B.Sc - Road \& Railway Design I. Lecture 2.
 VEHICLE'S MOTION ON THE ROAD - RESISTANCES - SIGHT DISTANCES \& GEOMETRIC ELEMENTS

Dr. András Timár Professor Emeritus

University of Pécs - Faculty of Engineering and Information Technology - Department of Civil Engineering

BASIC TERMS \& DESCRIPTIONS

\otimes A Force is a Push or a Pull that one body exerts on another

* Mass is a property of a physical body, it is the measure of an object's resistance to acceleration (a change in its state of motion) when a Force is applied
\otimes The Weight of an object is defined as the Force of gravity on the object and may be calculated as the Mass multiplied by the acceleration of gravity:

At the Earth's surface

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

FORCES ACTING ON A CAR

\& Gravity pulls down on the car

* The reaction force from the road pushes up on the wheels *The driving force from the engine pushes the car along \longrightarrow
* There is friction between the road and the tyres
\& Resistances (air, gradient) act against driving force

MOMENTS

AFFECTING A VEHICLE

SPEED

* Speed (v) is determined as the distance travelled divided by the time taken
* If s is the length of the path travelled during time (t), the speed equals the time derivative of distance (s):

Conversion between common units of speed

	m / s	km / h	mph
$1 \mathrm{~m} / \mathrm{s}=$	1	3.6	2.236936
$1 \mathrm{~km} / \mathrm{h}=$	0.277778	1	0.621371
$1 \mathrm{mph}=$	0.44704	1.609344	1

SPEED-UP

\& SLOW-DOWN

* When a vehicle travels at a steady speed, the driving force $\left(F_{D}\right)$ from the engine is balanced by the sum of resistive forces $\left(F_{R}\right)$
$* F_{R}=$ friction between the road and the tyres + air resistance acting on the body of the car + component of weight, parallel with the road surface when moving up hill or down hill)
\& In case the resultant force is NOT zero, the vehicle will accelerate/speed up ($F_{D}>F_{R}$) or decelerate/slow down $\left(F_{D}<F_{R}\right)$

FRICTION

* Friction is defined as the resistance to motion between two surfaces
* Basic types of friction:
A. Static -the holding force between two surfaces at rest (adhesion)
B. Sliding -the resistance to motion between two surfaces which are moving across each other
C. Rolling -the resistance to motion of a rolling object like a ball, cylinder or wheel
D. Internal -the resistance to motion within elastic objects (tires get warm from internal friction as they flex)

RESISTANCE

\& Resistance is defined as the force impeding vehicle motion
\& Types of resistance affecting a moving vehicle:

1. Rolling resistance
2. Up hill resistance
3. Aerodynamic resistance (drag)
\& Rolling resistance $\left(F_{R}\right)$ is composed of
4. Resistance from tire deformation (90\%)
5. Tire penetration and surface compression (4\%)
6. Tire slippage and air circulation around wheel(6\%)

ROLLING RESISTANCE $\left(F_{R o}\right)$

Friction Force $=$ Normal Force $\times($ coefficient of friction $)$

$$
\mathrm{F}_{\text {friction }}=\mu \cdot \mathrm{F}_{\text {normal }}
$$

Composed primarily of :

1. Resistance from tire deformation (90%)
2. Tire penetration and surface compression (4\%)
3. Tire slippage and air circulation around wheel (6\%)

$$
F_{R}=\mu^{*} W[N]
$$

$\mu-$ rolling friction coefficient

Average value of tire friction coefficient		
Road surface	Peak value	Sliding value
Asphalt and concrete (dry)	$0.80-0.90$	0.75
Asphalt (wet)	$0.50-0.70$	$0.45-0.60$
Concrete (wet)	0.80	0.70
Gravel	0.60	0.55
Earth road (dry)	0.68	0.65
Earth road (wet)	0.55	$0.40-0.50$
Snow (hard-packed)	0.20	0.15
Ice	0.10	0.07

