Non destructive methods for materials testing

Tests for checking quality of concrete

- □ to establish whether the concrete **has attained a sufficient strength** or concrete has set sufficiently for stressing, opening to traffic etc. .
- to detect the variation of quality of concrete being supplied for a given specification
 - **specific purposes**: status (consistency survey) and research aims
 - □ locate a destroyed part for further investigations
 - Iocate corrosion processes
 - Iocate cracks etc.

Tests on fresh concrete

Workability Tests (e.g. slump test)

- Bleeding
- Air content
- Setting time
- Segregation resistance
- Unit weight
- Wet analysis
- Temperature
- Heat generation

Tests on hardened concrete

- Compressive strength (cylinder, cube, core)
- Tensile strength: Direct tension
- Modulus of rupture
- Indirect (splitting) test
- Density
- Shrinkage
- Creep resistance
- Modulus of elasticity
- Absorption

- Tests on hardened concrete
 - Permeability Tests on Concrete
 - Freeze/thaw resistance
 - □ Resistance to aggressive chemicals
 - Resistance to abrasion
 - Bond to reinforcement
 - Analysis for cement content and proportions

In situ tests: Schmidt Hammer, Concrete pullout, break-off, cones etc.

Ultrasonic, georadar, nuclear

DESTRUCTIVE

Compressive strength test and slump test in practice for quality control because:

1. All or most other properties of concrete are related to its compressive strength.

2. CS is the **easiest**, most economical or **most accurately** determinable test.

3. CS is the best means available to determine the variability of concrete.

4. Slump tests also checks for variation of construction materials in mix, mainly water-cement ratio.

5. Slump test is **easy and fast to determine quality of concrete before placement based**

6. Slump test is **most economical** because it is done at site and does not require any laboratory or expensive testing machine.

7. Slump tests: **rejected mix can be discarded** before pouring into the structural member.

NON-DESTRUCTIVE

Schmidt hammer

Concrete pull-off

Ultrasonic

Georadar

Nuclear (X-ray, neutron)

Compressive strength test

Compressive strength of concrete depends on water-cement ratio, cement strength, quality of additives etc

Cylinder

- size: 15 cm x 30 cm
- PROCEDURE:
 - Cast the cylinder and cure for 28 days.
 - Takeout the specimen from the curing tank.
 - □ Wipe out the excess water from the surface of specimen.
 - Place the specimen vertically on the platform of compression testing machine.
 - □ Apply the load continuously and uniformly without shock at the rate of 315 kN/min. And continue the loading until the specimen fails.
 - Record the maximum load taken.

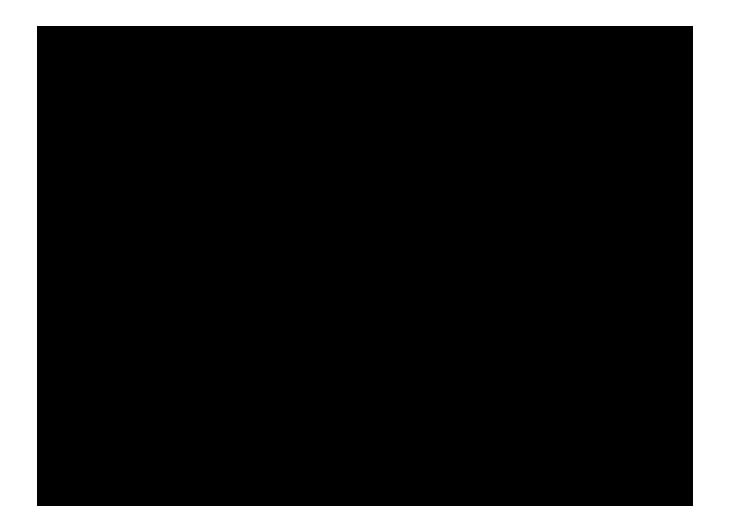
Compressive strength test

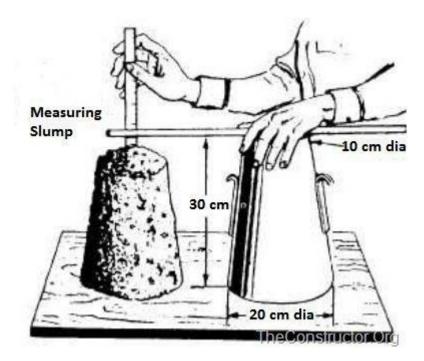
🗌 Cube

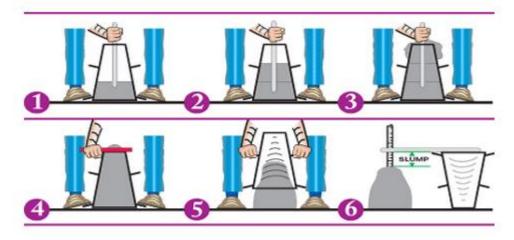
specimens of 15 cm X 15 cm X 15 cm or

specimens of 10 cm X 10 cm x 10 cm depending upon the size of aggregate are used

STEPS:


