
Kiékelt, csavarozott homloklemezes oszlop – gerenda kapcsolat tervezése az Eurocode 3 1-8 része (Stage 34) alapján

1. KIINDULÁSI ADATOK

Kiékelet, csavarozott homloklemezes oszlop - gerenda kapcsolat

1.1. ÁLTALÁNOS ADATOK

keret típusa : merevítetlen (unbraced) gerenda : IPE 500, FE 360

gerenda hajlása : $\alpha = 10^{\circ}$

kiékelés m.-sz./h. : 260 – 10 / 400 kiékelés öve : 200 – 16

1.2. MECHANIKAI JELLEMZŐK

rugalmassági modulus: E := 210000 N

Poisson-tényező: v := 0.3

nyírási modulus: $G := \frac{E}{2 \cdot (1 + v)} \qquad G = 80769.23 \cdot \frac{N}{mm^2}$

Gerenda: IPE500, FE360

gerendaöv folyási határa: f_{y.bf} := 235. N mm

gerendagerinc folyási határa: $f_{y.bw} := 235 \cdot \frac{N}{mm}$

gerendaöv szakítószilárdsága: $f_{u.bf} := 360 \cdot \frac{N}{mm^2}$

gerendagerinc szakítószilárdsága: $f_{u.bw} := 360 \cdot \frac{N}{mm^2}$

Oszlop: HEA400, FE360

oszlopöv folyási határa: $f_{y.cf} := 235 - \frac{N}{mm}$

oszlopgerinc folyási határa: $f_{y.cw} := 235.\frac{N}{mm^2}$

oszlopöv szakítószilárdsága: $f_{u.cf} := 360 \cdot \frac{N}{mm^2}$

oszlopgerinc szakítószilárdsága: $f_{u.cw} := 360 \cdot \frac{N}{mm^2}$

Oszlop: HEA400, FE360

oszlopöv folyási határa: $f_{y,cf} := 235 \cdot \frac{N}{mm^2}$

oszlopgerinc folyási határa: $f_{y,cw} := 235 \cdot \frac{N}{mm^2}$

oszlopöv szakítószilárdsága: $f_{u.cf} := 360 \cdot \frac{N}{mm^2}$

oszlopgerinc szakítószilárdsága: $f_{u.cw} := 360 \cdot \frac{N}{mm^2}$

Homloklemez: 200 - 20 / 800, FE360

homloklemez folyási határa: $f_{y.ep} := 235 \cdot \frac{N}{mn}$

homloklemez szakítószilárdsága: $f_{u.ep} := 360 \cdot \frac{N}{mn^2}$

Húzott csavarok: 10.9, nem feszített

húzott csavarok folyási határa: $f_{y,b} := 900 \cdot \frac{N}{m^2}$

húzott csavarok szakítószilárdsága: $f_{u.b} := 1000 \cdot \frac{N}{mm^2}$

1.3. GEOMETRIAI JELLEMZŐK

Gerenda: IPE500, FE360

szelvénymagasság: $h_{b0} := 500 \cdot mm$

szélesség: b_h := 200·mm

övvastagság: $t_{fb0} := 16.0 \cdot mm$

gerincvastagság: t wb := 10.2·mm

lekerekítési sugár: r_h := 21·mm

inercia: $I_h := 48200 \text{ cm}^4$

plasztikus keresztmetszeti tényező: $W_{b.pl} := 2194.0 \text{ cm}^3$

terület: $A_b := 115.52 \text{ cm}^2$

gerendafesztáv: $L_h := 19500 \text{ mm}$

gerande heilden.

(oszloptengelytől oszloptengelyig)

gerenda hajlása: $\alpha := 10^{\circ}$

Oszlop: HEA400, FE360

szelvénymagasság: h c := 390·mm

szélesség: $b_c := 300 \cdot mm$

övvastagság: $t_{fc} := 19 \cdot mm$

gerincvastagság: t _{wc} :=11⋅mm

lekerekítési sugár: $r_c := 27 \cdot mm$

inercia: $I_c := 45070 \text{ cm}^4$

terület: $A_c := 158.98 \text{ cm}^2$

emeletmagasság: $L_c := 8000 \text{ mm}$

(oszlophossz)

Homloklemez: 220 - 20 / 800, FE360

homloklemez magassága: h en := 800·mm

homloklemez szélessége: b en := 220·mm

homloklemez vastagsága: t en := 20·mm

homloklemez felső éle és a gerenda felső öve közötti függ. távolság:

csavarsorok száma: max. 6 db m:=5

alátétek száma csavaronként: wn := 2

csavarok vízsz. távolsága a homloklemez élétől: e 2:=50·mm

homloklemez felső éle és az első csavarsor közötti függőleges távolság:

e 1 := 80·mm

1. és 2. csavarsorok közötti függ. távolság: p₁ := 80·mm

2. és 3. csavarsorok közötti függ. távolság: p 2 := 280·mm

3. és 4. csavarsorok közötti függ. távolság: p 3 := 180·mm

4. és 5. csavarsorok közötti függ. távolság: $p_{4} := 100 \cdot \text{mm}$

Húzott csavarok: M20 10.9, nem feszített

csavarszár átmérője: d h := 20·mm

feszültség-keresztmetszet: $A_s := 244.8 \cdot mm^2$

csavarfej magassága: t h := 13·mm

csavaranya magassága: $t_n := 16 \cdot mm$

a csavarfej vagy a csavaranya köré írható kör átmérõje: d bh := 34.6·mm

csavaralátét átmérője: d w := 37·mm

csavaralátét magassága: $t_w := 3 \cdot mm$

csavarlyuk átmérője: $d_h := 22 \cdot mm$

Kiékelés

kiékelés magassága: h hn := 260·mm

kiékelés hossza: 1_{hn} := 400·mm

kiékelés övszélessége b _{fhn} := 200·mm

kiékelés övvastagsága: t fhn0 := 16·mm

kiékelés gerincvastagsága: t whn := 10·mm

Varratok

gerendaövet bekötő varrat mérete: a fh := 8·mm

gerendagerincet bekötő varrat mérete: a wh := 4·mm

1.4. BIZTONSÁGI TÉNYEZŐK

1., 2., és 3. osztályú keresztmetszetek biztonsági tényezője: $\gamma_{M0} := 1.10$

4. osztályú keresztmetszetek, illetve kihajló, kiforduló elemek biztonsági tényezője: $\gamma_{M1} := 1.10$

csavarozott kapcsolat biztonsági.tényezője: γ_{Mb} := 1.25

hegesztett kapcsolat biztonsági.tényezője: $\gamma_{Mw} := 1.25$

2. HAJLÍTÁSI ELLENÁLLÁS MEGHATÁROZÁSA

2.1. Oszlop nyírt gerinclemeze

nyírt felület:

$$A_{vc} := A_c - 2 \cdot b_c \cdot t_{fc} + (t_{wc} + 2 \cdot r_c) \cdot t_{fc}$$
 $A_{vc} = 57.33 \circ cm^2$

ellenállás:

$$V_{\text{cws.Rd}} := \frac{0.9 \cdot f_{\text{y.cw}} \cdot A_{\text{vc}}}{\sqrt{3} \cdot \gamma_{\text{M0}}} \qquad V_{\text{cws.Rd}} = 636.41 \text{ kN}$$

BETA tényező (a belső erők eloszlásának hatását veszi figyelembe):

megjegyzés:

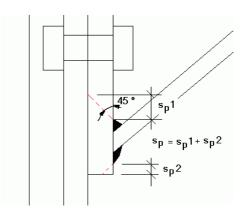
A BETA értékének egyszerűsítésképpen 0,1,2 érték választható az EC3 1-8 rész 5.4 táblázata értelmében. A BETA aktuálius értéke teljes merevségi számítást igényel.

$$\beta := 1.0$$

az oszlopgerinc nyírási ellenállása a belső erők eloszlásának hatását figyelebe véve (képlékeny nyírási ellenállás):

$$F_{\text{cws.Rd}} := \frac{V_{\text{cws.Rd}}}{\beta}$$

$$F_{cws.Rd} = 636.41$$
 ekN


2.2. Oszlop nyomott gerinclemeze

2.2.1. Oszlop nyomott gerinclemeze ("crushing" ellenállás)

hatékony szélesség (b.eff.cwc):

b eff.cwc :=
$$t_{\text{fhn}} + 2 \cdot \sqrt{2} \cdot a_{\text{fb}} + 5 \cdot (t_{\text{fc}} + r_{\text{c}}) + s_{\text{p}}$$

b eff.cwc = 299.46 mm

s_p minimum értéke a homloklemez vastagsága (t_{.ep}), de max. 2× t_{.ep} a homloklemez helyzetétől függően.

ω tényező (a nyírási interakció figyelembevétele miatt): (a T6.3 tábla alapján)

BETA=1 (mivel egyoldali o-g kapcsolatról van szó.)

