Crystallographic defects

Ideal crystals versus real crystals

Ideal crystal: a single crystal with perfectly regular lattice, without defects, without impurities

3D infinite structure of perfectly arranged atoms Real crystals: show defects or irregularities, that affect their macroscopic characteristics

At tempertures other than0 K, no ideal crystals exist!

Crystal defects

the perfect arrangement of a crystal gives the lowest energy, thus it should be the most stable structure

□ however stability is determined by the free energy:

A = U - TS

A – Helmholtz free energy

U – internal energy (equal to the lattice energy), Joule

T – temperature, Kelvin

S – entrophy, Joule/Kelvin

□ A will be influenced by: *U*, and *TS*.

□ at *T***=0K**, S will be 0, and A=U, both will be minimized

□ in all the other cases, where T≠OK, S tends to increase, minimizing A, but increasing U, thus an equilibrium has to be achieved, where the entropy will be non-zero - THUS THE CRYSTAL IMPERFECT

Crystal defects

- creation of a defect costs energy, but increases the entropy
- defects will be created, untill the free Helmholtz energy will reach its minimum
- the imperfections of a crystal thermodynamically
 STABILIZES the system

Properties

Crystal defect influence:

- structural properies
- electrical properties
- chemical properties
- scattering properties
- thermodynamic properties

Classification

O-dimensional defects POINT DEFECTS

- vacancy
- interstitial
- substitutional

1-dimensional defects LINE DEFECTS

- edge dislocation
- screw dislocation

2-dimensional defects PLANE DEFECTS

- grain boundary defects
- stacking faults

occur at or around a single lattice point

□ vibrational energy of the atoms makes possible the breaking of the bounding, allowing the movement of the atoms. Once the atoms are free, point defects can be formed

types:

vacancy

- self-interstitial atoms
- interstitial impurity atoms
- substitution impurity atoms

Vacancy: missing of an atom/ion from the lattice point

properties:

- missing atom from a lattice point
- atoms around the vacancy displaced
- produced tensile stress

determined by:

- temperature as the temperature increasing, the number of vacancies is increasing
- □ the number of atoms / unit cell
- the energy that is required for creating a vacancy (specific to the substance)

effect: DIFFUSION in crystals, that would not be possible without the existence of vacancies. Ee. grain boundary diffusion under environmental effects, such as stress, pressure etc.

Equilibrium concentration of vacancies depends on the **temperature**

$$\frac{N_V}{N} = exp\left(-\frac{Q_V}{k\ T}\right)$$

 N_{v} – number of defects

N – number of possible defect sites

 Q_{v} – activation energy

- k Boltzmann constant (1.38·10⁻²³ J/K)
- T temperature (K)

Schottky defects: a vacancy is created by the migration of an atom/ion to the surface of the crystal

□ is dominant in the case of the closest packed structures (migration of **ion pairs** in ionic crystals)

depends on the total number of ion pairs (mass of the crystal), temperature, average energy that is needed for the creation of defect

Interstitial defects: when an atom is removed from its "original" place, and occupies a place between lattice points

- when the atom is the "own" atom, it is called selfinterstitial
- when an "outer" atom occupies a place between the lattice points, it is called **impurity interstitial**

- □ Frenkel defects: an atom/ion leaves its regular site and occupies a nearby space. Such atoms are called interstitial atoms
- the number of interstitials and vacancies will be equal
- \Box prevalent in crystals of silver-halid type: AgCl₂, CaF₂

□ Shottky and Frenkel defects are found together in ionic crystals, helping to maintain the neutrality of the crystal

Substitutional defects: an impurity atom is incorporated at a regular atomic site

□ in case of ionic crystals, the charge balance will be disturbed, that will have the effect of formation of a vacancy or the change of the oxidation state of one of the ions of the lattice

without or with distortion of the crystal

Substitutional defects

e.g.: Ag⁺ changed with Cd²⁺ in the AgCl lattice will be followed by a vacancy formation, and substitution of Ni²⁺ by Li⁺ in the NiO lattice will change the oxidation state of a Ni²⁺ ion to Ni³⁺

