium 49 In	Tin 50 Sn	Anti- mony 51 Sb	Tellur- ium 52 Te	Iodine 53 I	Xeno 54 Xe
6	Cae- sium 55 Cs	Barium 56 Ba	Lan- thanum 57 La	*	Haf- nium 72 Hf	Tanta- lum 73 Ta	Tung- sten 74 W	Rhe- nium 75 Re	Os- mium 76 Os	Iridium 77 Ir	Plat- inum 78 Pt	Gold 79 Au	Mer- cury 80 Hg	Thallium 81 Tl	Lead 82 Pb	Bismuth 83 Bi	Polo- nium 84 Po	Astatine 85 At	Rado <mark>86</mark> Rn
7	Fran- cium 87 Fr	Radium 88 Ra	Actin- ium 89 Ac	**	Ruther- fordium 104 Rf	Dub- nium 105 Db	Sea- borgium 106 Sg	Bohr- ium 107 Bh	Has- sium 108 Hs	Meit- nerium 109 Mt		Roent- genium 111 Rg		Nihon- ium 113 Nh	Flerov- ium 114 Fl	Moscov- ium 115 Mc	Liver- morium 116 Lv	Tenness- ine 117 Ts	Oganesso 118 Og
				*	Cerium 58 Ce	Praseo- dymium 59 Pr	Neo- dymium 60 Nd		Sama- rium 62 Sm	Europ- ium 63 Eu	Gadolin- ium 64 Gd	Ter- bium 65 Tb	Dyspro- sium 66 Dy	Hol- mium 67 Ho	Erbium 68 Er	Thulium 69 Tm	Ytter- bium 70 Yb	Lute- tium 71 Lu	
				**	Thor- ium 90 Th	Protac- tinium 91 Pa	Ura- nium 92 U	Neptu- nium 93 Np	Pluto- nium 94 Pu	Ameri- cium 95 Am	Curium 96 Cm	Berkel- ium 97 Bk	Califor- nium 98 Cf	Einstei- nium 99 Es	Fer- mium 100 Fm	Mende- levium 101 Md	Nobel- ium 102 No	Lawren- cium 103 Lr	

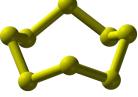

black=solid green=liquid red=gas gray=unknown Color of the atomic numbershows state of matter(at 0 °C and 1 atm)													
Primordial From decay Synthetic Border shows natural occurrence of the element													
Background color shows subcategory in the metal–metalloid–nonmetal trend:													
		Me	etal					Nonmetal		Unknown			
Alkali metal	Alkaline earth metal	Lanthanide	Actinide	Transition metal	Post- transition metal	Metalloid	Polyatomic nonmetal	Diatomic nonmetal	Noble gas	chemical properties			

https://en.wikipedia.org/wiki/Periodic_table

Linking or bridging groups

□ show characteristics in-between the two blocks that link

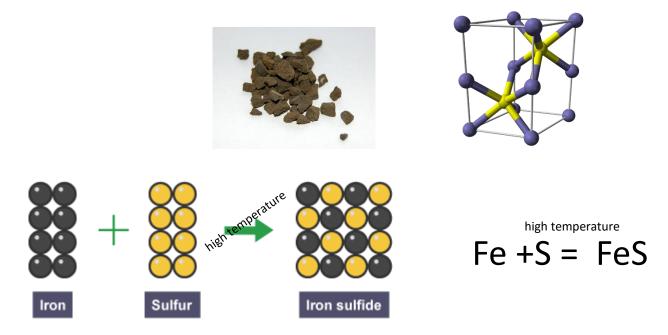

Elements, compounds, mixtures


Elements

Element: a chemical element is a species of atom having the same number of protons in their atomic nuclei (that is, the same atomic number, or Z)

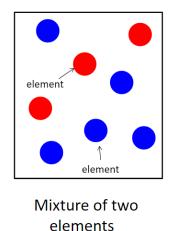
Example: sulphur (S), iron (Fe).

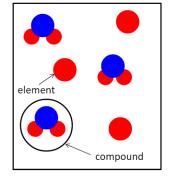
All elements have a symbol



Compounds

Compounds: more than one element, **chemically combined** in a fixed number


for separating them we need chemical reactions


Mixtures

Mixture: different elements not chemically combined together

MIXTURE

Combination of elements and/or compounds

Mixture of an element and a compound

for separation we use physical methods (filtration, chrystallization, distillation)