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Preface

Orthotropic steel bridges are commonly used in long-span steel bridges in many parts of the world, especially in
Central Europe. Their popularity is based on the fact, that very light structures with high rigidity and small amount
of material can be constructed. The analysis and construction work of orthotropic steel bridges, however, are
complicated and require special skills, which make such structures very suitable to be discussed at final year bridge
engineering courses.

The first main Chapter of the book gives an overview on the theory of orthotropic plates. In the second Chapter,
methods of analysis are discussed. The third Chapter deals with limit states and modelling of the different parts of
an orthotropic structure. The fourth Chapter discusses the construction of such structures. The fifth Chapter deals
with the refurbishment problems of orthotropic steel bridges. The sixth Chapter discusses the design of steel bridges
according to Eurocode 3, and during three examples shows the application of these design rules. The extracts in the
Appendixes help the understanding of the application of design rules.

The primary audience for this book is the post-graduate students, and research and design professionals
working in the field of structural engineering. It is assumed that the reader has background knowledge of steel
design.
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1 Introduction

1.1 Characteristics of Materials and Structures

We assume in discussing the structural behaviour of engineering materials they hold certain
idealized natural physical properties. It is assumed that the material is a perfectly elastic solid
which will proceed its initial form completely after unloading. Mathematically, this elastic
property is described by Hooke's law. Further, we assume that it is homogeneous
[Troitsky, 1987].

A solid, which shows identical elastic behaviour in all directions, is called isotropic. Actually,
this is an idealization of physical properties, because very seldom do such material bodies or
structural materials exist.

Physically, most structural materials, such as, for example, steel, are composed of crystals of
various kinds, as well as orientations and elastic properties in all directions. However, in
considering relatively small sizes of crystals and their random distribution, it may be assumed
that the elastic behaviour of one piece of material is expressed by the average of elastic properties
of all crystals. On the basis of this approximation, the material is considered to be isotropic.

Apart from homogeneous and isotropic materials, modern construction also uses materials
with definitely expressed differences in elastic properties in different directions. Such materials
are called anisotropic.

Sometimes the fabrication methods make it necessary to consider anisotropic conditions for
structural materials. Some sheets of metal show a marked anisotropy, depending on the direction
of rolling. Consequently, such sheets show different elastic properties in different directions.

In such case, where a body possesses different elastic properties in only two perpendicular or
orthogonal directions, it is called orthogonal-anisotropic, or in short, orthotropic. Therefore,
orthotropy is only a particular case of anisotropy. Orthotropy, due to the physical structure of the
material itself, is called "natural orthotropy" [Troitsky, 1987].

For the structural design of orthotropic elements, which are in a state of elastic deformation, it
is necessary to determine theoretically those stresses and deformations in the orthotropic solids,
or to solve the problem of the theory of elasticity of such orthotropic solids.

1.2 Historical Development of Orthotropic Plate

1.2.1 First stiffened steel plates as bridge decks

Stiffened steel plates have been used for many years in steel construction, for instance in ship
building, hydraulic structures such as gates, locks, etc. The term 'orthotropic plate' used in
association with bridge decks originates from the invention of a particular type of stiffened steel
plate for the deck of steel road bridges which led to a patent in 1948 [Patentschrift, 1948]. The
'orthotropic plate' according to this patent was more than just a stiffened light weight steel deck,
because various such decks were already built before the patent [MAN, 1957]. A 'bridge with an
orthotropic plate' according to the patent meant a new approach to bridge design by which steel
weights of pre-war bridge designs, Fig. 1.1, could be reduced by up to 50% [Sedlacek, 1992].
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The main features of this breakthrough for steel bridges were:

— the deck plate forms an integral part of the main girders and cross girders and of the
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continuous longitudinal stringers by acting as part of their top flanges;

— the distance between the cross girders is smaller than 1/3 of the distance between the
main girders allowing considerable advantage to be taken of the application of the theory
of the orthogonal—-anisotropic (orthotropic) plates to the design of the transverse and

longitudinal girders, Fig. 1.2.
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The application rules associated with this patent were based on a minimum weight
optimisation study. The original application rules in principle are still valid today with only small
modifications caused by the change in the ratio of fabrication costs to material costs.

Stiffened steel deck plates used for road bridges are normally welded structures. The first
deck was constructed in 1936, Fig. 1.3 [Schaechterle and Leonhardt, 1936]. The plate thickness
was 10 mm, the distance between the longitudinal stringers made of 1 457/152 was 51 ¢cm and the
distance between transverse beams was 1.09 m. All welds were hand welded fillet welds and took
a lot of fabrication time. The main costs arose from the after-weld straightening procedure, which
was needed because the weld shrinkage was not well controlled in those days.

As a result of this experience it was felt that larger spacings of the longitudinal stringers with
the consequent reduction of weld-volume would improve the economy. This however led to
damage to the asphalt layer [Roloff, 1942]. Hence it was necessary to return to smaller stringer
spacings, which are now considered to be sufficient if the ratio of the distance, d, to the plate
thickness, ¢, is such that d/t < 25, where the minimum thickness ¢ is 12 mm.

In spite of this apparently regressive step the stiffened deck plates became more economical
due to the introduction of automatic welding and a better understanding and control of shrinkage
effects by the use of appropriate welding sequences, Fig. 1.4 [Pelikan, W. and Esslinger, M.,
1957].

The first profiles for the stringers of orthotropic plates were open profiles such as angles, flat
bars, or bulb fiats such as those used in ship building, Fig 1.5. For effective operation of these
open sections the cross girders were spaced in the range of 0.9-1.9 m centres. The stringers
normally ran continuously through the webs of the cross girders, Fig. 1.6, and the welded joints
of the stringers were located at the points of contraflexure and detailed as illustrated in Fig. 1.7.



Due to the heavy costs of fabricating a deck with ship building profiles used as stringers,
which were welded on both sides at the cross girder web intersections and other detailing
solutions had to be found as indicated in Fig. 1.8, which made better allowance for the tolerances
in the assembly and reduced the weld lengths.
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Figure 1.3 Stiffened steel deck of the highway bridge at Kircheim/Teck (Germany) built in
[Schaechterle and Leonhardt, 1936].
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1.2.2 First closed section stringers

In 1954 the first orthotropic decks with closed section stringers were constructed, Fig. 1.9.
The advantages of this system were:

— - the span lengths of the stringers were increased to 2.40 m and hence the number of
costly hand welded intersections in the cross girders was reduced,

— - the volume of the welds could be reduced by 50% by using one side welding only to the
thin hollow closed stringers;

— - advantage could be taken of the torsional rigidity in improving the local distribution of
the deck.
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Figure 1.9 Orthotropic plate deck with closed section stringers (Weser-bridge Porta, Germany),
[Doérnen, 1955].