Ag⁺	CI-	Ag+	CI
CI-	Cd ²⁺	CI-	Ag⁺
Ag+	CI-		CI-
CI-	Ag+	CI-	Ag⁺
va	cancy prod	luced by	
C	d2+ substit	tution	

Ni ²⁺	O ²⁻	Ni ²⁺	O ²⁻
O ²⁻	Ni ³⁺	O ²⁻	Ni ²⁺
Ni ²⁺	O ²⁻	Li+	O ²⁻
O ²⁻	Ni ²⁺	O ²⁻	Ni ²⁺
vale	nce defe	ect produ	iced
b	y Li⁺ su	bstitutio	n

Imperfections in ionic type crystals

charge balance must be maintained

Point defects in metals

□ A – host atom, B – impurity

1 type: solid solution of B in A

Point defects in metals

□ A – host atom, B – impurity

2 type: solid solution of B in A, plus second phase material is formed (usually for a larger amount of B)

- Second phase particle
- -- different composition
- -- often different structure

Colour centres

- an anionic vacancy is filled up with one or more unpaired electrons
- typical to metallic-oxides and ionic crystals (NaCl)
- electrons in such vacancy tend to absorb visible light colours the crystal

- a discontinuity (dislocation) in the regular structure of the crystal in 1D is called line defect
- □ it produces a **boundary** between two sides
- AFM image of a dislocation line in hexagonal SiC

types:

- edge dislocation
- screw dislocation

Edge dislocation: insertion (or removal) of an extra half plane among the lattice planes

□ ionic and covalent crystals can present edge dislocations

- edge dislocation
- Burgers vector: perpendicular to the dislocation line
- Movement of an edge dislocation

Movement of an edge dislocation: effect of shear stress

Dislocation density = total dislocation length/unit volume

Processes that increas the dislocation density:

- cold rolling
- cold forging

- large amount of dislocations are forming

Screw dislocation: transformation of successive atomic planes due to shear stress

□ the crystal "is cut", then the cut part is sheared

Screw dislocation

Burgers vector is parallel to the dislocation line

Screw dislocation

SCREW DISLOCATION

Effects of line defects

- □ they are the basis for **plastic deformations**
- as soon a shear stress is applied on a crystal and critical value is achieved, dislocations start moving
- many dislocations are necessary to cause macroscopic deformation
- as soon the dislocation reached the surface, the crystal is freed from stress caused by the dislocation
- strength of the materials are related to dislocations and defects in the crystal

two dimensional defects

they are introduced in the crystal during mechanical and thermal treatments

types:

- grain boundary
- tilt boundary
- twin boundary
- stacking faults

□ Grain boundary: general planar defect, separates grains with different crystallographic orientation inside a polycrystalline material

policrystallites are the results of uneven growth of the crystals

Tilt boundaries: there is an angle between two crystallites, but the distortion is not so drastic

Called also low angle boundary

It can be described as a set of parallel edge dislocations

- Twin boundaries: the atomic arrangement on one side of the boundary is the mirror of the arrengement of the other side
- the whole volume is called a twin
- □ the plane is called: twinning plane

High and low angle boundaries

Stacking faults: appear in closed packed structures (but not only), especially in fcc and in close packed hexagonal structutres. It is a disorder of the layers

They occur as an effect of crystal growing and they are dislocation of dislocations

the CBA order will be disturbed

Diffusion in solids

moving of the defects in a crystal will result in diffusion of vacancies, ions, planes, lines inside the crystal

□ it is a thermally activated transport of the matter

□ it is responsible for several important processess, like the solid state reactions

examples:

- addition of C to Fe to produce Steel
- addition of Cu to Ni to make **thermocouple wires**
- □ addition of Cr to Fe for **increasing the corrosion resistance**
- introduction of grain boundaries to strenghten materials

Solid construction materials

Solid construction materials

Natural stones (aggregates)	Artificial rocks	
Inorganic binders	Metals	
Gypsum	Plastics	
Cement	Wood	
Mortar	Bitumen and asphalt	
Concrete	Insulator materials	
Ceramics	Pigments, paints	
Glass		

Natural stones (rocks)

Natural aggregates of one or more **minerals** (chemical compounds)

Formed of homogeneous solid grains held together with chemical bonds

Mylonitic Dunite (7mm view field, optical microscope)