 $\omega = 0.84$

Table 6.3: Reduction factor ω for interaction with shear

Transformation parameter β	Reduction factor ω			
0 ≤ β ≤ 0,5	ω = 1			
$0.5 < \beta < 1$	$\omega = \omega_1 + 2(1 - \beta)(1 - \omega_1)$			
β = 1	$\omega = \omega_1$			
$1 < \beta < 2$	$\omega = \omega_1 + (\beta - 1)(\omega_2 - \omega_1)$			
β = 2	$\omega = \omega_2$			
$\omega_{\perp} = \frac{1}{\sqrt{1 + 1.3 \left(b_{\text{eff,c,wc}} t_{\text{wc}} / A_{\text{vc}}\right)^2}}$	$\omega_2 = \frac{1}{\sqrt{1 + 5.2 (b_{\text{eff,c,wc}} t_{\text{wc}} / A_{\text{vc}})^2}}$			
A_{vc} is the shear area of the column, see 6.2.4.1; β is the transformation parameter, see 5.3(7).				

hosszirányú nyomó feszültség (a nyomó erőből és a hajlítónyomatékból) a hengerelt oszlopszelvény lekerekítésénél:

$$\sigma_{V} := 0 \cdot \frac{N}{mm^2}$$

 $\sigma_{v} := 0 \cdot \frac{N}{mm^{2}}$, mivel a csomóponti igénybevételek nem ismertek

$$1.7 - \frac{\sigma_{v}}{f_{y.cw}}$$
 ,ha $\sigma_{v} > 0.7 \cdot f_{y.cw}$,fgy $k_{wc} = 1.00$

ellenállás:

$$F_{cwcc.Rd} := \frac{b_{eff.cwc} \cdot t_{wc} \cdot f_{y.cw} \cdot \omega \cdot k_{wc}}{\gamma_{M0}}$$
$$F_{cwcc.Rd} = 588.66 \cdot kN$$

2.2.2. Oszlop nyomott gerinclemeze ("buckling" ellenállás)

hatékony szélesség: mint az nyomott oszlopgerinc 'crushing' ellenállásánál.

$$b_{eff cwc} = 299.46$$
mm

"buckling" ellenállás:

A klasszikus Winter-formula alapján határozzuk meg, mely akkor használható, ha a λ_{red} nagyobb v. egyenlő mint 0.72. (Ha λ_{red} kisebb, mint 0.72, akkor $F_{cwc.Rd}$ = $F_{cwcc.Rd}$

a tiszta oszlopgerinc-magasság:

$$d_{wc} := h_c - 2 \cdot t_{fc} - 2 \cdot r_c$$

 $d_{wc} = 298.00 \text{ mm}$

a rugalmas kritikus erõ:

$$F_{cr} := \frac{\pi \cdot E \cdot t_{wc}^{3}}{3 \cdot (1 - v^{2}) \cdot d_{wc}}$$
$$F_{cr} = 1079.36 \text{kN}$$

a redukált karcsúság:

$$\lambda_{red} := \sqrt{\frac{b_{eff.cwc} \cdot t_{wc} \cdot f_{y.cw}}{F_{cr}}}$$

$$\lambda_{red} = 0.85$$

ellenállás:

$$F_{cwcb.Rd} := \frac{b_{eff.cwc} \cdot t_{wc} \cdot f_{y.cw} \cdot \omega \cdot k_{wc}}{\gamma_{M1}} \cdot \left[\frac{1}{\lambda_{red}} \cdot \left(1 - \frac{0.22}{\lambda_{red}} \right) \right]$$
$$F_{cwcb.Rd} = 514.53 \text{ kN}$$

az oszlop nyomott gerinclemezének ellenállása:

$$F_{cwc.Rd} := \begin{bmatrix} F_{cwcb.Rd} & \text{if } (\lambda_{red} > 0.72) \\ F_{cwcc.Rd} & \text{otherwise} \end{bmatrix}$$

$$F_{cwc.Rd} = 514.53 \text{ eV}$$

2.3. Oszlop húzott gerinclemeze

geometriai paraméterek:

 $e_c := 90 \cdot mm$

 $m_c := 32.90 \text{ mm}$

 $n_c := 41.12 \cdot mm$

e _{min} := 50·mm

 $e_{w} := 9.25 \cdot mm$

 $e_1 := 80 \cdot mm$

(e.1 az első csavarsor távolsága az oszlop tetejétől)

 $(n = e_{min})$

,de

 $n \le 1.25 \times m$

MEGJEGYZÉS:

A geometriai paraméterek és a helyettesítő T-elem szélességének meghatározása a MELLÉKLET alapján történik.

az helyettesítő T-elem szélesség:

1) önállónak tekintett csavarsorok

- kör alakú töréskép:

b eff.cwt.c := $2 \cdot \pi \cdot m_c$ b eff.cwt.c = 206.72 mm

oszlop teteje:

b eff.cwt.c.top := $\pi \cdot m_c + 2 \cdot e_1$ b eff.cwt.c.top = 263.36 mm - más alakú töréskép:

b eff.cwt.nc :=
$$4 \cdot m_c + 1.25 \cdot e_c$$

b eff.cwt.nc = 244.10 mm

oszlop teteje:

b
$$_{eff.cwt.nc.top} := 2 \cdot m_c + 0.625 \cdot e_c + e_1$$

b $_{eff.cwt.nc.top} = 202.05 \cdot mm$

Első csavarsornál:

- kör alakú töréskép:

b eff.cwt.c.1 = b eff.cwt.c b eff.cwt.c $_1 = 206.72$ mm - más alakú töréskép:

b eff.cwt.nc.1 = b eff.cwt.nc.top b eff.cwt.nc.1 = 202.05 mm

Más csavarsoroknál:

- kör alakú töréskép:

b eff.cwt.c := b eff.cwt.c.1 b eff.cwt.c = 206.72°mm - más alakú töréskép:

2) csavarcsoport részeként tekintett csavarsorok

1 - 2 - kör alakú töréskép:

- más alakú töréskép:

b eff.cwt.c.g1 :=
$$2 \cdot (\pi \cdot m_c + p_1)$$

b eff.cwt.nc.g1 :=
$$\left(e_1 + 0.5 \cdot p_1\right) + \left(2 \cdot m_c + 0.625 \cdot e_c + 0.5 \cdot p_1\right)$$

b
$$_{eff.cwt.c.g1} = 366.72$$
 mm

1 - 3 - kör alakú töréskép: - más alakú töréskép:

b
$$_{eff.cwt.c.g1} := 2 \cdot (\pi \cdot m_c + p_1 + p_2)$$

$$b_{eff.cwt.c.g1} := 2 \cdot \left(\pi \cdot m_c + p_1 + p_2\right) \qquad b_{eff.cwt.nc.g1} := \left(e_1 + 0.5 \cdot p_1\right) + \left(\frac{p_1 + p_2}{2}\right) \dots \\ b_{eff.cwt.c.g1} = 926.72 \cdot nm \qquad \qquad + \left(2 \cdot m_c + 0.625 \cdot e_c + 0.5 \cdot p_2\right)$$

$$b_{eff.cwt.nc.g1} = 562.05$$
mm

2 - 3 - kör alakú töréskép:

$$b_{eff.cwt.c.g1} := 2 \cdot (\pi \cdot m_c + p_2)$$

$$b_{eff.cwt.c.g1} := 2 \cdot (\pi \cdot m_c + p_2)$$
 $b_{eff.cwt.nc.g1} := 2 \cdot (2 \cdot m_c + 0.625 \cdot e_c + 0.5 \cdot p_2)$

$$b_{eff.cwt.c.g1} = 766.72$$
 mm

Húzott oszlopgerinc ellenállása :

1) önállónak tekintett csavarsorok

Csavarsor 1:

Segédmennyiségek:

$$\omega := 0.915$$

$$\omega := 0.915$$
 b eff.cwt.nc.1 = 202.05 mm

$$F_{cwt.Rd.1} := \frac{\omega \cdot b \text{ eff.cwt.nc.1} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{cwt.Rd.1} = 434.46 \text{ kN}$$

$$F_{cwt.Rd.1} = 434.46$$
 kN

Csavarsor 2:

Segédmennyiségek: $\omega := 0.882$

$$\omega := 0.882$$

$$F_{cwt.Rd.2} := \frac{\omega \cdot b \text{ eff.cwt.c} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{\text{cwt.Rd.2}} = 428.46 \text{kN}$$

Csavarsor 3:

$$\omega := 0.882$$

Segédmennyiségek:
$$\omega := 0.882$$
 $b_{eff cwt c} = 206.72$ mm

$$F_{cwt.Rd.3} := \frac{\omega \cdot b \text{ eff.cwt.c} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{cwt.Rd.3} = 428.46 \text{ kN}$$

$$F_{\text{cwt.Rd.3}} = 428.46 \text{ kN}$$

2) csavarcsoport részeként tekintett csavarsorok

Csavarcsoport 1 - 2:

Segédmennyiségek:

$$\omega := 0.851$$

$$b_{eff.cwt.nc.g1} = 282.05$$
mm

$$F_{cwt.Rd.g1} := \frac{\omega \cdot b \text{ eff.cwt.nc.g1} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{cwt.Rd.g1} = 564.06 \text{ kN}$$

$$F_{cwt.Rd.g1} = 564.06$$
kN

Csavarcsoport 1 - 3:

Segédmennyiségek:
$$\omega := 0.631$$
 $b_{eff.cwt.nc.g2} = 562.05$ mm

$$F_{cwt.Rd.g2} := \frac{\omega \cdot b \text{ eff.cwt.nc.g2} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{cwt.Rd.g2} = 833.44 \text{ kN}$$

Csavarcsoport 2 - 3:

Segédmennyiségek:
$$\omega := 0.657$$
 $b_{eff.cwt.nc.g3} = 524.10$ mm

$$F_{\text{cwt.Rd.g3}} := \frac{\omega \cdot b \text{ eff.cwt.nc.g3} \cdot t \text{ wc} \cdot f \text{ y.cw}}{\gamma \text{ M0}}$$

$$F_{\text{cwt.Rd.g3}} = 809.18 \text{ kN}$$

2.4. Oszlop hajlított övlemeze

Egy csavar húzási ellenállása .(Table 3.4)

$$B_{t.Rd} := \frac{0.9 \cdot f_{u.b} \cdot A_s}{\gamma_{Mb}}$$
 $B_{t.Rd} = 176.26 \text{ kN}$

A helyettesítő T-elem megegyezik az Oszlop húzott gerinclemeze komponensnél meghatározottakkal.