The disadvantage however appeared to be the lack of an economical welded joint solution for
the stringers. The joints were either bolted, or the stringers were welded to each side of the web of
the transverse beams, with large shrinkage effects being induced and thus a tendency to weld
cracking. For some bridges this procedure later led to damage by crack propagation due to heat
induced strains when the hot asphalt surfacing was put into place or due to traffic loads
[Wolchuk, 1990] [Giinther, 1985].

Further attempts were therefore undertaken to improve the detailing of orthotropic plate decks
with closed stringers such as providing stringers running continuously through the webs of the
cross girders and developing economic full welded joints.

B A
600 mm ‘ 600 mm 600mm J 600mm
| I
300 300
(] (3]
: 1
T I
l
g = |
2 2 o 2
i s/ |
] |
Lo T
web of the

Cross girder

Figure 1.10 Champagne-glass profiles for longitudinal stringers, [Sedlacek, 1972].



The first step in this direction was represented by the development of 'champagne-glass-ribs'
in the early 1960s, Fig. 1.10, built up of plates and rolled or other profiles. By increasing the
bending resistance it was possible to extend the span lengths of the longitudinal stringers to up to
3.60 m and to adjust the chord profile to the local needs. At the crossings with the webs of the
cross girders the flange sections ran continuously through whereas the plates were welded to the
web plates, Fig. 1.11. The welded joint nominally was detailed as shown in Fig. 1.12, where
tolerance problems and shrinkage effects accounted for by the 'window-joint-technique'.

The disadvantage of these built up stringers were the high welding costs as well as the
tendency to cracking at the stringer-cross girder intersections caused by  restraints to shrinkage
resulting from the accumulation of welds in that zone.
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Figure 1.11 Detailing of the intersection between 'champagne-glass profiles' and the webs of cross girders.
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1.2.3 Present standard of construction

In the late 1960s a breakthrough was achieved by the development of cold forming plants for
sheet piling profiles in the steel industry. In these plants it was possible to produce long
trapezoidal or vee shaped stringers from coils with acceptable geometries at acceptable prices.
These profiles allowed cross girder spacings of up to 5 m to be achieved. By running the stringers
through cross girder webs significant savings in the assembly and fabrication of deck panels were
made possible, Fig. 1.13 [Sedlacek, 1972].
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Figure 1.13 Detailing of the crossing of the hollow section stringers with the webs of the cross girders,
[Sedlacek, 1972].

The cut outs in the cross girders' webs at the intersections were shaped such that the
tolerances on the shapes of the hollow sections could be accounted for and sufficient fatigue
resistance at the welds achieved. Using this technique a great amount of assembly and welding
could be done automatically, Fig. 1.14. An economical solution for the welded joints the stringers
was obtained using the 'window-joint-technique' as indicated in Fig. 1.15 [Kahmann, 1973].

web of the
cross girder

deck plate
with ¢losed
ﬂ /_\ stringers

Figure 1.14 Assembly of the orthotropic plate.
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These technical developments of the 'orthotropic plate' deck now provide the standard
solution for road bridges and by slight modification of the cut outs, Fig. 1.16, also enable
stiffened decks with closed ribs to be used for railway bridges. Fabrication costs could be further
reduced by using similar construction also for the stiffened bottom flanges of box girders or for
the webs of such girders with modifications only to the shape and spacing of the ribs.

Even in the case of bridges curved in plan orthogonal rib stiffening can be maintained by
polygonal approximation using the 'window joint-technique' and where access of the window
joints is restricted site welding can be carried out by separating the window-intersection-piece
into two halves.
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Figure 1.15 Welding sequence for the welded joint of the hollow section stringers with 'window-joint-
technique', [Kahmann, 1973].
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Figure 1.16 Improved cut out for orthotropic decks for railway bridges.

The trend to greater span lengths of closed section stringers however has been limited by the
following factors:

— The production of deep trapezoidal ribs gives rise to tolerance problems and hence
increases the assembly costs.

— Deep ribs lead to larger cut outs in the webs of the cross girders, Fig. 1.17, and produce a
significant reduction of the shear resistance that cannot easily be compensated by the
bending stiffness of the deck plate.

— Last but not least, the traffic loads on long span stiffeners may cause deflections, Fig. 18
[Giinther et al., 1987], associated with large local transverse curvatures in the deck plate
which may cause cracking of the asphalt surfacing. Experience of such surfacing cracks
on orthotropic decks with large stringer spans has been used to formulate a requirement



for a minimum rib stiffness to prevent cracking of the surfacing. This can control the
stringer design in many cases.

Using the above design criteria span lengths of stringers are normally limited to 3.50 — 4.50
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Figure 1.17 Critical sections for the shear and local bonding in the web of the cross girders.
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Figure 1.18 Potential positions of cracks in the asphalt layer, [Giinther et al., 1987].
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1.3 Introduction to Behaviour of Plated Structures

Plates are very important elements in steel structures. They can be assembled into complete
members by the basic rolling process (as hot rolled sections), by folding (as cold formed sections)
and by welding. The efficiency of such sections is due to their use of the high in-plane stiffness of
one plate element to support the edge of its neighbour, thus controlling the out-of-plane behaviour
of the latter [ESDEP, 1994].

The size of plates in steel structures varies from about 0.6 mm thickness and 70 mm width in
a corrugated steel sheet, to about 100 mm thick and 3 m width in a large industrial or offshore
structure. Whatever, the scale of construction the plate panel will have a thickness ¢ that is much
smaller than the width b, or length a. As will be seen later, the most important geometric

10



parameter for plates is b/¢ and this will vary, in an efficient plate structure, within the range 30 to
250.

1.3.1 Basic behaviour of a plate panel

Understanding of plate structures has to begin with an understanding of the modes of behaviour
of a single plate panel.