- poured in the mould and tempered properly so as not to have any voids
- after 24 hours moulds are removed and test specimens are put in water for curing
- tested by compression testing machine after 7 days curing or 28 days curing. Load should be applied gradually at the rate of 140 kg/cm² per minute till the Specimens fails. Load at the failure divided by area of specimen gives the compressive strength of concrete.

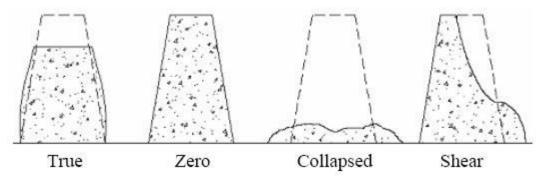

Compressive strength test

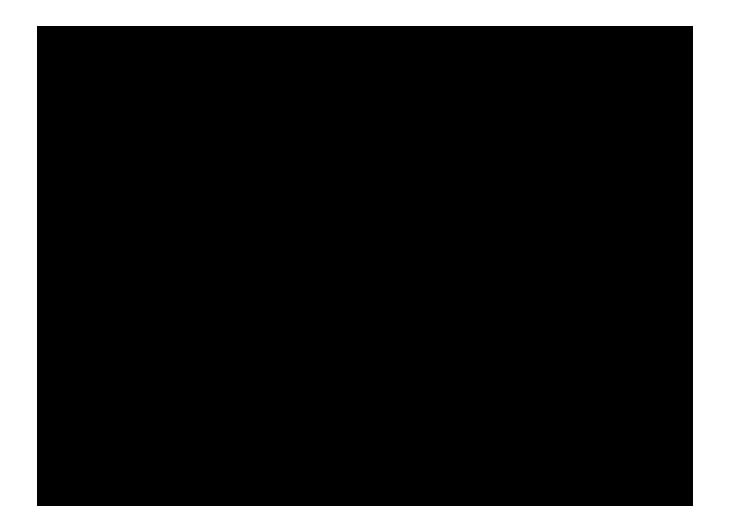

- determine the workability or consistency of concrete mix
- concrete slump value indicates water-cement ratio, but there are various factors including properties of materials:
 - mixing methods, dosage, admixtures
 - material properties like chemistry, fineness, particle size distribution
 - size, texture, cleanliness and moisture content of the aggregates,
 - moisture content and temperature of cementitious materials
 - air content of concrete
 - temperature of the concrete
 - sampleing of concrete, slump-testing technique and the condition of test equipment
 - amount of free water in the concrete
 - □ time since mixing of concrete at the time of testing.

device

Device:

- □ **Clean** the internal surface of the mould and **apply oil**.
- □ **Fill the mould** with the prepared concrete mix in 4 approximately equal layers.
- □ Tamp each layer with 25 strokes of the rounded end of the tamping rod in a uniform manner over the cross section of the mould. For the subsequent layers, the tamping should penetrate into the underlying layer.
- Remove the excess concrete
- □ **Raise the mould** from the concrete immediately and slowly in vertical direction.
- Measure the slump as the difference between the height of the mould and that of height point of the specimen being tested.




True Slump – True slump is the only slump that can be measured in the test

Zero Slump – Zero slump is the indication of very low water-cement ratio, which results in dry mixes. These type of concrete is generally used for road construction

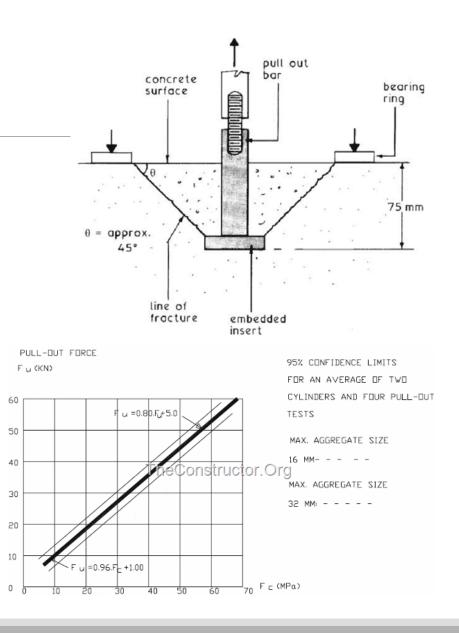
Collapsed Slump – This is an indication that the water-cement ratio is too high, i.e. concrete mix is too wet or it is a high workability mix, for which a slump test is not appropriate.