- 1) önállónak tekintett csavarsorok (mindkét csavarsornál ua.)
- Csavarsor 1

hatékony szélesség:

$$b_{eff1.1} := b_{eff.cwt.c.1}$$
 $b_{eff2.1} := b_{eff.cwt.c.1}$ $b_{eff2.1} = 206.72$ mm

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.1} \cdot (t_{fc})^2 \cdot f_{y.cf}}{\gamma_{M0}} M_{pl.1.Rd} = 3985.64 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.1} \cdot t_{fc}^2 \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 3985.64 \cdot N \cdot m$$

Az öv teljes folyása: Ft1
$$_1$$
 := $\frac{4 \cdot M}{m_c}$ pl.1.Rd Ft1 $_1$ = 484.5%kN

Csavartörés:
$$Ft3_1 := 2 \cdot B_{t,Rd}$$
 $Ft3_1 = 352.51 \text{ kN}$

Csavarsor 1 ellenállása:
$$F_{cfb.Rd.1} := min \begin{bmatrix} Ft1 & 1 \\ Ft2 & 1 \\ Ft3 & 1 \end{bmatrix} \qquad F_{cfb.Rd.1} = 303.52 \text{kN}$$

- Csavarsor 2

hatékony szélesség:

$$b_{eff1.2} := b_{eff.cwt.c}$$
 $b_{eff2.2} := b_{eff.cwt.nc}$ $b_{eff2.2} := b_{eff.cwt.nc}$

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.2} \cdot (t_{fc})^2 \cdot f_{y.cf}}{\gamma_{M0}} M_{pl.1.Rd} = 3985.64 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.2} \cdot f_{c}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 4706.41 \circ N \cdot m$$

Az öv teljes folyása:
$$Ft1_2 := \frac{4 \cdot M}{m_c} pl.1.Rd$$
 $Ft1_2 = 484.58 \text{kN}$

Csavartörés
$$\text{Ft2 }_2 \coloneqq \frac{2 \cdot M \text{ pl.2.Rd} + \text{n }_c \cdot 2 \cdot B \text{ t.Rd}}{\text{m }_c + \text{n }_c} \quad \text{Ft2 }_2 = 323.00 \text{kN}$$
egyidejû övfolyással:

Csavartörés:
$$Ft3_2 := 2 \cdot B_{t,Rd}$$
 $Ft3_2 = 352.51 \cdot kN$

Csavarsor 2 ellenállása:
$$F_{cfb.Rd.2} := min \begin{bmatrix} Ft1 \ 2 \\ Ft2 \ 2 \\ Ft3 \ 2 \end{bmatrix} \qquad F_{cfb.Rd.2} = 323.00 \text{kN}$$

- Csavarsor 3

hatékony szélesség:

a T-elem ellenállása:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.2} \cdot (t_{fc})^2 \cdot f_{y.ef}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 3985.64 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.2} \cdot t_{fc}^2 \cdot f_{y.ef}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 4706.41 \cdot N \cdot m$$
Is folyása: Ftl 3 := $\frac{4 \cdot M_{pl.1.Rd}}{\gamma_{M0}}$ Ftl 3 = 484.58 kg

Az öv teljes folyása:
$$Ft1_3 := \frac{4 \cdot M}{m_c} pl.1.Rd$$
 $Ft1_3 = 484.58 \text{ kN}$

Csavartörés egyidejû övfolyással:
$$Ft2_3 := \frac{2 \cdot M \text{ pl.2.Rd} + \text{n } \text{c} \cdot 2 \cdot \text{B} \text{t.Rd}}{\text{m } \text{c} + \text{n } \text{c}} \qquad Ft2_3 = 323.00 \text{kN}$$

Csavartörés: Ft3
$$_3$$
 := $2 \cdot B_{t.Rd}$ Ft3 $_3$ = $352.51 \cdot kN$

Csavarsor 3 ellenállása:
$$F_{cfb.Rd.3} := min \begin{bmatrix} Ft1 & 3 \\ Ft2 & 3 \\ Ft3 & 3 \end{bmatrix} F cfb.Rd.3 = 323.00 kN$$

2) csavarcsoport részeként tekintett csavarsorok

- Csavarcsoport 1-2

hatékony szélesség:

$$b_{eff1.g1} := b_{eff.cwt.nc.g1}$$
 $b_{eff2.g1} := b_{eff.cwt.nc.g1}$ $b_{eff2.g1} = 282.05$ mm $b_{eff2.g1} = 282.05$ mm

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.g1} \cdot (t_{fc})^2 \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 5438.12 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.g1} \cdot t_{fc}^2 \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 5438.12 \cdot N \cdot m$$

Az öv teljes folyása:
$$\operatorname{Ft1}_{g1} := \frac{4 \cdot M \operatorname{pl.1.Rd}}{\operatorname{m}_{C}}$$
 $\operatorname{Ft1}_{g1} = 661.17 \cdot kN$

Csavartörés egyidejű övfolyással:
$$Ft2_{g1} := \frac{2 \cdot M}{m_c + n_c} \frac{pl.2.Rd + n_c \cdot 4 \cdot B}{m_c + n_c} t.Rd$$

$$Ft2_{g1} = 538.60 \cdot kN$$

Csavartörés: Ft3
$$_{g1}$$
 := $4 \cdot B_{t,Rd}$ Ft3 $_{g1}$ = 705.02 kN

Csavarcsoport 1-2 ellenállása:
$$F_{cfb.Rd.g1} := min \begin{bmatrix} Ft1 & g1 \\ Ft2 & g1 \\ Ft3 & g1 \end{bmatrix} \qquad F_{cfb.Rd.g1} = 538.60 \text{ekN}$$

- Csavarcsoport 1-3

hatékony szélesség:

$$b_{eff1.g2} := b_{eff.cwt.nc.g2}$$
 $b_{eff2.g2} := b_{eff.cwt.nc.g2}$ $b_{eff2.g2} = 562.05$ mm $b_{eff2.g2} = 562.05$ mm

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.g2} \cdot (t_{fc})^2 \cdot f_{y.ef}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 10836.7 \text{ lpN} \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.g2} \cdot f_{c}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 10836.7 \, \text{PN} \cdot \text{m}$$

Az öv teljes folyása: Ft1
$$g_2 := \frac{4 \cdot M}{m_c} pl.1.Rd$$
 Ft1 $g_2 = 1317.53 \cdot kN$

Csavartörés egyidejű övfolyással:
$$Ft2_{g2} := \frac{2 \cdot M_{pl.2.Rd} + n_{c} \cdot 6 \cdot B_{t.Rd}}{m_{c} + n_{c}} \quad Ft2_{g2} = 880.29 \text{kN}$$

Csavartörés: Ft3
$$g2 := 6 \cdot B_{t.Rd}$$
 Ft3 $g2 = 1057.54$ kN

Csavarcsoport 1-3 ellenállása:
$$F_{cfb.Rd.g2} := min \begin{bmatrix} Ft1 & g2 \\ Ft2 & g2 \\ Ft3 & g2 \end{bmatrix} \qquad F_{cfb.Rd.g2} = 880.29 kN$$

- Csavarcsoport 2-3

hatékony szélesség:

$$b_{eff1.g3} := b_{eff.cwt.nc.g3}$$
 $b_{eff2.g3} := b_{eff.cwt.nc.g3}$ $b_{eff2.g3} = 524.10 \text{mm}$

a T-elem ellenállása:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.g3} \cdot (t_{fc})^2 \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 10105.0 \, \text{lpN} \cdot \text{m}$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.g3} \cdot t_{fc}^2 \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 10105.0 \, \text{lpN} \cdot \text{m}$$

$$\frac{4 \cdot M_{pl.1.Rd}}{\gamma_{M0}} = \frac{0.25 \cdot b_{pl.2.Rd}}{\gamma_{M0}} = \frac{0$$

Az öv teljes folyása: Ft1
$$_{g3}$$
 := $\frac{4 \cdot M}{m_c}$ Ft1 $_{g3}$ = 1228.57 kN