1.3.1.1 Geometric and boundary conditions with different actions

The important geometric parameters are thickness ¢, width b (usually measured transverse to the
direction of the greater direct stress) and length a, see Fig. 1.19.a. The ratio b/, often called the
plate slenderness, influences the local buckling of the plate panel; the aspect ratio a/b may also
influence buckling patterns and may have a significant influence on strength.

b

| 7
s

(a) Single plate panel

4/7/7

(b) In-plane action, (c) Out-of-plane action,
pre-buckling small dlsplacements

pvd

(d) In-plane action, % (e) Out-of-plane action, %

post-buckling large displacements

Figure 1.19 Significant boundary conditions for plate panels.
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In addition to the geometric proportions of the plate, its strength is governed by its boundary
conditions. Fig. 1.19 shows how response to different types of actions is influenced by different
boundary conditions. Response to in-plane actions that do not cause buckling of the plate is only
influenced by in-plane, plane stress, boundary conditions, Fig. 1.19.b. Initially, response to out-of-
plane action is only influenced by the boundary conditions for transverse movement and edge
moments, Fig. 1.19.c. However, at higher actions, responses to both types of action conditions are
influenced by all four boundary conditions. Out-of plane conditions influence the local buckling,
see Fig. 1.19.d; in-plane conditions influence the membrane action effects that develop at large
displacements (> t) under lateral actions, see Fig. 1.19.¢.

(a) In-plane actions

As shown in Fig. 1.20.a, the basic types of in-plane actions to the edge of a plate panel are the
distributed action that can be applied to a full side, the patch action or point action that can be
applied locally.

When the plate buckles, it is particularly important to differentiate between applied
displacements, see Fig. 1.20.b and applied stresses, see Fig. 1.20.c. The former permits a
redistribution of stress within the panel; the more flexible central region sheds stresses to the
edges giving a valuable post buckling resistance. The latter, rarer case leads to an earlier collapse
of the central region of the plate with in-plane deformation of the loaded edges.

Point loading

Patch loading /
VI

//////// (a) Basic types

Distributed loading

swte_

Stress distribution
Suff\
(b) Uniform applied
displacements

i In-plane boundary
! displacements

(¢) Uniform applied
stress

Figure 1.20 Types of in-plane actions.
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(b) Out-of-plane actions
Out-of-plane loading may be:

— uniform over the entire panel, see for example Fig. 1.21.a, the base of a water tank,

— varying over the entire panel, see for example Fig. 1.21.b, the side of a water tank,

— alocal patch over part of the panel, see for example Fig. 1.21.c, a wheel toad on a bridge
deck.

ll(k! JJ
‘ v
1 L1

(a) Uniformly distributed loading (b) Variable distributed loading

g

(¢) Patch loading

Figure 1.21 Types of out-of-plane actions.

1.3.1.2 Determination of plate panel actions

In some cases, for example in Fig. 1.22.a, the distribution of edge actions on the panels of a
plated structure is self-evident. In other cases the in-plane flexibilities of the panels lead to
distributions of stresses that cannot be predicted from simple theory. In the box girder shown in
Fig. 1.22.b, the in-plane shear flexibility of the flanges leads to in-plane deformation of the top
flange. Where these are interrupted, for example at the change in direction of the shear at the
central diaphragm, the resulting change in shear deformation leads to a non-linear distribution of
direct stress across the top flange; this is called shear lag.

In members made up of plate elements, such as the box girder shown in Fig. 1.23, many of the
plate components are subjected to more than one component of in-plane action effect. Only panel
A does not have shear coincident with the longitudinal compression.

If the cross-girder system EFG, was a means of introducing additional actions into the box,
there would also be transverse direct stresses arising from the interaction between the plate and
the stiffeners.

1.3.1.3 Variations in buckled mode

L Aspect ratio a/b

In a long plate panel, as shown in Fig. 24, the greatest initial inhibition to buckling is
the transverse flexural stiffness of the plate between unloaded edges. (As the plate
moves more into the post-buckled regime, transverse membrane action effects become
significant as the plate deforms into a non-developable shape, i.e. a shape that cannot
be formed just by bending).
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(b) Box girder at internal
support
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— c — D
Compression & shear Tension & shear

Figure 1.23 Examples of components of action on plate panels in a box girder.
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Figure 1.24 Variations in buckled mode with aspect ratio for a plate panel in longitudinal compression.

As with any instability of a continuous medium, more than one buckled mode is
possible, in this instance, with one half wave transversely and in half waves
longitudinally. As the aspect ratio increases the critical mode changes, tending towards
the situation where the half wave length a/m = b. The behaviour of a long plate panel
can therefore be modelled accurately by considering a simply-supported, square panel.

Bending conditions

As shown in Fig. 1.25, boundary conditions influence both the buckled shapes and the
critical stresses of elastic plates. The greatest influence is the presence or absence of
simple supports, for example the removal of simple support to one edge between case
1 and case 4 reduces the buckling stress by a factor of 4.0/0.425 or 9.4. By contrast
introducing rotational restraint to one edge between case 1 and case 2 increases the
buckling stress by 1.35.
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Figure 1.25 Coefficients for plate buckling in compression for various boundary conditions.

Interaction of modes

Where there is more than one action component, there will be more than one mode and
therefore there may be interaction between the modes. Thus in Fig. 1.26.b(i) the
presence of low transverse compression does not change the mode of buckling.
However, as shown in Fig. 1.26.b(ii), high transverse compression will cause the panel
to deform into a single half wave. (In some circumstances this forcing into a higher
mode may increase strength; for example, in case 26.b(ii), predeformation/transverse



compression may increase strength in longitudinal compression.) Shear buckling as
shown in Fig. 1.26.c is basically an interaction between the diagonal, destabilising
compression and the stabilising tension on the other diagonal.

Where buckled modes under the different action effects are similar, the buckling
stresses under the combined actions are less than the addition of individual action
effects. Fig. 1.27 shows the buckling interactions under combined compression, and
uniaxial compression and shear.

-
~

/1
P

(a) Uniaxial compression

(bi) Biaxial compression,
longitudinal compression
. predominating

(bii) Biaxial compression,
transverse compression
predominating

e

(c) Shear

Figure 1.26 Buckling modes for plate panels.
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Figure 1.27 Interaction of buckling modes for square plate panel.