□ Shear Slump – The shear slump indicates that the result is incomplete, and concrete to be **retested**.

Schmidt hammer

The hammer hits the surface with a chosen energy. The measure of the rebound is related to the hardness of the surface

Depends on:

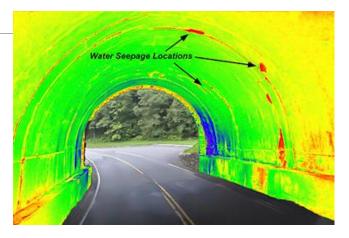

- where it is done (sample or wall)
- wall thickness
- number of repetitions (min. 15)
- Characteristics
 - Estimates the compressive strength
 - Calculated according to an empirical relation
 - Need of a calibration curve
 - Easy, cheap
 - Non-absolute, only indicative

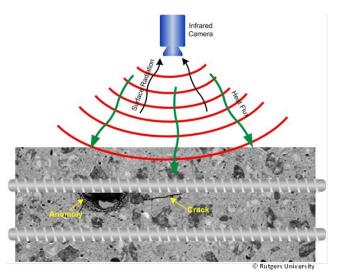
Pull-off test

- correlates with the compressive strength
- planned before
- measuring the force required to pull a steel disc or ring, embedded in fresh concrete, against a circular counter pressure placed on the concrete surface concentric with the disc/ring

IR termography

Passive or active


Passive wavelength: 3-14 μm


Active wavelength: 0.17-1.4 μm

Instrument: CCD camera

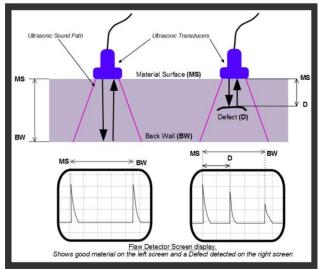
The IR wave is partly absorbed and partly scattered from the surface

■ Where cracks or surface discontinuities exist, the scattered intensity is increased, and the local dissipated heat is larger

Ultrasound measurement

Transmitted sound wave method

Parallell walls


The place of the crack, etc. cannot be determined

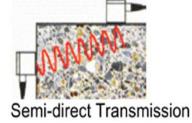
Impulse reflected sound wave method

Needs a calibration

The place of the crack cann be determined

Ultrasound method

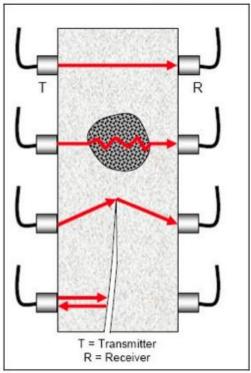
Discontinuities and cracks slow down the wave


Higher wave velocity: better quality

There is an relation between the sound energy/ intensity and the studied concrete block quality

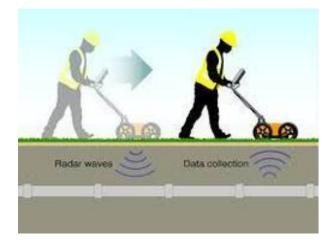
Indicative method

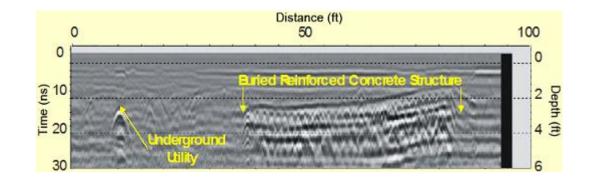
Direct Transmission (cross probing)


Indirect Transmission

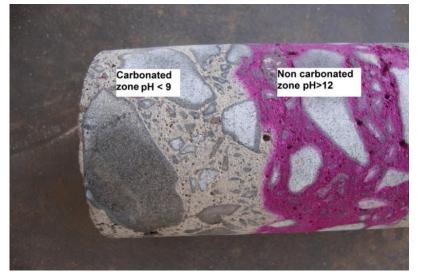
(Surface probing)