Csavartörés egyidejű övfolyással:
$$Ft2_{g3} := \frac{2 \cdot M}{m_c + n_c} pl.2.Rd + \frac{n_c \cdot 4 \cdot B}{m_c + n_c} t.Rd$$

$$Ft2_{g3} = 664.69 kN$$

Csavartörés: Ft3
$$_{g3}$$
 := $4 \cdot B_{t.Rd}$ Ft3 $_{g3}$ = 705.02 kN

Csavarcsoport 2-3 ellenállása:
$$F_{cfb.Rd.g3} := min \begin{bmatrix} Ft1 & & \\ & Ft2 & & \\ & & Ft3 & & \\ & & & Ft3 & & \\ \end{bmatrix} \qquad \qquad F_{cfb.Rd.g3} = 664.69 \text{kN}$$

2.5. Hajlított homloklemez

geometriai paraméterek:

$$e_c := 90 \cdot mm$$
 $m_{ep} := 50.37 \cdot mm$

Csavarsor 1 (a gerenda felső öve alatt)

$$m1_1 := m_{ep}$$
 $m1_1 = 50.37$ mm $\lambda 1_1 := 0.50$ $\alpha 1 := 5.94$ $\alpha 1_1 := 39.70$ $\alpha 1_1 := 0.44$

Csavarsor 3 (a gerenda felső öve felett)

$$m1_2 := m_{ep}$$
 $m1_2 = 50.37$ $m1_2 := 0.50$ $m2_2 := 57.42$ $m2_2 := 0.57$

MEGJEGYZÉS: A LAMBDA és ALFA tényezők, valamit a helyettesítő T-elem szélességének meghatározása a mellékletben található grafikon alapján történik.

a helyettesítő T-elem szélesség:

1) önállónak tekintett csavarsorok

Csavarsor 1

- kör alakú töréskép:

$$b_{eff.epb.c.1} := 2 \cdot \pi \cdot m1_1$$

$$b_{eff.enb.c.1} = 316.48$$
mm

- más alakú töréskép:

$$b_{eff.epb.nc.1} := \alpha 1 \cdot m 1_1$$

$$b_{eff.epb.nc.1} = 299.20$$
 mm

Csavarsor 2

- kör alakú töréskép:

b eff.epb.c.2 :=
$$2 \cdot \pi \cdot m1_2$$

$$b_{eff.epb.c.2} = 316.48$$
mm

- más alakú töréskép:

$$b_{eff.epb.nc.2} := 4 \cdot m1_2 + 1.25 \cdot e_{ep}$$

Csavarsor 3

- kör alakú töréskép:

b eff.epb.c.3 :=
$$2 \cdot \pi \cdot m1_3$$

$$b_{eff.epb.c.3} = 316.48$$
mm

- más alakú töréskép:

$$b_{eff.epb.nc.3} := \alpha 3 \cdot m1_3$$

$$b_{eff.epb.nc.3} = 282.07$$
°mm

2) csavarcsoport részeként tekintett csavarsorok

Csavarcsoport 1 - 2

- kör alakú töréskép:

- más alakú töréskép:

$$b_{eff.epb.c.g1} := 2 \cdot (\pi \cdot m1_1 + p_1)$$

$$\begin{array}{c} \text{b eff.epb.nc.g1} := & \left[\alpha 1 \cdot \text{m1}_{1} + 0.5 \cdot \text{p}_{1} - \left(2 \cdot \text{m1}_{1} + 0.625 \cdot \text{e}_{ep} \right) \right] \dots \\ & + \left(2 \cdot \text{m1}_{2} + 0.5 \cdot \text{p}_{1} + 0.625 \cdot \text{e}_{ep} \right) \end{array}$$

$$b_{eff.epb.c.g1} = 476.4$$
%mm

$$b_{eff.epb.nc.g1} = 379.20$$
mm

Csavarcsoport 1 - 3

- kör alakú töréskép:

- más alakú töréskép:

$$\begin{array}{c} \text{b eff.epb.c.g2} \coloneqq \left(\pi \cdot \text{m1}_1 + \text{p}_1\right) \dots \\ + 2 \cdot \left(\frac{\text{p}_2 + \text{p}_1}{2}\right) \dots \\ + \left(\pi \cdot \text{m1}_3 + \text{p}_2\right) \end{array}$$

$$\begin{split} \text{b }_{\text{eff.epb.nc.g2}} \coloneqq & \left[\alpha 1 \cdot \text{m1}_{1} + 0.5 \cdot \text{p }_{1} - \left(2 \cdot \text{m1}_{1} + 0.625 \cdot \text{e }_{\text{ep}} \right) \right] \dots \\ & + \frac{\text{p }_{1} + \text{p }_{2}}{2} \dots \\ & + \left[\alpha 3 \cdot \text{m1}_{3} + 0.5 \cdot \text{p }_{2} - \left(2 \cdot \text{m1}_{3} + 0.625 \cdot \text{e }_{\text{ep}} \right) \right] \end{split}$$

Csavarcsoport 2 - 3

- kör alakú töréskép: - más alakú töréskép:

$$\begin{array}{c} \text{b }_{\text{eff.epb.c.g3}} \coloneqq 2 \cdot \left(\pi \cdot \text{m1}_{1} + \text{p}_{2} \right) \\ & + \left[\alpha 3 \cdot \text{m1}_{3} + 0.5 \cdot \text{p}_{2} + 0.625 \cdot \text{e}_{\text{ep}} \right) \dots \\ & + \left[\alpha 3 \cdot \text{m1}_{3} + 0.5 \cdot \text{p}_{2} - \left(2 \cdot \text{m1}_{3} + 0.625 \cdot \text{e}_{\text{ep}} \right) \right] \end{array}$$

$$b_{eff.epb.c.g3} = 876.4$$
%mm $b_{eff.epb.nc.g3} = 562.0$ 7mm

Egy csavar húzási ellenállása .(Table 3.4)

$$B_{t.Rd} := \frac{0.9 \cdot f_{u.b} \cdot A_s}{\gamma_{Mb}}$$
 $B_{t.Rd} = 176.26 \text{ kN}$

1) önállónak tekintett csavarsorok

- Csavarsor 1

hatékony szélesség:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.1} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 6391.95 \text{N} \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.1} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 6391.95 \cdot N \cdot m$$

Az öv teljes folyása:
$$\operatorname{Ftl}_1 := \frac{4 \cdot M \operatorname{pl.1.Rd}}{\operatorname{ml}_1}$$
 $\operatorname{Ftl}_1 = 507.60 \cdot k \operatorname{N}$

Csavartörés
$$\text{Ft2 }_1 := \frac{2 \cdot M \text{ pl.2.Rd} + \text{n ep} \cdot 2 \cdot B \text{ t.Rd}}{\text{m1}_1 + \text{n ep}} \quad \text{Ft2 }_1 = 302.97 \text{kN}$$
 egyidejû övfolyással:

Csavartörés:
$$Ft3_1 := 2 \cdot B_{t,Rd}$$
 $Ft3_1 = 352.51 \text{ kN}$

Csavarsor 1 ellenállása:
$$F_{epb.Rd.1} := min \begin{bmatrix} Ft1 & 1 \\ Ft2 & 1 \\ Ft3 & 1 \end{bmatrix} \qquad \qquad F_{epb.Rd.1} = 302.97 \text{ekN}$$

- Csavarsor 2

hatékony szélesség:

a T-elem ellenállása:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.2} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 5639.57 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.2} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 5639.57 \cdot N \cdot m$$

Az öv teljes folyása:
$$\operatorname{Ft1}_2 := \frac{4 \cdot M \operatorname{pl.1.Rd}}{\operatorname{m1}_2}$$
 $\operatorname{Ft1}_2 = 447.85 \cdot kN$

Csavartörés egyidejû övfolyással:
$$Ft2_2 := \frac{2 \cdot M}{m} \frac{pl.2.Rd + n}{m} \frac{ep \cdot 2 \cdot B}{t.Rd} Ft2_2 = 287.9 \text{ k/N}$$
 Csavartörés:
$$Ft3_2 := 2 \cdot B_{t.Rd} Ft3_2 = 352.5 \text{ l/k/N}$$

Csavarsor 2 ellenállása:
$$F_{epb.Rd.2} := min \begin{bmatrix} Ft1 & 2 \\ Ft2 & 2 \\ Ft3 & 2 \end{bmatrix}$$

$$F_{epb.Rd.2} = 287.98 \text{e} \text{kN}$$

- Csavarsor 3

hatékony szélesség:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.3} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 6026.0 \text{ N} \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.3} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 6026.0 \text{ N} \cdot m$$

Az öv teljes folyása:
$$Ft1_3 := \frac{4 \cdot M_{pl.1.Rd}}{m1_2}$$
 $Ft1_3 = 478.55 \text{ kN}$

Csavartörés egyidejû övfolyással:
$$Ft2_3 := \frac{2 \cdot M pl.2.Rd + n ep \cdot 2 \cdot B t.Rd}{ml_2 + n ep} \quad Ft2_3 = 295.68 kN$$

Csavartörés: Ft3
$$_3 := 2 \cdot B_{t,Rd}$$
 Ft3 $_3 = 352.51 \text{ ekN}$

Csavarsor 2 ellenállása:
$$F_{epb.Rd.3} := min \begin{bmatrix} Ft1 \ 3 \\ Ft2 \ 3 \\ Ft3 \ 3 \end{bmatrix}$$

$$F_{epb.Rd.3} = 295.68 kN$$

2) csavarcsoport részeként tekintett csavarsorok

- Csavarcsoport 1-2

hatékony szélesség:

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.g1} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 8101.04 \cdot N \cdot m$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.g1} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 8101.04 \cdot N \cdot m$$

Az öv teljes folyása: Ft1
$$g_1 := \frac{4 \cdot M}{m \cdot 1} pl.1.Rd$$
 Ft1 $g_1 = 643.32 \text{kN}$

Csavartörés egyidejû övfolyással:
$$Ft2_{g1} := \frac{2 \cdot M}{pl.2.Rd} \frac{pl.2.Rd}{ml_1 + n_{ep}} Ft2_{g1} = 512.64 \text{kN}$$

Csavartörés: Ft3
$$_{g1}$$
 := 4·B $_{t.Rd}$ Ft3 $_{g1}$ = 705.02•kN

Csavarcsoport 1-2 ellenállása:
$$F_{epb.Rd.g1} := min \begin{bmatrix} Ft1 & g1 \\ Ft2 & g1 \\ Ft3 & g1 \end{bmatrix} \qquad F_{epb.Rd.g1} = 512.64 \text{/kN}$$

- Csavarcsoport 1-3

hatékony szélesség:

a T-elem ellenállása:

$$\text{M}_{pl.1.Rd} \coloneqq \frac{0.25 \cdot \text{b}_{} \text{ eff1.g2} \cdot \text{f}_{} \text{ ep}^{2} \cdot \text{f}_{} \text{y.cf}}{\gamma_{} \text{ M0}} \qquad \text{M}_{pl.1.Rd} = 14469.37 \cdot \text{N} \cdot \text{m}$$

$$\text{M}_{pl.2.Rd} \coloneqq \frac{0.25 \cdot \text{b}_{} \text{ eff2.g2} \cdot \text{f}_{} \text{ ep}^{2} \cdot \text{f}_{} \text{y.cf}}{\gamma_{} \text{ M0}} \qquad \text{M}_{pl.2.Rd} = 14469.37 \cdot \text{N} \cdot \text{m}$$

$$\text{Az \"{o}v teljes foly\'{a}sa} \coloneqq \text{Ft1}_{g2} \coloneqq \frac{4 \cdot \text{M}_{} \text{pl.1.Rd}}{\text{m1}_{1}} \qquad \text{Ft1}_{g2} = 1149.05 \cdot \text{kN}$$

$$\text{Csavart\"{o}r\'{e}s} = \text{gyidej\^{u} \"{o}vfoly\'{a}ssal} \colon \text{Ft2}_{g2} \coloneqq \frac{2 \cdot \text{M}_{} \text{pl.2.Rd} + \text{n}_{} \text{ep} \cdot \text{6} \cdot \text{B}_{} \text{t.Rd}}{\text{m1}_{1} + \text{n}_{} \text{ep}} \qquad \text{Ft2}_{g2} = 815.14 \cdot \text{kN}$$

$$\text{Csavart\"{o}r\'{e}s} \colon \text{Ft3}_{g2} \coloneqq \text{6} \cdot \text{B}_{t.Rd} \qquad \text{Ft3}_{g2} = 1057.54 \cdot \text{kN}$$

$$F_{epb.Rd.g2} := min \begin{bmatrix} Ft1 & g2 \\ Ft2 & g2 \\ Ft3 & g2 \end{bmatrix}$$

$$F_{epb.Rd.g2} = 815.14 \text{ ekN}$$

- Csavarcsoport 2-3

hatékony szélesség:

$$b_{eff1.g3} := b_{eff.epb.nc.g3}$$
 $b_{eff2.g3} := b_{eff.epb.nc.g3}$ $b_{eff1.g3} = 562.07$ omm $b_{eff2.g3} = 562.07$ omm

$$M_{pl.1.Rd} := \frac{0.25 \cdot b_{eff1.g3} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.1.Rd} = 12007.9 \text{N} \cdot \text{m}$$

$$M_{pl.2.Rd} := \frac{0.25 \cdot b_{eff2.g3} \cdot t_{ep}^{2} \cdot f_{y.cf}}{\gamma_{M0}} \qquad M_{pl.2.Rd} = 12007.9 \text{N} \cdot \text{m}$$

Az öv teljes folyása: Ft1
$$_{g3}$$
 := $\frac{4 \cdot M}{m1} \frac{\text{pl.1.Rd}}{m1}$ Ft1 $_{g3}$ = 953.58 kN

Csavartörés egyidejû övfolyással:
$$Ft2_{g3} := \frac{2 \cdot M}{m1_1 + n} \frac{p! \cdot 2 \cdot Rd + n}{ep} \cdot 4 \cdot B \cdot t.Rd}{m1_1 + n} = Ft2_{g3} = 590.49 \cdot kN$$

Csavartörés: Ft3
$$_{g3}$$
 := $4 \cdot B_{t.Rd}$ Ft3 $_{g3}$ = 705.02 kN

Csavarcsoport 2-3 ellenállása:
$$F_{epb.Rd.g3} := min \begin{bmatrix} Ft1 & & \\ Ft2 & & \\ Ft2 & & \\ Ft3 & & \\$$

2.5. Gerenda húzott gerinclemeze

A hatékony szélességek megegyeznek a hajlított homloklemez komponens megfelelő elemével.

1) önállónak tekintett csavarsorok

Csavarsor 1

Csavarsor 2

Csavarsor 3

Csavarsor 1 ellenállása:

$$F_{bwt.Rd.1} := \frac{b \text{ eff.bwt.1} \cdot t \text{ wb} \cdot f \text{ y.bw}}{\gamma \text{ M0}}$$

$$F_{bwt.Rd.1} = 651.98 \text{ kN}$$

Csavarsor 2 ellenállása:

$$F_{bwt.Rd.2} := \frac{b \text{ eff.bwt.2} \cdot t \text{ wb} \cdot f \text{ y.bw}}{\gamma_{M0}}$$

$$F_{bwt.Rd.2} = 575.24 \text{ kN}$$

Csavarsor 3 ellenállása:

$$F_{bwt.Rd.3} := \frac{b \text{ eff.bwt.3} \cdot t \text{ wb} \cdot f \text{ y.bw}}{\gamma \text{ M0}}$$

$$F_{bwt.Rd.3} = 614.66 \text{ kN}$$

2) csavarcsoport részeként tekintett csavarsorok

Csavarcsoport 1

$$b_{eff.bwt.g1} := b_{eff.epb.nc.g1}$$
 $b_{eff.bwt.g1} = 379.20 \text{mm}$

Csavarcsoport 2

$$b_{eff.bwt.g2} := b_{eff.epb.nc.g2}$$
 $b_{eff.bwt.g2} = 677.29 mm$

Csavarcsoport 3

$$b_{eff.bwt.g3} := b_{eff.epb.nc.g3}$$
 $b_{eff.bwt.g3} = 562.07$ °mm

Csavarcsoport 1 - 2 ellenállása:

$$F_{bwt.Rd.g1} := \frac{b_{eff.bwt.g1} \cdot t_{wb} \cdot f_{y.bw}}{\gamma_{M0}}$$

$$F_{bwt.Rd.g1} = 826.31 \text{ ok} N$$

Csavarcsoport 1 - 3 ellenállása:

$$F_{bwt.Rd.g2} := \frac{b_{eff.bwt.g2} \cdot t_{wb} \cdot f_{y.bw}}{\gamma_{M0}}$$

$$F_{bwt.Rd.g2} = 1475.88 \cdot kN$$

Csavarcsoport 2 - 3 ellenállása:

$$F_{bwt.Rd.g3} := \frac{b \text{ eff.bwt.g3} \cdot t \text{ wb} \cdot f \text{ y.bw}}{\gamma_{M0}}$$

$$F_{bwt.Rd.g3} = 1224.81 \text{ kN}$$

2.6. Kiékelés nyomott övlemeze

segédmennyiségek:

kiékelt szelvény nyomatéki ellenállása:

M_{c.haunched_sec} :=
$$\frac{W \text{ haunched_sec } \cdot f \text{ y.bf}}{\gamma \text{ M0}}$$
M_{c.haunched_sec} = 681.93\text{kN·m}

a kiékelés nyomott övlemezenek ellenállása:

$$F_{hfc.Rd} \coloneqq \begin{bmatrix} 0.8 \cdot \left[\frac{M_{c.haunched_sec}}{\left(h_{haunched_sec} - t_{fhn0} \right)} \cdot \cos \left(\alpha_{hn} \right) \right] & \text{if } h_{haunched_sec} > 600 \cdot mm \\ \frac{M_{c.haunched_sec}}{\left(h_{haunched_sec} - t_{fhn0} \right)} \cdot \cos \left(\alpha_{hn} \right) & \text{otherwise} \end{bmatrix}$$