1.3.1.4 Post buckling behaviour

Figs. 1.28.a, 1.28.b and 1.28.c describe in more detail the changing distribution of stresses as a
plate buckles following the equilibrium path shown in Fig. 1.28.d. As the plate initially buckles
the stresses redistribute to the stiffer edges. As the buckling continues this redistribution becomes
more extreme (the middle strip of slender plates may go into tension before the plate fails). Also
transverse membrane stresses build up. These are self-equilibrating unless the plate has clamped
in-plane edges; tension at the mid panel, which restrains the buckling is resisted by compression
at the edges, which are restrained from out-of plane movement.

An examination of the non-linear longitudinal stresses in Fig. 1.28.a and 28.c shows that it is
possible to replace these stresses by rectangular stress blocks that have the same peak stress and
same action effect. This effective width of plate (comprising be/2 on each side) proves to be a
very effective design concept. Fig. 1.28.e shows how effective width varies with slenderness (A,
is a measure of plate slenderness that is independent of yield stress, A = 1,0 corresponds to values
of b/t of 57, 53 and 46 for f, of 235N/mm?, 275 N/mm? and 355 N/mm? respectively).

18



Figure 1.28

Buckling behaviour of
square plate in compression
with simply supported
edges free to pull in but
held straight.

P&Per 10 20

(c) Post-buckling
P>P ¢

(a) Effective widths

Fig. 1.29 shows how effective widths of plate elements may be combined to give an effective
cross-section of a member.

L LI 1]

Figure 1.29 (a) Effective section (shaded) for typical members in axial compression.
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(b) Effective section (shaded) for typical plate girder under sagging moment.

Figure 1.29 The application of effective widths of plate panels to determine effective cross-sections.

(b) Grillage analogy for plate buckling

One helpful way to consider the buckling behaviour of a plate is as the grillage shown in
Fig. 1.30. A series of longitudinal columns carry the longitudinal actions. When they buckle,
those nearer the edge have greater restraint than those near the centre from the transverse flexural
members. They therefore have greater post buckling stiffness and carry a greater proportion of the
action. As the grillage moves more into the post-buckling regime, the transverse buckling
restraint is augmented by transverse membrane action.

Load

Figure 1.30 Grid model of plate in
Membrane compression.

action

1.3.1.5 The influences of imperfections on the behaviour of actual plates

As with all steel structures, plate panels contain residual stresses from manufacture and
subsequent welding into plate assemblies, and are not perfectly flat. The previous discussions
about plate panel behaviour all relate to an ideal, perfect plate. As shown in Fig. 1.31 these
imperfections modify the behaviour of actual plates. For a slender plate the behaviour is
asymptotic to that of the perfect plate and there is little reduction in strength. For plates of
intermediate slenderness (which frequently occur in practice), an actual imperfect plate will have
a considerably lower strength than that predicted for the perfect plate.

20



Fig. 1.32 summarises the strength of actual plates of varying slenderness. It shows the
reduction in strength due to imperfections and the post buckling strength of slender plates.

Rigid plastic

N o 4 collapse mechanism
E_cm Serit /
ideal plate Ideal
ea
elastic Strength of
plate < perfect

plate
1,0

Imperfect plate

Imperfect plate Strength of
imperfect plate

»
»

w w
- -
Wo (a) Slender plate W, (b) Intermediate
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Figure 1.31 The influence of imperfections on the behaviour of plates of different slenderness in
compression.
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Figure 1.32 Relationship between plate slenderness and strength in compression.
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1.3.1.6 Elastic behaviour of plates under lateral actions

The elastic behaviour of laterally loaded plates is considerably influenced by its support
conditions. If the plate is resting on simple supports as in Fig. 1.33.b, it will deflect into a shape
approximating a saucer and the corner regions will lift off their supports. If it is attached to the
supports, as in Fig. 1.33.c, for example by welding, this lift off is prevented and the plate stiffness
and action capacity increases. If the edges are encastré as in Fig. 1.33.d, both stiffness and
strength are increased by the boundary restraining moments.

Pressure p

(a) Plate under uniform lateral
pressure p.

'y oIy
KN

(b) Simply supported edges,
corners free to lift.

(¢) Simply supported edges,
corners held down.

(d) Encastré edges

(e) Simply supported edges,
corners held down, large
displacements, edges held straught.

Figure 1.33 Elastic behaviour of square plate under lateral actions with different boundary conditions.
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Slender plates may well deflect elastically into a large displacement regime (typically where d
> t). In such cases the flexural response is significantly enhanced by the membrane action of the
plate. This membrane action is at its most effective if the edges are fully clamped. Even if they
are only held partially straight by their own in-plane stiffness, the increase in stiffness and
strength is most noticeable at large deflections.

Fig. 1.33 contrasts the behaviour of a similar plate with different boundary conditions.

Fig. 1.34 shows the modes of behaviour that occur if the plates are subject to sufficient load
for full yield line patterns to develop. The greater number of yield lines as the boundary
conditions improve is a qualitative measure of the increase in resistance.

Pressure p

] )
(a) Plate under uniform lateral
pressure p.
I

w pZaRENNERERERNN

(b) Simply supported edges,
corners free to lift.

(¢) Simply supported edges,
corners held down.

(d) Encastré edges

Figure 1.34 Yield line patterns for square plates under lateral loading with various boundary conditions.

1.3.2 Behaviour of stiffened plates

Many aspects of stiffened plate behaviour can be deduced from a simple extension of the basic
concepts of behaviour of unstiffened plate panels [ESDEP, 1994]. However, in making these
extrapolations it should be recognised that:

— "smearing" the stiffeners over the width of the plate can only model overall behaviour.

— stiffeners are usually eccentric to the plate. Flexural behaviour of the equivalent tee
section induces local direct stresses in the plate panels.

— local effects on plate panels and individual stiffeners need to be considered separately.
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— the discrete nature of the stiffening introduces the possibility of local modes of buckling.
For example, the stiffened flange shown in Fig. 1.35.a shows several modes of buckling.
Examples are:

1.

1i.

iil.

plate panel buckling under overall compression plus any local compression arising
from the combined action of the plate panel with its attached stiffening, Fig. 1.35.b.
stiffened panel buckling between transverse stiffeners, Fig. 1.35.c. This occurs if the
latter have sufficient rigidity to prevent overall buckling. Plate action is not very
significant because the only transverse member is the plate itself. This form of
buckling is best modelled by considering the stiffened panel as a series of tee
sections buckling as columns. It should be noted that this section is monosymmetric
and will exhibit different behaviour if the plate or the stiffener tip is in greater
compression.

overall or orthotropic bucking, Fig. 1.35.d. This occurs when the cross girders are
flexible. It is best modelled by considering the plate assembly as an orthotropic
plate.

