Highway and Railway Design 1 EXERCISES 5. (for Lecture 10. of Dr. A. Timár)

1. Example

The number of load repetition observed in a day on a given road section by 100 kN Standard Axle Load (SAL) is $1000,110 \mathrm{kN}$ axle load is 120 and 50 kN axle load is 11000 . Find the equivalent axle load (ESAL).

Solution

Item	Axle load (L; kN)	No. of load repetition $\left(n_{i}\right)$	Load Equivalency Factor - LEF $F_{i}=(L / S A L)^{4}$	$\begin{aligned} & \text { ESAL/day } \\ & \left(F_{i} n_{i}, k N\right) \end{aligned}$
1	50	11000	$(50 / 100)^{4}=0.0625$	688
2	100	1000	$(100 / 100)^{4}=1.0$	1000
3	110	120	$(110 / 100)^{4}=1.464$	176
Σ				1864

2. Example

The Average Annual Daily Traffic ($A A D T$) expected on a two-lane road section in the first calendar year following reconstruction is 1800 PCU/day, from which the rate of Commercial Vehicles ($C V$) by $20+50 \mathrm{kN}$ axle load is 8%, by $20+50+50 \mathrm{kN}$ axle load is 4% and by $50+80+110+110 \mathrm{kN}$ axle load is 3%. Calculate the Design Traffic ($N_{D T}$) for a 15 year long Design Period, assuming the composition of traffic remains constant and its cumulative traffic growth factor (CGF) is $2 \% /$ year.

Solution

a) First calculate the ESAL in the base year:

Item	AADT (PCU=2.5CV; veh/day)	Axle load $(L ; k N)$	Yearly number of load repetition (365*AADT)	$\begin{aligned} & \text { Load Equivalency } \\ & \text { Factor - LEF } \\ & F_{i}=(L / S A L)^{4} \end{aligned}$	ESAL/year $\left(F_{i} n_{i} ; k N\right)$
1	$(0.08 * 1800) / 2.5=58$	20	21024	$(20 / 100)^{4}=0.0016$	34
		40		$(40 / 100)^{4}=0.0256$	539
2	$(0.04 * 1800) / 2.5=29$	20	10512	$(20 / 100)^{4}=0.0016$	17
		40		$(40 / 100)^{4}=0.0256$	270
		50		$(50 / 100)^{4}=0.0625$	4606
3	$(0.03 * 1800) / 2.5=21.6$	50	7884	$(50 / 100)^{4}=0.0625$	493
		110		$(110 / 100)^{4}=1.464$	11543
		160		$(160 / 100)^{4}=6.554$	51672
Σ					69174

b) Calculate the CGF for the 15 years long Design Period:

Values of $C G F$ are summarized in the table below:

Design period (P) (years)	Annual growth rate (R) (\%)								
	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	
5	5	5.1	5.2	5.3	5.4	5.6	5.9	6.1	
10	10	10.5	10.9	11.5	12.0	13.2	$\mathbf{1 4 . 5}$	15.9	
15	15	16.1	17.3	18.6	20.0	23.3	27.2	$\mathbf{3 1 . 8}$	
20	20	22.0	24.3	26.9	29.8	36.8	45.8	57.3	
25	25	28.2	32.0	36.5	41.6	54.9	73.1	98.3	

From the table $C G F$ for $\mathrm{P}=15$ years, when annual growth rate is $\mathrm{R}=2 \%$, equals 17.3.
The assumed value of the Direction Factor is 0.5 .
Thus the total ESAL during the design period is $0.5^{*} 17.3^{*} 69174=\underline{\mathbf{5 9 8} \mathbf{3 5 5}}=\underline{\mathbf{0 . 6} \mathbf{~ m s a}}$

3. Example

The following observations were recorded in a California Bearing Ratio - CBR test. Determine the CBR values and suitability of the soil intended to be used as sub-grade for a new road.