F_{hfc.Rd} = 556.69kN

2.8. Csomópont nyomatéki teherbírása

2.8.1. Csavarsorok ellenállása

- Csavarsor 1		
oszlop nyírt gerinclemeze	$F_{\text{cws.Rd.1}} := F_{\text{cws.Rd}}$	$F_{cws.Rd.1} = 636.41$ ekN
oszlop nyomott gerinclemeze	F cwc.Rd.1 := F cwc.Rd	$F_{\text{cwc.Rd.1}} = 514.53 \text{ kN}$
oszlop húzott gerinclemeze		$F_{cwt.Rd.1} = 434.46$ kN
oszlop hajlított öve		$F_{cfb.Rd.1} = 303.52$ kN
hajlított homloklemez		$F_{epb.Rd.1} = 302.97 \text{ kN}$
húzott csavarok	$F_{bt.Rd.1} := 2 \cdot B_{t.Rd}$	$F_{bt.Rd.1} = 352.51 \text{ ekN}$
kiékelés nyomott öve	F hfc.Rd.1 := F hfc.Rd	$F_{hfc.Rd.1} = 556.69$ kN
gerenda húzott gereinclemeze		$F_{bwt.Rd.1} = 651.98$ kN
csavarsor 1 tehebírása:		F _{Rd.1} = 302.97•kN

- Csavarsor 2

1) önállónak tekintett csavarsorok

oszlop nyírt gerinclemeze	$F_{cws.Rd.2} := F_{cws.Rd} - F_{Rd.1}$	$F_{cws.Rd.2} = 333.44$ kN
oszlop nyomott gerinclemeze	$F_{\text{cwc.Rd.2}} := F_{\text{cwc.Rd}} - F_{\text{Rd.1}}$	$F_{cwc.Rd.2} = 211.55$ kN
oszlop húzott gerinclemeze		$F_{\text{cwt.Rd.2}} = 428.46 \text{ kN}$
oszlop hajlított öve		$F_{cfb.Rd.2} = 323.00 \text{kN}$
hajlított homloklemez		$F_{\text{epb.Rd.2}} = 287.98 \text{ kN}$
húzott csavarok	$F_{bt.Rd.2} := 2 \cdot B_{t.Rd}$	F bt.Rd.2 = 352.51•kN
kiékelés nyomott öve	F hfc.Rd.2 := F hfc.Rd - F Rd.1	$F_{hfc.Rd.2} = 253.72 \text{ kN}$
gerenda húzott gereinclemeze		$F_{bwt.Rd.2} = 575.24$ kN

2) csavarcsoport részeként tekintett csavarsorok

Csavarcsoport 1 - 2

oszlop húzott gerinclemeze $F_{cwt.Rd.1} = F_{cwt.Rd.g1} - F_{Rd.1}$ $F_{cwt.Rd.1} = 261.08 \text{ kN}$

oszlop hajlított öve F cfb.Rd.1 2 = F cfb.Rd.g1 - F Rd.1 F cfb.Rd.1 2 = 235.62 kN

hajlított homloklemez $F_{epb.Rd.1} = F_{epb.Rd.g1} - F_{Rd.1}$ $F_{epb.Rd.1} = 209.66$ kN

gerenda húzott gereinclemeze $F_{bwt.Rd.1_2} := F_{bwt.Rd.g1} - F_{Rd.1}$ $F_{bwt.Rd.1} = 523.33 \text{ kN}$

csavarsor 2 tehebírása: $F_{Rd,2} = 209.66$ kN

- Csavarsor 3

1) önállónak tekintett csavarsorok

oszlop nyírt	F cws.Rd.3 := F cws.Rd $- F$ Rd.1 $- F$ Rd.2	$F_{cws.Rd.3} = 123.78$ ekN
gerinclemeze	cws.ra.s cws.ra ra.1 ra.2	cws.rca.s

oszlop nyomott
$$F_{cwc.Rd.3} := F_{cwc.Rd} - F_{Rd.1} - F_{Rd.2}$$
 $F_{cwc.Rd.3} = 1.89$ kN gerinclemeze

oszlop húzott gerinclemeze $F_{cwt.Rd.3} = 428.46$ kN

oszlop hajlított öve $F_{cfb.Rd.3} = 323.00 \text{ kN}$

hajlított homloklemez $F_{epb.Rd.3} = 295.68 \text{kN}$

húzott csavarok

 $F_{bt,Rd,3} := 2 \cdot B_{t,Rd}$ $F_{bt.Rd.3} = 352.51 \text{ ekN}$

kiékelés nyomott öve $F_{hfc.Rd.3} := F_{hfc.Rd} - F_{Rd.1} - F_{Rd.2}$ $F_{hfc.Rd.3} = 44.06 \text{ kN}$

gerenda húzott gereinclemeze $F_{bwt.Rd.3} = 614.66$ kN

2) csavarcsoport részeként tekintett csavarsorok

Csavarcsoport 1 - 3

oszlop húzott gerinclemeze	$F_{\text{cwt.Rd.1}_3} := F_{\text{cwt.Rd.g2}} - F_{\text{Rd.1}} - F_{\text{Rd.2}}$	$F_{\text{cwt.Rd.1}_3} = 320.80 \text{ kN}$
oszlop hajlított öve	$F_{cfb.Rd.1_3} := F_{cfb.Rd.g2} - F_{Rd.1} - F_{Rd.2}$	$F_{cfb.Rd.1_3} = 367.66$ kN
hajlított homloklemez	$F_{epb.Rd.1_3} := F_{epb.Rd.g2} - F_{Rd.1} - F_{Rd.2}$	$F_{epb.Rd.1_3} = 302.50$ kN
gerenda húzott	$F_{bwt.Rd.1_3} := F_{bwt.Rd.g2} - F_{Rd.1} - F_{Rd.2}$	$F_{bwt.Rd.1_3} = 963.24$ kN

Csavarcsoport 2 - 3

ocavareor 2 tohobíráca:		E 1.00-LNI
gerenda húzott gereinclemeze	F bwt.Rd.2_3 := F bwt.Rd.g3 - F Rd.1 - F Rd.2	F bwt.Rd.2_3 = 712.17 kN
hajlított homloklemez	$F_{epb.Rd.2_3} := F_{epb.Rd.g3} - F_{Rd.1} - F_{Rd.2}$	$F_{\text{epb.Rd.2}_3} = 77.85 \text{ kN}$
oszlop hajlított öve	$^{\rm F}$ cfb.Rd.2_3 $^{\rm := F}$ cfb.Rd.g3 $^{\rm - F}$ Rd.1 $^{\rm - F}$ Rd.2	$F_{cfb.Rd.2_3} = 152.06$ kN
oszlop húzott gerinclemeze	$F_{\text{cwt.Rd.2}_3} := F_{\text{cwt.Rd.g3}} - F_{\text{Rd.1}} - F_{\text{Rd.2}}$	$F_{\text{cwt.Rd.2}_3} = 296.55 \text{kN}$

csavarsor 3 tehebírása:

 $F_{Rd.3} = 1.89$ ekN

2.8.2. Képlékeny nyomatéki teherbírás:

csavarsor 1 tehebírása: $F_{Rd,1} = 302.97$ kN

csavarsor 1 és az elfordulási középpont h $_{r1}$:= $\left(\frac{h_{b0}}{\cos{(\alpha)}} + h_{hn}\right) + 1_{ep} - \frac{t_{fhn}}{2} - e_{1}$

 $h_{r1} = 692.28$ mm

csavarsor 2 tehebírása: $F_{Rd} = 209.66$ kN

csavarsor 2 és az elfordulási középpont h $_{r2}$:= $\left(\frac{h_{b0}}{\cos{(\alpha)}} + h_{hn}\right) + 1_{ep} - \frac{t_{fhn}}{2} - \left(e_1 + p_1\right)$ közötti távolság:

 $h_{r2} = 612.28$ mm

csavarsor 3 tehebírása: $F_{Rd,3} = 1.89$ %N

csavarsor 2 és az elfordulási középpont h $_{r3}$:= $\left(\frac{h\ b0}{\cos\left(\alpha\right)} + h\ hn\right) + l\ _{ep} - \frac{t\ fhn}{2} - \left(e\ _{1} + p\ _{1} + p\ _{2}\right)$ közötti távolság:

 $h_{r3} = 332.28$ mm

2.8.3. Rugalmas nyomatéki teherbírás:

M elastic
$$= \frac{2}{3} \cdot M_{j.Rd}$$
 M elastic $= 225.83 \text{ ekN·m}$

3. CSOMÓPONTI MEREVSÉG MEGHATÁROZÁSA

3.1. Oszlop nyírt gerinclemeze

segédmennyiségek:

az erőkar közelítő értéke:
$$z := \frac{\left(F\ Rd.1\cdot^h\ r1 + F\ Rd.2\cdot^h\ r2 + F\ Rd.3\cdot^h\ r3\right)}{F\ Rd.1 + F\ Rd.2 + F\ Rd.3}$$
 $z = 658.36$ mm

a merevségi tényező:

$$k_1 := \frac{0.385 \cdot A_{vc}}{\beta \cdot z}$$
$$k_1 = 3.35 \cdot mm$$

3.2. Oszlop nyomott gerinclemeze

hatékony szélesség:

b eff.cwc :=
$$t_{\text{fhn}} + 2 \cdot \sqrt{2} \cdot a_{\text{fb}} + 5 \cdot (t_{\text{fc}} + r_{\text{c}}) + s_{\text{p}}$$

b eff.cwc = 299.46 mm

tengely irányú merevség:

$$k_2 := \frac{0.7 \cdot b \text{ eff.cwc} \cdot t \text{ wc}}{d_{\text{Wc}}}$$
$$k_2 = 7.74 \cdot \text{mm}$$