(c) Stitfened panel
buckling

Figure 1.35 Buckling modes for stiffened plates in compression.



1.3.3 Concluding summary

— Plates and plate panels are widely used in steel structures to resist both in-plane and out-
of plane actions.

— Plate panels under in-plane compression and/or shear are subject to buckling.

— The elastic buckling stress of a perfect plate panel is influenced by:

plate slenderness (b/t).

— aspect ratio (a/b).

boundary conditions.

interaction between actions, i.e. biaxial compression and compression and shear.

— The effective width concept is a useful means of defining the post-buckling behaviour of
a plate panel in compression.

— The behaviour of actual plates is influenced by both residual stresses and geometric
imperfections.

— The response of a plate panel to out-of-plane actions is influenced by its boundary
conditions.

— An assembly of plate panels into a stiffened plate structure may exhibit both local and
overall modes of instability.

1.4 Modelling of Bridges with Orthotropic Plates

Modern decks consist of concrete slabs or orthotropic steel decks. Despite the different materials,
it is possible to identify common themes in their development.

1.4.1 From separation to integration of functions

Partly because of limited understanding of behaviour and methods of analysis, and partly because
it suited historical methods of construction, early decks were separated from the remainder of the
superstructure. The steel "battledeck” comprised plate panels welded to rolled beams as stiffeners
that were supported by and spanned simply between cross-girders which, in turn, spanned
between the principal girders. The deck construction was relatively deep but could still fit within
the overall depth of the truss. A similar approach can be seen in a concrete deck slab. The slab
acts compositely with the stringers but does not contribute to overall bending.

Although this separation reduced the overall efficiency of the design, it is noteworthy that it
does assist bridge repairs. For example, the entire deck of the Golden Gate Bridge in San
Francisco was replaced during night time possessions, permitting the bridge to continue to be
used during the day.

Modern decks in both materials are fully integrated into the overall superstructure. These
integrated decks improve the economy of the primary structure considerably. In all - steel
construction the cross girders and main girders do not need separate top flanges. With a concrete
deck, rolled sections (used for cross girders and main girders for short spans) will be considerably
lighter. The top flanges of plate girders will typically be half the cross-section that would have
been needed for non-composite construction.

The disadvantage of integrated construction is that repair or replacement of the deck is
difficult and usually requires prolonged closure of the bridge.
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1.4.2 Greater simplicity

The increasing ratio of labour to material costs has encouraged the development of simpler forms
of construction. Simplification has been considerably assisted by the development of modern
welding techniques.

For example, early attempts to arrange stringers and cross-girders at the same level required
the bolted or riveted connection shown in Fig. 1.36.a. Its modern equivalent in Fig. 1.36.b is
readily accomplished with reliable welding.

&V Stringer

Cross girder

(a) Early bolted or riveted construction

Stringer Cross girder

(b) Modern welded construction

Note:- Different orientation of diagrams
to illustrate connections

Figure 1.36 Stringer / Cross girder intersections.
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1.4.3 Evolution of the stringer in steel plates

A very important aspect of the historical development of steel plates is the evolution in form of
longitudinal stiffeners or stringers. Initially, only open stiffeners shown in Fig. 1.37.a were
utilised. Flats (i) and (ii) are simple to work with but are relatively inefficient in bending; bulb
flats (iii) are more efficient in bending but are prone to lateral instability; tees (iv) and angles (v)
offer a good combination of longitudinal bending strength and resistance to lateral buckling. All
these open stiffeners have the basic disadvantage that they are flexible in torsion. Their use leads
to a panel that is strongly orthotropic with little torsion stiffness (Dx >> Dy or Dyy). Such panels
are inefficient as transverse distribution of local loads leading to a narrow effective width in
bending and high longitudinal stresses under patch loading.

) (i) )
T césé T h M "

(iv) (v)

(a) Open, torsionally weak stifteners

(i @i))

T (i) H

(b) Closed, torsionally stiff stitfeners

Figure 1.37 Stiffeners (stringers) for orthotropic steel plates.
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It would be possible but expensive to introduce local transverse stiffeners to increase Dy, but it
is feasible to increase Dyy, and thereby improve transverse distribution, by using closed stiffeners.
Fig. 1.37.b shows the closed stiffeners that have been developed. Initially, the "wineglass"
stiffener (i) was developed for the early post war Rhine bridges in Germany. This stiffener gave a
good combination of torsional and bending stiffness but was expensive to fabricate.
Subsequently, the Vee and the trapezoidal stiffener were developed. The latter gives better
bending resistance than the former, although it loses some torsional stiffness from cross-section
distortion.

The earliest welded battledecks were detailed with continuity to the web of the cross girder,
for example (a)(i). This created a very poor fatigue detail for the stringers. Subsequently, it
became common practice to slot the web and have continuous stringers, for example (a)(iv) + (v)
and (b)(ii) and (iii). With suitably rounded openings in the web, no fatigue problem is created in
that element. It is noteworthy that the extreme fibres of the stringers are also not welded, thereby
improving their fatigue performance.

1.4.4 Modelling of bridges with orthotropic plates

A steel bridge with an orthotropic plate represents an integral structure, where the orthotropic
plate serves as a load distributing deck plate as well as a tension or compression flange of the
main girders. For modelling purposes the structure is often decomposed into sub-structures to
facilitate its analysis [Sedlacek, 1992]. The modelling of the total structure by the finite element
method would involve many iterations because of the influence of structural details that have not
been settled at the outset and may, therefore, be too expensive to use as a preliminary design tool.

The decomposition in general leads to four subsystems, Fig 1.38, each of which may be
analysed separately and finally combined using the principle of linear superposition.

S1 is the deck plate rigidly supported along its connections to the stringers. The composite

action of the deckplate with the asphalt layer is disregarded normally.

S2 is the orthotropic plate composed of the deck plate and the longitudinal stringers with
rigid supports along the lines of the webs of the cross girders, longitudinal girders (if
there are any) and main girders. The bending stiffnesses of this orthotropic plate are
represented by the stringers in the longitudinal direction and the deck plate only in the
transverse direction.