\boldsymbol{S} penetration in $\mathbf{~ m m}$	0.0	0.5	1.0	1.5	2.0	3.0	4.0	10.0
\boldsymbol{P} load on plunger $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$	0.0	1.34	2.98	3.81	4.24	4.89	5.31	6.48

Solution

Calculate pression at penetration 2.5 mm and 5.0 mm , respectively, assuming the linearity of load/penetration function between two recorded values following each other:

$$
\begin{gathered}
\mathrm{P}_{2.5}=4.24+(4.89-4.24) / 2=\underline{\mathbf{4 . 5 6 5}} \mathrm{kN} \\
\mathrm{P}_{5.0}=5.31+(6.48-5.31) / 6=\underline{\mathbf{5 . 5 0 5}} \mathrm{kN}
\end{gathered}
$$

Values of CBR\%:
$\operatorname{CBR} \%=100 *\left(\mathrm{P}_{2.5} / 70\right)=100 *(4.565 / 70)=\mathbf{6 . 5 \%}$
$\operatorname{CBR} \%=100 *\left(\mathrm{P}_{5.0} / 105\right)=100 *(5.505 / 105)=\underline{\mathbf{5 . 2} \%}$
The bigger value prevails, thus CBR\% is $6.5 \%>5 \%$, i.e. the subsoil is suitable for serving as a subgrade supporting a flexible pavement.

4. Example

Design the pavement for construction of a new bypass with the following data:
a) Two-lane carriageway (lane distribution factor $\mathrm{LDF}=0.75$)
b) Initial average traffic volume of Commercial Vehicles (CV) in the year of completion of construction (in both direction) AADT $=800 \mathrm{CVs} / \mathrm{year}$
c) Traffic growth rate $=3 \% /$ year
d) Design life of pavement 15 years
e) Average damage factor based on axle load survey $\mathrm{ADF}=2.5 \mathrm{ESAL} / \mathrm{CV}$
f) Design CBR of sub-grade soil $=5 \%$

Solution

The value of CGF (given by the table in Example 2.) is 18.6
Calculate the design traffic:

$$
\begin{aligned}
& \boldsymbol{T}_{\boldsymbol{D} \boldsymbol{T}}=365^{*} \mathrm{AADT}^{*} \mathrm{CGF}^{*} \mathrm{DF}^{*} \mathrm{LDF}^{*} \mathrm{ADF} \\
& \boldsymbol{T}_{\boldsymbol{D} \boldsymbol{T}}=365^{*} 800 * 18.6^{*} 0.5 * 0.75 * 2.5=\underline{\mathbf{5 0 9 1} \mathbf{7 5 0}}=\underline{\mathbf{5 . 1}} \mathrm{msa}
\end{aligned}
$$

Total pavement thickness for CBR 5\% and design traffic load 5.1 msa is $\underline{\mathbf{5 8 0} \mathbf{~ m m}}$ from the design chart below:

Pavement structure could be obtained from the Pavement Design Catalogue:

5. Example

A new road section is built to connect the old collector road to a new motorway interchange. The structure of the new road is:

40 mm HMA (Hot Mix Asphalt) as wearing course
100 mm DBM (Bituminous Macadam) as binder course
300 mm WMM (Wet Mix Macadam) as base course
250 mm GSB (Granular Sub-Base) as sub-base
The old roads' structure is:
40 mm HMA (Hot Mix Asphalt) as wearing course
100 mm BM (Bituminous Macadam) as binder course
250 mm WBM (Water Bound Macadam) as base course
250 mm GSB (Granular Sub-Base) as sub-base
The old pavement presumably needs to be strengthened by an overlay, because its condition is as follows:

GSB and WBM layers are in good condition - Conversion factor $=0.1$
BM layer shows aggregate degradation - Conversion factor $=0.5$
HMA layer shows appreciable cracking - Conversion factor $=0.6$

Solution

Effective thickness of the old pavement:

$$
\boldsymbol{h}_{e}=0.1 *(250+250)+0.5 * 100+0.6 * 40=\underline{\mathbf{1 2 4}} \mathrm{mm}
$$