3.3. Oszlop húzott gerinclemeze

csavarsor 1

hatékony szélesség: b
$$_{eff.1}$$
 := e $_1$ + 0.5·p $_1$ b $_{eff.1}$ = 120°mm

tengely irányú merevség:
$$k_{3.1} := \frac{0.7 \cdot b \ eff.1^{\cdot t} \ wc}{d \ wc}$$
 $k_{3.1} = 3.10$ °mm

csavarsor 2

hatékony szélesség: b
$$_{eff.2}$$
:= 2·m $_{c}$ + 0.625·e $_{c}$ + 0.5·p $_{1}$ b $_{eff.2}$ = 162.05°mm

tengely irányú merevség:
$$k_{3.2} := \frac{0.7 \cdot b \text{ eff.} 2 \cdot t \text{ wc}}{d \text{ wc}}$$

$$k_{3.2} = 4.19 \text{ mm}$$

csavarsor 3

$$b_{eff.3} = 206.72$$
 mm

tengely irányú merevség:
$$k_{3.3} := \frac{0.7 \cdot b \text{ eff.} 3 \cdot t \text{ wc}}{d_{wc}}$$

$$k_{3.3} = 5.34$$
°mm

3.4. Oszlop hajlított övlemeze

csavarsor 1

hatékony szélesség: b
$$_{eff.1}$$
 := e $_1$ + $0.5 \cdot p$ $_1$

$$b_{eff.1} = 120$$
•mm

$$m_c = 32.90$$
°mm

tengely irányú merevség:
$$k_{4.1} := \frac{0.85 \cdot b \text{ eff.} 1 \cdot t \text{ fc}^3}{m_c^3}$$

$$k_{4.1} = 19.65$$
°mm

csavarsor 2

$$b_{eff.2} := 2 \cdot m_c + 0.625 \cdot e_c + 0.5 \cdot p_1$$
 $b_{eff.2} = 162.05 \cdot mm$

tengely irányú merevség:
$$k_{4.2} := \frac{0.85 \cdot b \ eff.2 \cdot t \ fc}{m_c^3}$$

$$x_{4.2} := \frac{0.85 \cdot b \text{ eff.} 2 \cdot t \text{ fc}^3}{m_a^3}$$

$$k_{4.2} = 26.53$$
°mm

csavarsor 3

$$b_{eff.3} = 206.72$$
°mm

tengely irányú merevség:
$$k_{4.3} := \frac{0.85 \cdot b_{eff.3} \cdot t_{fc}^3}{m_c^3}$$

$$k_{4.3} = 33.84$$
°mm

3.5. Hajlított homloklemez

csavarsor 1

hatékony szélesség: b
$$_{eff.1}$$
 := α 1·m1 $_1$ + 0.5·p $_1$ - $\left(2\cdot$ m1 $_1$ + 0.625·e $_{ep}\right)$ b $_{eff.1}$ = 207.21•mm

tengely irányú merevség:
$$k_{5.1} := \frac{0.85 \cdot b \text{ eff.} 1 \cdot t \text{ ep}^3}{\text{m1}_1^3}$$

$$k_{5.1} = 11.03$$
°mm

csavarsor 2

hatékony szélesség:
$$b_{eff.2} := 2 \cdot m_{12} + 0.5 \cdot p_{1} + 0.625 \cdot e_{ep}$$

$$b_{eff.2} = 171.99$$
mm

$$m1_2 = 50.37$$
° mm

tengely irányú merevség:
$$k_{5.2} := \frac{0.85 \cdot b \text{ eff.} 2 \cdot t \text{ ep}^3}{\text{m1}_2^3}$$

$$k_{5.2} = 9.15$$
°mm

csavarsor 3

hatékony szélesség:
$$b_{eff.3} := \alpha 3 \cdot m1_3$$

$$b_{eff.3} = 282.07$$
°mm

$$m1_3 = 50.37$$
°mm

tengely irányú merevség:
$$k_{5.3} := \frac{0.85 \cdot b \text{ eff.} 3 \cdot t \text{ ep}^3}{\text{m1}_3^3}$$

$$k_{5.3} = 15.01$$
°mm

3.6. Húzott csavarok

homloklemez vastagsága: t $_{ep} = 20.00$ $^{\circ}$ mm alátétek száma csavaronként: $_{Wn} = 2.00$

övvastagság: t $_{fc}$ = 19.00 $_{mm}$ csavaralátét magassága: t $_{W}$ = 3.00 $_{mm}$

csavarfej magassága: $t_b = 13.00$ °mm csavaranya magassága: $t_n = 16.00$ °mm

a csavar hossza: $L_{bolt} := \frac{t_b}{2} + t_{fc} + t_{ep} + \frac{t_n}{2} + wn \cdot t_w$

$$k_{10} := 1.6 \cdot \frac{A_s}{L_{bolt}}$$
 $k_{10} = 6.58 \text{ mm}$

3.7. A csomópont elfordulási merevsége

Effektív merevségi tényezők csavarsoronként:

Csavarsor 1 Csavarsor 2 Csavarsor 3

$$k_{r,1} := \begin{bmatrix} k_{3,1} \\ k_{4,1} \\ k_{5,1} \\ k_{10} \end{bmatrix} \qquad k_{r,2} := \begin{bmatrix} k_{3,2} \\ k_{4,2} \\ k_{5,2} \\ k_{10} \end{bmatrix} \qquad k_{r,3} := \begin{bmatrix} k_{3,3} \\ k_{4,3} \\ k_{5,3} \\ k_{10} \end{bmatrix}$$

$$k_{eff.1} := \frac{1}{\sum_{i} \frac{1}{k_{r.1_{i}}}} \qquad k_{eff.2} := \frac{1}{\sum_{j} \frac{1}{k_{r.2_{j}}}} \qquad k_{eff.3} := \frac{1}{\sum_{u} \frac{1}{k_{r.3_{u}}}}$$

$$k_{eff.1} = 1.62 \text{ mm} \qquad k_{eff.2} = 1.86 \text{ mm} \qquad k_{eff.3} = 2.30 \text{ mm}$$

A csavarsor és az elfordulási középpont közötti távolság:

Csavarsor 1 Csavarsor 2 Csavarsor 3

 $h_{r1} = 692.28$ mm $h_{r2} = 612.28$ mm $h_{r3} = 332.28$ mm

Az egyenértékû erőkar:

$$k_{eff} := \begin{bmatrix} k_{eff.1} \\ k_{eff.2} \\ k_{eff.3} \end{bmatrix} \qquad h_r := \begin{bmatrix} h_{r1} \\ h_{r2} \\ h_{r3} \end{bmatrix}$$

$$z_{eq} := \frac{\sum (k_h 2)}{\sum (k_h)} \cdot m$$
 $z_{eq} = 571.36$ mm

Csavarsorok egyenértékû merevségi tényezője:

$$k_{eq} := \frac{\sum (k_h) \cdot m^2}{z_{eq}}$$
 $k_{eq} = 5.30$ °mm

3.8.1. Kezdeti elfordulási merevség

oszlop nyírt gerinclemeze $k_1 := \frac{0.385 \cdot A_{vc}}{\beta \cdot z_{eq}}$ $k_1 = 3.86 \cdot mm$ $k := \begin{bmatrix} k_1 \\ k_2 \\ k_{eq} \end{bmatrix}$ oszlop nyomott gerinclemeze $k_2 = 7.74 \cdot mm$ i := 0... rows(k) - 1

$$S_{j.ini} := \frac{E \cdot z_{eq}^{2}}{\sum_{i} \frac{1}{k_{i}}}$$

$$S_{j.ini} = 118828.27 \frac{kN \cdot m}{rad}$$

3.8.2. Idealizált elfordulási merevség

$$\eta := 2$$
 $S_{jn} := \frac{S_{j.ini}}{\eta}$ $S_{jn} = 59414.14 \frac{kN \cdot m}{rad}$

3.8.3. Nyomatéki ellenálláshoz tartozó szekáns merevség

$$\mu := \left(1.5 \cdot \frac{\text{M j.Rd}}{\text{M j.Rd}}\right)^{2.7}$$

$$S_{j.sec} := \frac{\text{E-z eq}^2}{\mu \cdot \sum_{i} \frac{1}{k_i}} \qquad S_{j.sec} = 39762.47 \frac{\text{kN-m}}{\text{rad}}$$