S3 represents a grid composed of the cross girders and the longitudinal girders and any
other load distributing longitudinal girders, e.g. edge beams. This subsystem is
assumed to be rigidly supported along the lines of the webs of the main girders.

S4 is the main girder system with the longitudinal elements of the orthotropic deck being
included in the effective breadths of flange acting with the main girders.

The loadings to be taken into account in the analysis of the orthotropic decks are mainly

— the local traffic loads for the subsystems S1, S2 and S3,
— the global traffic loads and all other loading to be combined with the global traffic loads
for the subsystem S4.

In Fig. 1.39 [Eurocode 1, 1992] the proposal for the local and global traffic loads (1992) for
Eurocode 1, Actions on Structures, is given as an example.
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Figure 1.38 Decomposition of a bridge with an orthotropic plate into four subsystems.
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Figure 1.39 Proposed European bridge loading model including impact factors [Eurocode 1, 1992].



2 Theory of the "Orthotropic Plate"

2.1 Small Deflection Theory of Orthotropic Plate

Small deflection theory of orthotropic plate is reviewed on the basis of Pelikan, Esslinger [1957]
and Troitsky [1987].

2.1.1 Differential equation of an orthotropic plate
2.1.1.1 Historical study

The fact that the natural solids around us are generally anisotropic or possess different elastic
properties in different directions was recalled long ago by the creators of the theory of elasticity.
Historically, the first and basic theoretical investigation in this field was conducted by the famous
French mathematician Cauchy [1828], who, in his paper published in 1828, gave generalized
equations for the elasticity of anisotropic solids.

Gehring [1860] a German physicist published his doctoral dissertation in 1860 on the
investigations of a thin anisotropic plate. This work represents the first attempt to apply the theory
of anisotropy to a structural element such as a plate. Boussinesq [1879] in his paper considered
equilibrium equations for anisotropic plates and bars.

Voigt [1910], in his famous book published in 1910, investigated the elastic properties of
anisotropic crystals and found the values of elastic constants.

Geckeler [1928] published his article, "Theory of Elasticity of Anisotropic Bodies," which
contained a complete development in this field.

It should be noted that all the above works were purely theoretical and were developed
considering those elements possessing properties of natural anisotropy. A comprehensive up-to-
date account of the theory of elasticity of anisotropic media was conducted by Lechnitsky [1947]
and [1963] in two books, "Anisotropic Plates" and "Theory of Elasticity of Anisotropic Bodies".

2.1.1.2 Concepts and assumptions

The theory of naturally orthotropic plates is based on certain idealizing assumptions and
limitations, as follows:
1. Dimensions, deflections, loadings
In the following analysis, we shall consider a thin orthotropic plate with small deflections
compared to one of uniform thickness. These small deflections should be smaller than
one-fifth of the plate thickness.
The coordinate plane XOY coincides with the middle plane of the plate and we use the
positive directions of the Z-axis downward. Thus, the downward deflections are
considered positive.
A vertical loading P is distributed over the upper surface of a plate acting parallel to the Z-
axis.
2. Material
We assume that the plate material is perfectly elastic, continuous, homogeneous, obeys
Hooke's law, and possess different elastic properties in two orthogonal directions, X and
Y. No body forces exist.
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3. The behaviour of the plate under the influence of applied loadings
a. There is no deformation in the middle plane of the plate. This plane remains neutral
during bending.
According to Kirchoff’s theory:
b. Linear elements perpendicular to the middle plane of the plate before bending remain
straight and normal to the deflection surface of the plate after bending.
c. The normal stress transverse to the plane of the plate can be disregarded.

2.1.1.3 Forces and moments

Let us now consider an orthotropic plate under an external, uniformly distributed load p, acting
normally to the surface of a plate.

We assume that the deflections are small in comparison to the thickness of the plate. We
consider that, at the boundary, the edges of the plate are free to move in the plane of the plate.
Therefore, the reactive forces at the edges are normal to the plate. Since these assumptions permit
us to neglect any strain in the middle plane of the plate, there will be no horizontal shearing forces
during bending. We take the XOY-plane to coincide it with the middle plane of the plate, and the
Z-axis is perpendicular to that plane before deflection.

Our problem is to find the stress conditions at an arbitrary point P of the plate. For this
purpose, let us consider an element cut out of the plate by two pairs of planes parallel to the XZ
and YZ planes around point P with sides as shown in Fig. 2.1. We assume that during bending of
the plate, that the vertical sides of the elements remain plane and rotate about the neutral axes nn,
so as to remain normal to the deflected middle surface of the plate. Consequently, the middle
plane of the plate does not undergo any extension during this bending, and the middle surface is
therefore the neutral surface.

Figure 2.1 Plane and cut.
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Due to the bending of the plate, the internal stresses will originate on the vertical sides of the
element. The internal stresses diagram of those internal stresses, are shown in Fig. 2.2.
+

Figure 2.2 Internal stresses diagrams.

We denote the normal unit stresses on the X and Y-directions of an arbitrary plane abcd, at a
distance Z from the neutral surface, as ox and oy. Those corresponding tangential stresses acting
m the same planes we denote as Tyy, Tyx and the shear stresses as Ty, Ty,. The positive directions
for those components of internal, normal, tangential and shear stresses are in direction of a
positive axis of coordinate system.

In general, internal stresses vary throughout the plate and at any point, a change in the internal
0o,

dx, where 0o is
X ox

the rate of change of the normal stress in an X-direction assumed to be constant over a length dx.

Such changes in the tangential and shear stresses are expressed in a similar manner, as shown
in Fig. 2.2. In calculating the resulting forces acting on the element, we consider the sides to be
very small. The forces are obtained by multiplying the corresponding stress at the centroid of a
side, by the area of this side. In calculating normal bending stresses o, Gy, as well as tangential
stresses Txy, Tyx, We consider that they are proportional to a distance Z of an elementary strip abcd
from the neutral surface.

These normal and tangential stresses, distributed over the vertical sides of the element and
resolved to the normal and tangential forces, can be reduced to bending moments My and My and
twisting moments M.