UPHILL RESISTANCE $\left(F_{G}\right)$

* Moving uphill

1. Increase the vehicle motion resistance against the direction of motion
2. Increase the load on rear axle and decrease the load on the front one
3. Decrease the stopping distance when using the brakes

$$
F_{G}=W^{*} \sin \alpha=W^{*} e / 100=W^{*} \operatorname{tg} \alpha
$$

when α is relatively small, it is assumed that $\sin \alpha=\operatorname{tg} \alpha$

AERODYNAMIC RESISTANCE (DRAG FORCE): F_{D}

\& Aerodynamic resistance (F_{D}) is composed of:

1. Turbulent air flow around vehicle body (85\%)
2. Friction of air over vehicle body (12\%)
3. Vehicle component resistance, from radiators and air vents (3\%)

The drag force is acting at height h_{D} above the ground:

$$
F_{D}=0.5 \rho C_{D} A v^{2}
$$

where $\rho \quad$ - atmospheric air density $\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)$
$C_{D} \quad$ - drag factor
A - area of vehicle frontal projection (m^{2})
v - speed of vehicle (m / s)

AIR FLOW \& DRAG FACTORS

DRIVING FORCE \& FUEL EFFICIENCY

* Driving force is changing in function of the status of the gear-box (transmission ratio)
* Many applications require the availability of multiple transmission ratios
$\&$ This is to ease the starting and stopping of a vehicle, though another important need is that of maintaining good fuel efficiency

TRUCK
 PERFORMANCE CURVES

\& Speed-up and slow-down diagrams or truck performance curves are reflecting the impact of a given up hill gradient onto the speed of the so-called "representative" vehicle
\& These curves are used to determine the distance travelled from the starting point of the up hill section until the point where the speed of the vehicle reaches the minimum allowed speed limit, i. e:

* whether climbing lanes are needed or not;

Timár 2019 the minimum length of acceleration lanes on motorways

HCM 2000 TRUCK PERFORMANCE CURVES

BASIC NOTIONS OF VEHICLE \& TRAFFIC FLOW SPEED

* The speed of a vehicle (v) is defined as the distance it travels per unit of time
* Time mean speed or average speed ($\underline{\underline{v}}_{t}$) of a traffic flow composed from N vehicles is the arithmetic mean of speeds of vehicles passing a given point:

$$
\underline{v}_{t}=\frac{1}{N} \sum_{n=1}^{N} v_{n}
$$

* Operating speed is the speed at which drivers are observed operating their vehicles; most frequently the $85^{\text {th }}$ percentile of the cumulative distribution of observed speeds is used as being the operating speed

DESIGN SPEED \& SPEED LIMITS

* Design speed definitions:
* The maximum safe speed that can be maintained over a specified section of $\stackrel{\circ}{\circ}$ highway when conditions are so favourable that the design features of
 the highway govern and prevail
\& The assumed design speed should be a logical one with respect to the topography, the adjacent land use and the functional classification of the road under scrutiny
* A purposefully selected speed used to determine the various geometric design features of a new road during road design
* Speed limits are maximum speeds allowed, as prescribed by the relevant Road/Highway Code
* Design speed is generally exceeds (for safety reasons) the speed limit

SELF EXPLAINING ROADS

* A new concept: a road on which the driver is encouraged to naturally adopt behaviour consistent with design and function
\& The aim is that different classes of roads should be distinctive, and within each class features such as width of carriageway, road markings, signing, and use of street lighting would be consistent throughout the route
\& Drivers would perceive the type of road and instinctively know how to behave, assuming the environment effectively provides a label for each particular type of road

SIGHT DISTANCES

* Sight distance is the length of road ahead visible to the driver; it should be long enough for the driver to see a situation and successfully react to it
\& Stopping sight distance is the distance necessary for a vehicle running at or near the design speed to stop before reaching a stationary object in its path
* Stopping sight distance is the sum of distance travelled during perception + reaction time and distance travelled during braking time
* Stopping sight distance should be assured all along the road - this is the responsibility of the civil engineer preparing the road design

STOPPING SIGHT DISTANCE

DRY CONDITIONS

The road is dry, you have a modern vehicle with good brakes and tyres. A child runs onto the road 45 m ahead of you while you are travelling in a $60 \mathrm{~km} / \mathrm{h}$ zone. You brake hard. Will you stop in time?