4. ÖSSZEGZÉS

- Teherbírás

 $M_{j.Rd} = 338.74 \text{ kN} \cdot \text{m}$

- Merevség

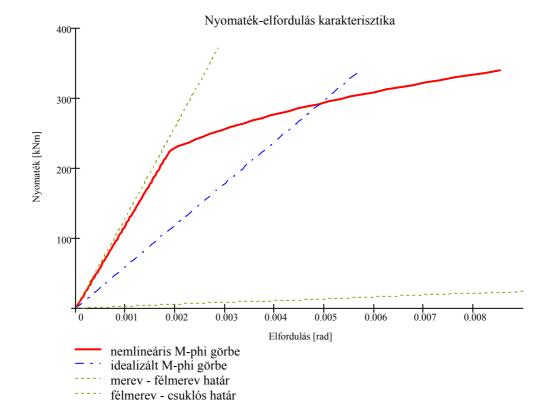
kezdeti merevség: $S_{j.ini} = 118828.27 \frac{kN \cdot m}{rad}$

idealizált merevség: $S_{jn} = 59414.14 \frac{kN \cdot m}{rad}$

- Merevségi osztályozás

Merevségi határok (merevítetlen keret esetén)

merev - félmerev határ $S_{j.ini.r_s} := 25.0$


félmerev - csuklós határ S $_{j.ini.s_p}$:= 0.5

Dimenzió nélküli kezdeti merevség

 $S_{j.ini.red} := \frac{S_{j.ini} L_b}{E L_b}$ $S_{j.ini.red} = 22.89$

Merevségi osztály

Félmerev , mivel Sj.ini.s_p < Sj.ini.red < Sj.ini.r_s

MELLÉKLET

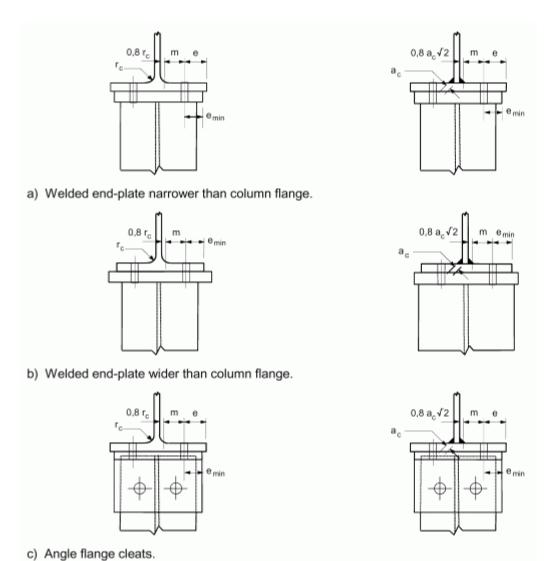


Figure 6.8: Definitions of e, \mathbf{e}_{\min} , \mathbf{r}_{c} and \mathbf{m}

Table 6.4: Effective lengths for an unstiffened column flange

Bolt-row considered individually		Bolt-row considered as part of a group of bolt-rows		
location	Circular patterns $\ell_{\text{eff,ep}}$	Non-circular patterns $\ell_{\rm eff,nc}$	Circular patterns $\ell_{\text{eff,cp}}$	Non-circular patterns $\ell_{\rm eff,nc}$
Inner bolt-row	2πm	4m + 1,25e	2 <i>p</i>	p
End bolt-row	The smaller of: $2\pi m$ $\pi m + 2e_1$	The smaller of: 4m + 1,25e $2m + 0,625e + e_1$	The smaller of: $\pi m + p$ $2e_1 + p$	The smaller of: $2m + 0.625e + 0.5p$ $e_1 + 0.5p$
Mode 1:	$\ell_{\rm eff,1} = \ell_{\rm eff,nc}$ but	$\ell_{\rm eff,1} \leq \ell_{\rm eff,cp}$	$\Sigma \ell_{ m eff,1} = \Sigma \ell_{ m eff,nc}$ but	$\Sigma \ell_{\rm eff,1} \leq \Sigma \ell_{\rm eff,cp}$
Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\Sigma \ell_{ m eff,2} = \Sigma \ell_{ m eff,nc}$	

Table 6.5: Effective lengths for a stiffened column flange

Bolt-row	Bolt-row considered individually		Bolt-row considered as part of a group of bolt-rows	
location	Circular patterns $\ell_{\rm eff,cp}$	Non-circular patterns $\ell_{\rm eff,nc}$	Circular patterns $\ell_{\rm eff,cp}$	Non-circular patterns $\ell_{\rm eff,nc}$
Bolt-row adjacent to a stiffener	2πm	ат	πm + p	0,5p + am - (2m + 0,625e)
Other inner bolt-row	2πm	4m + 1,25e	2 <i>p</i>	p
Other end bolt-row	The smaller of: $2\pi m$ $\pi m + 2e_1$	The smaller of: 4m + 1,25e 2m + 0,625e + e ₁	The smaller of: $\pi m + p$ $2e_1 + p$	The smaller of: $2m + 0.625e + 0.5p$ $e_1 + 0.5p$
End bolt-row adjacent to a stiffener	The smaller of: $2\pi m$ $\pi m + 2e_1$	$e_1 + \alpha m$ - $(2m + 0.625e)$	not relevant	not relevant
For Mode 1:	$\ell_{\rm eff,1} = \ell_{\rm eff,nc}$ but $\ell_{\rm eff,1} \le \ell_{\rm eff,cp}$		$\Sigma \ell_{\text{eff,1}} = \Sigma \ell_{\text{eff,nc}}$ but $\Sigma \ell_{\text{eff,1}} \leq \Sigma \ell_{\text{eff,cp}}$	
For Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\Sigma \ell_{\rm eff,2} = \Sigma \ell_{\rm eff,nc}$	
α should be obtained from figure 6.11.				

Table 6.6: Effective lengths for an end-plate				
Bolt-row location	Bolt-row considered individually		Bolt-row considered as part of a group of bolt-rows	
	Circular patterns $\ell_{\text{eff,ep}}$	Non-circular patterns $\ell_{\rm eff,nc}$	Circular patterns $\ell_{\rm eff,cp}$	Non-circular patterns $\ell_{\rm eff,nc}$
Bolt-row outside tension flange of beam	Smallest of: $2\pi m_x$ $\pi m_x + w$ $\pi m_x + 2e$	Smallest of: $4m_x + 1,25e_x$ $e + 2m_x + 0,625e_x$ $0,5b_p$ $0,5w + 2m_x + 0,625e_x$	_	
First bolt-row below tension flange of beam	2πm	ат	πm + p	$0.5p + \alpha m$ - $(2m + 0.625e)$
Other inner bolt-row	$2\pi m$	4m + 1,25 e	2 <i>p</i>	p
Other end bolt-row	2πm	4m + 1,25 e	πm + p	2m+0,625e+0,5p
Mode 1:	$\ell_{\text{eff},1} = \ell_{\text{eff},\text{nc}}$ but $\ell_{\text{eff},1} \le \ell_{\text{eff},\text{ep}}$		$\Sigma \ell_{\text{eff},1} = \Sigma \ell_{\text{eff,nc}}$ but $\Sigma \ell_{\text{eff},1} \leq \Sigma \ell_{\text{eff,cp}}$	
Mode 2:	$\ell_{\rm eff,2} = \ell_{\rm eff,nc}$		$\Sigma \ell_{\rm eff,2} = \Sigma \ell_{\rm eff,nc}$	
α should be obtained from figure 6.11.				

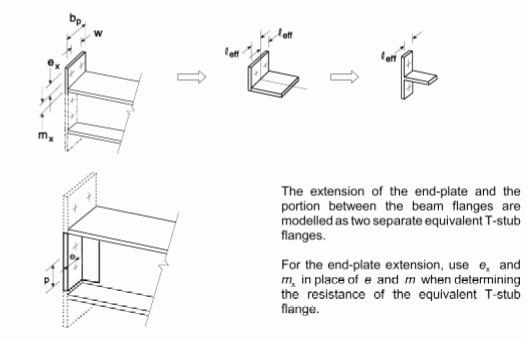
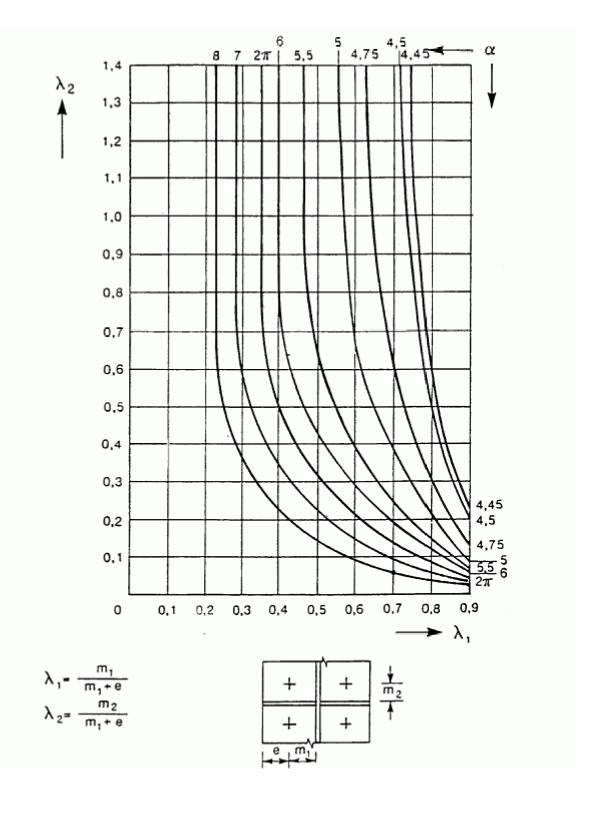



Figure 6.10: Modelling an extended end-plate as separate T-stubs