In addition, shear stresses Ty, Ty, distributed over the vertical sides of the element can also be
reduced to vertical shearing forces Qx and Qy, acting per unit length parallel to Y and X axes on
the sides of the element. The resulting diagram is shown in Fig. 2.3, where the directions in which
these moments and forces taken as positive are indicated. In general, moments and shearing

stress, for instance, in an X-direction over the length dx is expressed as
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forces vary throughout the plate, and at any point, a change in the moment in an X-direction over

X

dx, where is the rate of change of the moment in the

X ox
X-direction assumed to be constant over the length dx.
The changes in the moments My, and the shear forces Qx, Qy are expressed in a similar
manner. The magnitudes of all moments per unit length are:

the length dx is expressed as

+/2 +/2 +/2
M, = JGZ zdz, M, = Icy zdz, M,, = j'cxy zdz, /2.1/
—t/2 —t/2 —t/2

And similarly for shear forces:

+t/2 +t/2
Q= frudz Q= [r,dz 122/
—t/2 —t/2

@+ 325 d)
+

M
e (Mx+ Bxx )

BMxy
ox

,(Mxy+ dx)

2Q
@y 574
Figure 2.3 The resulting moments diagram.

2.1.1.4 Equilibrium of a plate element

The internal moments and forces acting on an element with an external load p, should be in
equilibrium. Since the moments are acting per unit length, their values should be multiplied by
their corresponding lengths dx and dy.
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We must also consider a load p distributed over the upper surface of the plate. The intensity of
this load acting on the element is p-dx-dy.

a) Vertical Forces
The condition of equilibrium is: XV=0.
Projecting all the forces acting an the element onto the Z-axis, we obtain the equation of
equilibrium:
an aQy

+——+p=0 2.3/
0x oy

b) Moments in XOZ Plane

In calculating the moments acting on the elements, we consider the sides to be very small.
The resulting moment is obtained by multiplying the moment acting at the centroid of a side
along the length of this side.

Taking the moments of all those forces acting on the element with respect to the Y-axis, we
obtain the equation of equilibrium:

X

ox oy

oM
M, D g -0 1.4/

¢) Moments in YOZ Plane
In the same manner, by taking those moments with respect to the X-axis, we obtain:

M,, M,
+ -Q, =0 2.5/
ox oy

d) Equilibrium of the Moments

Let us eliminate the shearing forces Qx and Q, from the previous equations by a
differentiation of equation /2.4/ by X, equation /2.5/ by y, and substitute in equation /2.3/.
Knowing that Myx = My, by virtue of 1y, = Ty, we finally represent the equilibrium of the
moments in the following form:

2 2 2
o MX+28 Myy +8 My:

—p(x,y) /2.5a/

To evaluate the five unknowns, My, My, Myy, Qx, Qy, we have only three equations of
equilibrium /2.3/, /2.4/ and /2.5/. The additional conditions we will evaluate by investigating the
geometrical problem, considering any deformations of the plate and establishing relationships
between the stresses and deformations.

2.1.1.5 Deformation of plate

The relationship between unit elongations and deformations expressed as functions of unit
displacements, are given by the theory of elasticity as follows:
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o o

€, =—, &,=—, =t
“Tax YTy T T x

2.6/
To find the values of unit elongations and unit deflections, let us consider one element of the
plate dx-dy-t, which deforms under and external vertical unit loading p-dx-dy, Fig. 2.4.
For a smaller deflection at point P, we have:

ow ow
ga (Py == 2.7/

Py = 3y

The element displacements of the plate at a distance Z from the middle surface in an X- and
Y-direction are:

. ow

u=-z-sinQ, ~—z-Q, :—z-g
2.8/

V=-z-8iNQ, ¥ -2 @, =-Z-—

oy

By substituting these values in the equation for unit stresses and unit deformations /2.6/, we
obtain:

2.9/

Figure 2.4 Plate deformations.
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2.1.1.6 Generalized Hooke’s law

The relationship between the components of stress and the components of deformation, known as
Hooke's law, have been established experimentally.

Let us consider the element of an orthotropic plate with its sides parallel to the coordinate
axes, and subjected to the action of normal stress Gy, uniformly distributed over two opposite
sides, Fig. 2.5.

For an orthotropic plate, those elastic properties expressed by the corresponding moduli of
elasticity should be different in the direction of axes X and Y. We denote them as E and E,. The
magnitude of the unit elongation of the element in an X-direction and the lateral contraction in the
Y-direction is given by the expression, respectively:

X /2.10/

in which E, is the modulus of elasticity in tension for an orthotropic plate in an X-direction, v
is a constant known as Poisson's ratio.

Figure 2.5 Generalized Hooke’s law.

Similarly, considering the same element subjected to the action of normal stress o, and
uniformly distributed over two opposite sides in a Y-direction, we obtain:

c o}
g, = —, v, —~ /2.11/
E E
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as the unit of elongation in the Y-direction and as the lateral contraction in an X-direction,
consequently.
Further, according to Betti's reciprocal theorem, we obtain the following relationship:

v E =V Ey /2.12/

If the above element is subjected to the action of normal stresses ox and oy and uniformly
distributed over the sides, the resultant components of deformation can be obtained by a method
superposition as follows:

_ X Yy _ Gy X
€y = “Vy—, gy = ——-V, /2.13/
E, ’E, E, “E,
Solving equation /2.13/ for 64 and o, we find:
E E,
o, =—>—e, +v.e o,=——e, +v,¢ 12.14/
* 1—vxvy(x yy) Y l—vxvy(y * x)

Let us now consider the state of deformation of a plate element under pure shearing stresses
Ty = Tyx-

On the basis of theoretical investigation [Kloppel and Yamada, 1960], the value Gy of shear
modulus for orthotropic material could be expressed through the values of those known moduli of
elasticity Ey, Ey as follows:

E_E E
Xy where V., = \Y%

ny:E,(+(1+2vxy)Ey ¥ E, "

According to Hooke's law for pure sheer, the distortion angle yx, is proportional to the
shearing or tangential stress Ty, and we can express this relationship as follows:

T
Xy
Ty = /2.15/
Gy
where Gyy is the shear modulus for orthotropic material.
Further, by introducing the values from the system /2.9/ in equations /2.14/ and /2.15/, we

obtain the following expressions of those stresses as a function of deflection w.