[^0]
$E=\frac{1}{2} m \cdot v^{2}$

Velocity v

* Kinetic energy is a term that describes the energy a vehicle has due to its mass and speed * Braking distance is needed to transform the kinetic energy of a vehicle into heatenergy at its brakes and tyres

STOPPING

SIGHT DISTANCE

Distance traveled during reaction time: $\quad D^{\prime}=\mathbf{s} / \mathbf{3 . 6} * t_{R}=0.28 * s * t_{R}[m]$ where $\quad t_{R}$ is the reaction time, i. e. $t_{R}=1.5-2.0[\mathrm{sec}]$

Braking distance: $\quad \mathrm{Ms}^{2} / 2=\mathrm{W} / 2 \mathrm{~g} * \mathrm{~s}^{2} / 3.6^{2}=0.0039 * \mathrm{Ws}^{2}=$

$$
=\left(\mathbf{W} f_{1} \pm \mathbf{W} * \mathbf{e} / \mathbf{1 0 0}\right) \mathbf{U} "
$$

$$
\mathbf{D} "=0.0039 * \mathbf{s}^{2} /\left(\mathbf{f}_{1} \pm \mathbf{e} / \mathbf{1 0 0}\right)[\mathrm{m}]
$$

```
where Ms '/2
    f
```

kinetic energy of the moving vehicle coefficient of longitudinal road surface friction (0.35-0.40) gradient of the road ($\mathbf{m} / \mathbf{1 0 0 m}$)

$$
D=D^{\prime}+D^{\prime}=0.28 * s * t_{R}+\mathbf{0 . 0 0 3 9} * s^{2} /\left(\mathbf{f}_{1} \pm \mathbf{e} / \mathbf{1 0 0}\right)
$$

Example: in case $s=100 \mathrm{~km} / \mathrm{h} ; \mathrm{f}_{1}=0.4 ; \mathrm{t}=1.5 \mathrm{sec}$; the gradient $\mathrm{e}=+3 \%$

$$
D=0.28 * 100 * 1.5+0.0039 * 100^{2} /(0.4+3 / 100)=42+90.7=132.7[\mathrm{~m}]
$$

Indicative values of f_{1}

- dry pavement, careful braking:
- wet pavement, harsh braking:

0,3-0,35

- wet pavement, careful braking:

0,25-0,33

- icy pavement: 0,1-0,15

STOPPING SIGHT DISTANCE

PASSING/OVERTAKING SIGHT DISTANCE

* Passing/overtaking sight distance is the minimum sight distance required on a road (generally a two-lane, two-directional one), that will allow a driver to pass another vehicle without colliding with a vehicle approaching in the opposing lane
\& Main components:

1. Distance travelled during perception-reaction time and acceleration into the opposing lane
2. Distance required to pass in the opposing lane
3. Distance necessary to clear the slower vehicle
\& Passing/overtaking sight distance is considerably greater than stopping sight distance and can only be economically provided where the alignment permits (flat terrain, straight road)

PASSING SIGHT DISTANCE

The driver of the passing (red, A) vehicle should clearly view the distance to be traveled during 2*11=22 sec, assuming the speed of the (green, C) vehicle approaching from the opposite direction is nearly the same as that of the passing vehicle

	Rule of thumb: $\quad D_{P}=2.11 . v / 3,6=6 v[m]$	
Examples:	if $v=100 \mathrm{~km} / \mathrm{h}$, than $D_{P}=600 \mathrm{~m}$ if $v=80 \mathrm{~km} / \mathrm{h}$, than $D_{P}=480 \mathrm{~m}$ if $v=50 \mathrm{~km} / \mathrm{h}$, than $D_{P}=350 \mathrm{~m}$	