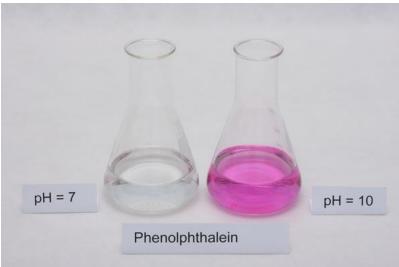
UPV - Different Test Methods




UPV Transducers

Ground penetrating radar


- geophysical method that uses radar pulses to image the subsurface
- electromagnetic radiation in the microwave band of the radio spectrum, and detects the reflected signals from subsurface structures



Phenolphtaleine indicator test

- Phenolphtaleine: acid-base indicator
- \Box In presence of Ca(OH)₂ changes its color to pink
- \Box In presence of Ca(CO)₃ is colorless

Concept of pH

pH: "power" of Hydrogen (or hydronium ion H₃O⁺)

pH: a numerical scale used to determine the acidity or basicity of an aqueous solution

 $pH = -lg[H_3O^+] = -lg[H^+]$

 $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$

equilibrium process

 $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol/dm}^3$

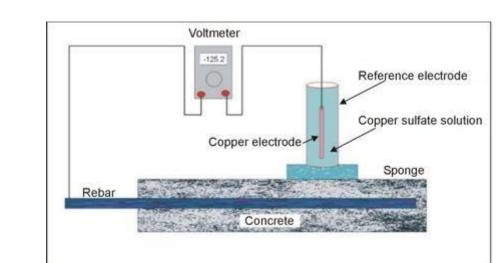
 $pH = -Ig10^{-7} = 7$

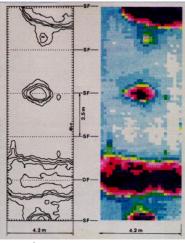
Concept of pH

	Pork, Veal, Hamburgers, Polished White Rice			pH=0	Battery Acid, Strong Hydrofluoric Acid
рН	Beef, Oysters, Crab Lobster, Shrimp			pH=1	Hydrofluoric Acid Secreted by Stomach Lining
	Ham, Turkey, Chicken, Coffee, Tea			pH=2	Lemon Juice, gastric Acid, Vinegar
	Eggs, Liquor, chocolate Hard Cheese (Parmesan), Fish			pH=3	Grapefruit Juice, Orange Juice, Soda
	Brown & Wild Rice, Beer, Wine			pH=4	Acid Rain, Tomato Juice, Beer
	Most Breads, Pasta, Spaghetti			pH=5	Soft Drinking Water, Black Coffee Pure Rain
	Whole Grain Breads, Margarine, Nuts Butter & Cream, Soft Cheeses			pH=6	Urine, Saliva, Egg Yolks, Cow's Milk
	Whey, Cow's & Goat's Milk	Neutral	7.35	pH=7	Pure Water
	Potatoes, Lentils, Onions, Garlic			рН=8	Sea Water
	Apples, Pears, Bananas, Oranges			pH=9	Baking Soda
	Raisins, Green Beans, String Beans Olives, Molasses, Cabbage, Lettuce			pH=10	Great Salt Lake, Milk of Magnesia, Detergent
	Dandelion Greens, Soy Nuts			pH=11	Ammonia Solution, Household Cleaners
	Beets, Celery, Carrots, Tomatoes			pH=12	Soapy Water
	Dried Figs, Mushrooms Pure Lecithin, Ginger, Spinach			pH=13	Bleaches, Oven Cleaner, Household Lye
	Cucumbers, Radishes, Squash	Base		pH=14	Liquid Drain Cleaner

Battery Acid Strong

Half cell potential measurement

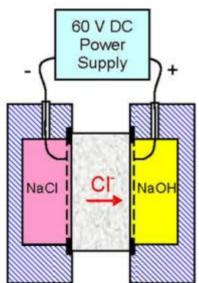

Need of a reference electrode


We measure the electrod potential difference in function of the place, where the electrode is placed

Depends on: reference electrode, thickness of the concrete, moisture, concentration of the electrolite

Referecne electrode:

- Cu/CuSO₄
- Calomel: Hg/Hg2Cl2/KCl
- Ag/AgCl/KCl
- Cl⁻ ion concentration is high: negative potential
- Carbonated: positive potential


Rapid chloride ion penetrating test

□ 60 V potential difference, 6h

Sample is a wet and vacuumed dried concrete piece of 50mm thickness

□ Cl⁻ ion diffusion is function of concrete age, porosity

Charge (C)	Diffusivity		
>4000	High		
2000-4000	Moderated		
1000-2000	Low		
100-1000	Very low		
<100	Negligible		