Natural stones (rocks)

Formation of rocks:

- sedimentation
- crystallization from melt or magma
- metamorphic rocks (subjected to different processes)

Geologically classified according to chemical composition, texture, grain size, permeability

Main constituent of the natural mineral rocks is: silica $SiO_2 - 74\%$ of the Earth crust

Natural stones Sandstone

- may have any color due to impurities
- composed of quartz or feldspar

Quartz (SiO₂) -

- trigonal or hexagonal

Feldspar (KAlSi₃O₈ – NaAlSi₃O₈ – CaAl₂Si₂O₈)

- triclinic or monoclinic

Natural stones Limestone

Limestone: sedimentary rock, composed of calcite, aragonite and dolomite

Calcite: CaCO₃

- unit cell: trigonal
- colorless, white etc
- granular
- hardness: 3 (Mohs)
- brittle
- soluble in dilute acids

Natural stones - limestone

Limestone

Aragonite: CaCO₃

- unit cell: orthorombic
- colorless, white etc
- hardness: 3.5-4 (Mohs)
- soluble in dilute acids
- brittle

Natural stones - limestone

Limestone

Dolomite: CaMg(CO₃)₂

- unit cell: trigonal
- white, grey etc
- hardness: 3.5-4 (Mohs)
- less soluble in dilute acids
- brittle

Definition: those amorphous materias that undergo glass-transition are called glasses

Glass-liquid transition

Reversible process between glassy-rubbery state, according to the temperature change

Glass transition temperature is lower than the melting point

Construction glasses:

- soda-lime silicate glass (flat glasses, etc.)
- borosilicate glass (firing resistant glass)

Constituents of soda-lime silicate glass:

- silica matrix: melted at 1600°C, rapid cooling: amorphous silica glass
- additives:
 - soda (Na₂O) in the form of soda ash (Na₂CO₃) lowers the melting point by about 500°C but leaves the glass soluble in water
 - lime (CaO) in the form of limestone, calcium carbonate (Ca₂CO₃) makes the glass insoluble and widens its working range.
 - dolomite, which adds some magnesium oxide (MgO), and a number of other metal oxides in small quantities to control the melting point, working range and colour
- broken glass (CULLET) improve the heat transfer

- 75% silicon dioxide (SiO₂)
- sodium oxide (Na₂O)
- sodium carbonate (Na₂CO₃)
- lime (CaO)
- several minor additives

transparent to visible light

non-soluble, resistant to chemical attack

Borosilicate glasses:

70% silica
10% boric oxide
8% sodium oxide
8% potassium oxide
1% calcium oxide.

Coatings can be applied

- low emissivity glass (increases the insulation)
- deposition of fluorinated tin oxide (sprayed)
- sputtering: silver layer with stabilizing coating
- these coatings modify the emissivity of the glass, while remain transparent to the visible light
- disadvantage: focusing effect, lock of the radio frequency

Shandong Jingcheng Glass Technology Co.,Ltd.

Colouring:

- addition of colouring ions
- colouring inclusions: bone ash, SnO₂, As, Sb
- precipitation of nanometer sized colloids (gold, selenium)
- dichroic dyes (organic)

- solar-control glass: solar energy: 47% visible light, 50% short IR radiation, 3%
 UV. For cold climate: low-e glasses are the solution, but for hot climates the coatings are designed such that they reflect the IR back into the environment
- self cleaning glass:
 - liquid applied coatings, made the glass hydrofobic
 - super hydrophylic strategy: TiO₂ coating: lowering the surface tension, the water wets the surface totally, and the titanium dioxide can act as a catalyst under UV light, breaking the organic dirt's bonding

 solar-control glass: solar energy: 47% visible light, 50% short IR radiation, 3% UV. For cold climate: low-e glasses are the solution, but for hot climates the coatings are designed such that they reflect the IR back into the environment

self cleaning glass:

- liquid applied coatings, made the glass hydrofobic
- super hydrophylic strategy: TiO₂ coating: lowering the surface tension, the water wets the surface totally, and the titanium dioxide can act as a catalyst under UV light, breaking the organic dirt's bonding

Float glass process