SIGHT DISTANCE ON A HORIZONTAL CURVE

MOTION OF VEHICLE IN A HORIZONTAL CURVE

\& On a straight road section the lateral forces on a vehicle are negligible

* On a horizontal curve the vehicle is subjected to a centripetal force that acts toward the centre of the curve and sustained by the friction between the tyres and the pavement + the vehicle's weight

\& The friction force acts along the cross slope of the road surface, in a perpendicular direction from the normal force

\& The superelevation counteracts of a tendency of the vehicle to slide out of the curve (caused Tіmar2019by the centrifugal force)

FORCES ACTING ON A VEHICLE IN A HORIZONTAL CURVE

\& All forces acting on the vehicle must be in equilibrium for the vehicle to resist the tendency to slide up or down the pavement while travelling through the curve
\& The components include the weight (W or Q), the side frictional resistance \& the normal force
\& The friction force is equal to the side-friction coefficient (f_{2}) multiplied by the normal force
\& These equations of equilibrium of all horizontal and vertical forces are used to calculate the minimum values of the radius of the horizontal curve and the superelevation in the function of the design speed

$$
\mathrm{F}=\mathrm{M} \cdot s^{2} / \mathrm{R}=\mathrm{W} v^{2} /\left(\mathrm{g} \cdot 3.6^{2} \cdot \mathrm{R}\right)=\mathrm{W} v^{2} / 127 \cdot \mathrm{R}
$$

where

$R \quad$ radius of horizontal curve (m) superelevation ($m / 100 m$, or \%) mass of vehicle (kg) weight of vehicle ($k N$) acceleration of gravity $\left(9.81 \mathrm{~m} / \mathbf{s}^{2}\right)$
s, ill. $v \quad$ speed (in m / s, or in $k m / h$)

Timár 2019

Equation of marginal equilibrium:

$$
\begin{gathered}
\mathbf{F}^{*} \cos \alpha=\mathbf{f}_{2}^{*} \mathbf{W}^{*} \cos \alpha+\mathbf{f}_{2}{ }^{*} \mathbf{F}^{*} \sin \alpha+\mathbf{W}^{*} \sin \alpha \\
v^{2} / 127 R=\mathbf{f}_{2}+\mathbf{q}
\end{gathered}
$$

Value of marginal (maximum allowed) speed:

$$
\begin{equation*}
v_{\max }=\sqrt{127 R \cdot\left(\mathrm{f}_{2}+\mathrm{q}\right)} \tag{km/h}
\end{equation*}
$$

Value of marginal (minimum) radius of horizontal curve:

$$
\mathbf{R}_{\min }=v^{2} / 127\left(f_{2}+q\right)
$$

Value of the superelevation in the horizontal curve:

$$
\mathrm{q}=\left(v^{2} / 127 \mathrm{R}\right)-\mathrm{f}_{2} \quad(\mathrm{~m})
$$

superelevation
The sum of lateral (f_{2}) and longitudinal (f_{1}) friction coefficients on the 2nd power is constant, thus it is not recommended to brake when the vehicle travels in the curve (consuming longitudinal friction when braking decreases the amount of available lateral friction to be mobilised against sliding out from the curve)

$$
f=\sqrt{f_{1} 2+f_{2}^{2}}
$$

DESIGN SPEED RELATED PARAMETERS (UK, 1993)