Equivalent thickness of new pavement in terms of AC

$$
\boldsymbol{h}_{\boldsymbol{n}}=(300+250) \times 0.2+(100+40) \times 1.0=\underline{\mathbf{2 5 0}} \mathrm{mm}
$$

Thickness of overlay:

$$
h_{O L}=h_{n}-h_{e}=250-124=\underline{\mathbf{1 2 6}} \mathrm{mm}
$$

Provide $\mathbf{9 0} \mathbf{~ m m}$ DBM (Dense Bituminous Macadam) $\mathbf{+ 4 0} \mathbf{~ m m ~ H M A ~ (H o t ~ M i x ~ A s p h a l t) ~ a s ~ o v e r l a y ~}$

6. Example

Results of deflection measurements made on the surface of an existing two lane road with flexible pavement are as follows:
1.40;1.32;1.25; 1.35; 1.48; 1.60; 1.65; 1.55; 1.45; 1.40; 1.36; 1.46; 1.50; 1.52; 1.45 mm

The AADT (Annual Average Daily Traffic) of Heavy Vehicles $=1000 \mathrm{HV} / \mathrm{day}$, with a forecast annual growth rate of $\mathrm{R}=4 \% / \mathrm{year}$, while the average vehicle damage factor VDF $=4.5$, and the design period is 10 years. Calculate the thickness of necessary overlay taking into account a seasonal correction factor of 1.4.

Solution

Calculate the mean deflection:
$\mu=(1.40+1.32+1.25+1.35+1.48+1.60+1.65+1.55+1.45+1.40+1.36+1.46+1.50+1.52+1.45) / 15=21.74 / 15=\mathbf{1 . 4 5} \mathrm{mm}$
Calculate the standard deviation:

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

Values of the differences between deflection values and mean deflection $\left(x_{i}-\mu\right)$:
$-0.05 ;-0.13 ;-0.2 ;-0.1 ;+0.03 ;+0.15 ;+0.2 ;+0.1 ;+0 ;-0.05 ;-0.09 ;+0.01 ;+0.05 ;+0.07 ;+0$
Mean of the squares of these differences:
$(0.0025+0.0169+0.04+0.01+0.0009+0.0225+0.04+0.01+0.0025+0.0081+0.0001+0.0025+0.0049) / 15=$ $=0.1609 / 15=0.0107266$

The standard deviation:
$\sigma=\sqrt{0.0107266}=\underline{\mathbf{0 . 1 0 4} \mathrm{mm}}$
Characteristic deflection: $\mu+2 * \sigma=1.45+0.208=\underline{\mathbf{1 . 6 5 8}} \mathrm{mm}$
Corrected characteristic deflection: $1.4 * 1.658=\underline{\mathbf{2 . 3 2 1 2}} \mathrm{mm}$
Calculate $\mathrm{CGF}=\left[(1-0.01 \mathrm{R})^{10}-1\right] / 0.01=\underline{\mathbf{1 2 . 0}}$
Calculate the design traffic $\boldsymbol{T}_{\boldsymbol{D} \boldsymbol{T}}=1000 * 365 * 12.0 * 4.5 * 0.5=9855000=\underline{\mathbf{9 . 8 6}} \mathrm{msa}$
Define thickness of Bituminous Macadam (BM) overlay (mm) in function of characteristic deflection (mm) and design traffic (msa) from the standard chart below:

Thickness of overlay in terms of BM (Bituminous Macadam) from the chart $=\underline{\mathbf{1 8 0}} \mathbf{~ m m}$
Thickness in terms of Bituminous Macadam / Hot Mix Asphalt: BM/HMA=180*0.7 = $\underline{\mathbf{1 2 6}} \mathbf{~ m m}$ Provide $\underline{\mathbf{4 0}} \mathrm{mm}$ HMA and $\underline{\mathbf{9 0}} \mathrm{mm}$ DBM (Dense Bituminous Macadam) as overlays.