DESIGN SPEED kph	120	100	85	70	60	50	$\mathrm{V}^{2} / \mathrm{R}$
STOPPING SIGHT DISTANCE m							
Desirable Minimum	295	215	160	120	90	70	
One Step below Desirable Minimum	215	160	120	90	70	50	
HORIZONTAL CURVATURE m.							
Adverse Camber and Transitions	2880	2040	1440	1020	720	520	5
Minimum R^{+}with Superelevation of 2.5\%	2040	1440	1020	720	510	360	7.07
Minimum R^{+}with Superelevation of 3.5%	1440	1020	720	510	360	255	10
Desirable Minimum R with Superelevation of 5%	1020	720	510	360	255	180	14.14
One Step below Desirable Minimum R with							
Superelevation of 7\% Two Steps below Desirable Minimum Radius	720	510	360	255	180	127	20
with Superelevation of 7\%	510	360	255	180	127	90	28.28
VERTICAL CURVATURE							
Desirable Minimum* Crest K Value	182	100	55	30	17	10	
One Step below Desirable Min Crest K Value	100	55	30	17	10	6.5	
Absolute Minimum Sag K Value	37	26	20	20	13	9	
OVERTAKING SIGHT DISTANCES							
Full Overtaking Sight Distance FOSD m.	*	580	490	410	345	290	
FOSD Overtaking Crest K Value	*	400	285	200	142	100	

SUPERELEVATION

* Horizontal curves can be superelevated, with an elevated cross slope along the width of the pavement, to allow vehicles to travel through the curve at higher speeds, without sliding out
\& The cross section of the pavement must be rotated around the centerline or edgeline of a road, to create the superelevation
* The superelevation rate (\%) should be selected so that equilibrium of acting forces (based on the design speed \& radius of the horizontal curve) is maintained for the vehicle
* The length of the spiral transition of a spiral curve is often used to accomplish the transition from normal crown to the designed superelevation

SUPERELEVATION OF HORIZONTAL CURVES

SUPERELEVATION LAYOUT

The transition distance consists of two lengths: tangent

 runout and superelevation runoff with a horizontal curve that turns to the right and runs from point \boldsymbol{A} to point \boldsymbol{H}
SPIRAL

TRANSITION CURVE

* A spiral curve consists of a simple curve (arc of a circle) bounded by spiral transitions on each end
* Spiral transitions provide a transition from the tangent segment, which allows for the equilibrium of vehicles to be maintained throughout the curve in a designed (comfortable and safe) manner
\& Geometrically the spiral transition curve has a radius changing constantly between infinite radius (of the tangent) and fix radius (R of the horizontal curve)

SPIRAL

TRANSITION CURVE

* The fundamental requirement of a transition curve is that its radius of curvature at any given point shall vary inversely as the distance from the beginning of the spiral. Such a curve is called clothoid or Glover's spiral and is known as an ideal transition
* Using the geometric similarity of the two triangles on the previous figure:
where:

$$
r^{*} \mid=R^{*} L=p^{2} \text { (constant) }
$$

L - length of the spiral transition curve [m]
R - radius of the horizontal curve [m]
r - radius at a randomly selected point P on the spiral transition curve [m]
I - distance from the beginning of the spiral transition curve up to point P [m]
\boldsymbol{p} - so called parameter of the spiral transition curve: $p=\sqrt{R \cdot L}$

MINIMUM LENGTH OF TRANSITION CURVE

* The minimum length of transition curve can be calculated by the following 3 conditions:
* Based on rate of change of acceleration: $L_{\text {min }}=\nu^{3 / C *} R$
\& Based on rate of change of superelevation and extra widening: $L_{\text {min }}=(W+W q)^{*} q^{*} N$
* Based on empirical formula:
- for plain and ruling terrain: $L_{\text {min }}=2.7$ (v^{2} / R)
- for mountainous and steep terrains. $L_{\min }=v^{2} / R$
where
v - is the design speed (m / s)
C - is the coefficient of rate of change of centrifugal acceleration ($\mathrm{m} / \mathrm{sec}^{3}$)
R - is the radius of the horizontal curve (m)
W - is the normal width of pavement (m)
Wq - is the extra width of pavement in
q - is the superelevation ($\mathrm{m} / 100 \mathrm{~m}$)
N_{-}- is the allowable rate of introduction of superelevation

SPIRAL

TRANSITION CURVE

\& Coordinates to be used to design horizontal spiral transition curve

SNAIL'S SHELL

$X=L \quad Y=4 \Delta R$
$X_{0}=L / 2$

[^0]: Timár 2019