E.z o*w 82w]

+
2 y 2
l—vxvy O0x oy

E. z 2 2
oy = — 2 OW, x@vzv] /2.16/
1—\/,(\/y dy Ox
2
Ty =—2G 2 ow
Xy
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2.1.1.7 Differential equation of the bent plate

With the assumption of a small deflection w, while neglecting the effect of shearing forces Q and
Qy as well as the compressive stress o, produced by load p on bending, the deflection w is
independent of z. Therefore, by substituting equations /2.1/, the known values for ox, 6y and Ty
from equations /2.16/, and by integration, we obtain the following expressions for the bending
moments and torsional moment:

Ext3 62w 62WJ

3
Eot 2 2
My =——+2 OW vy & /2.17/
12(1—VXVy) ayz axz
3
nyt 02w
Myy = v
6  oxdy

denoting

Xy

b, - Ext Dy = Byt Dy = 12,18/
(- vgvy) Yo n2{i-vxvy) X 6 ’

We obtain from equations /2.17/

2 2
M :—DX[a Vv 6—W]

) ox? Voy?
2 2
M, :_Dy[‘zyv: +v, ZX‘ZJ /2.19/
2
M, =-2D,, oW
oxdy

Quantities Dy and Dy we call the flexural rigidities of the plate, and the quantity Dyy, the
torsional rigidity of the plate.
By substituting expressions /2.19/ in the moment equation /2.5a/, we obtain:

o*w o*w
ox2oy? +Dy oy
The value of 2D,y is defined as the reciprocal value of the angle of twist of a plate element

with a side length dx = dy = 1 due to the action of twisting moments Mxy = Myx = 1.
Introducing the notation,

4
D, ZX—ZV+(DXVY +Dyv, +4D, ) = p(x.y) /2.20/
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2H=Dyx vy + Dy'vx+4Dyy 1221/
we obtain equation /2.20/ in the following form:

4 4 4
D gxf +2H 852;;2 +D, ‘Zyiv =p(x.y) 1222/

This is the general differential equation of an orthotropic plate deduced by Huber and known
in technical literature as "Huber's Equation". We call the value 2H from expression /2.21/ the
"effective torsional rigidity" of an orthotropic plate.

The general differential equation can be used in the investigation of bending of plates and
beams of orthotropic material which have different flexural rigidities in two mutually
perpendicular directions.

By substituting in equations /2.4/ and /2.5/ the corresponding values from equations /2.19/, we
obtain the following expressions for shear forces:

3 3
Q, =D, ™ (v,p, +2D,, )T
o3 y Y/ oxoy?
) s /2.23/
ow ow
Qy=-D, ?_ (Vny +2Dyy ) dyox’
By substituting in the relationship /2.12/ the values from /2.18/ we obtain:
D,vy=Dyv, 12.24/
By substituting /2.24/ the values from /2.21/ we obtain:
H=D,v, +2D,y, D,vy, =H-2D,,, Dyv, =H-2D, /2.25/
By substituting /2.25/ in system /2.23/ we obtain:
2 2 2 2
Q, :_%(DX —ZX? +H_‘Zy‘j} Q, :—%[Dy —aayvzv +H—‘ZX‘;VJ /2.26/

2.1.1.8 Effective torsional rigidity

Suppose that for a certain plate under a given load distribution and for known boundary
conditions, the deflection surface w is determined by the integration of differential equation
12.22/.

By substituting the value of w in equations /2.19/ and /2.20/, we can then derive the values of
My, My, My, Qx, Qy and, consequently find the stresses at any point in the plate.

The outlined procedure provides a formal mathematical solution of the problem, based on the
principles of the theory of elasticity. However, to apply this solution in practical engineering
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problems, it is necessary to possess the proper values of the five constants D, Dy, Dyy, Vx, vy in
the differential equation for the plate. The values of the moduli of elasticity Ex, Ey encountered in
expressions for the rigidities Dy, Dy, and Poisson's constants vy, vy are usually known for certain
orthotropic material. The value of the shear modulus G,, however, encountered in these
expressions for the torsional rigidity H, is usually unknown.

The following evaluation of the torsional rigidity D, based on theoretical analysis should be
regarded as a first approximation, and, in cases of practical importance, a direct test is
recommended to obtain more reliable values of the modulus Gyy.

Let us now consider an orthotropic plate element having its sides of unit length under the
influence of twisting moments Myy, Myx acting upon two opposite sides, as shown in Fig. 2.3.
Due to the known equilibrium of the tangential stress components Myx,=Myx.

To determine the value of the torsional rigidity of an orthotropic plate, we will base the
following investigation on the analogy between orthotropic and isotropic plates, both under the
influence of the twisting moments.

For an isotropic plate, the value of the torsional moment is given by the expression:

30042
M, =9 W 1227/
6 oxoy

For the isotropic material, the relation between the shear modulus G, the elasticity modulus E
E

2(1+v)
By substituting formula G in /2.27/ and after certain modification, we now obtain the
expression of torsional moment of an isotropic plate.

and Poisson's constant v is given by the formula G =

/2.28/

Et?
where D = , is the torsional rigidity of the isotropic plate.
12(1-v?)

For an orthotropic plate, however, considering My, = My, the torsional moments will depend
on the torsional rigidities in both directions. Therefore, to evaluate the twisting moments in the
case of an orthotropic plate, a reasonable approximation will be to consider the expression for the
twisting moment of an isotropic plate and to substitute the values of D and v by certain middle
values of Dy, Dy and vy, vy.

Let us use these middle values as:

D=,D,D,, v=,/vV 12.29/

and after substituting in the expression /2.28/, we obtain:

M,, :-(1— [v.v, (DD, g—gy /2.30/
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By a comparison of expressions /2.30/ and the final one from the system /2.19/, the value of
the torsional rigidity of an orthotropic plate is approximately:

2Dy = (1 - Jrxvy l [DxDy 2.31/

By substitution in the expression for the effective torsional rigidity H /2.21/, the value from

/2.31/ as obtained:
2H=Dyxvy +Dyvy +2(1— /VxVy “DXDy 12.32/

or, after certain transformations,

2
2H =2DyDy + (\/vay - /Dyvx ) /2.33/

By substituting the values from /2.24/ in equation /2.33/, the effective torsional rigidity is then
expressed as:

H=,/D,D /2.34/

2.1.1.9 Coefficient of torsional rigidity

The theoretical value of the effective torsional stiffness expressed by the formula /2.34/ is valid
only if one orthotropic plate generally satisfied the following conditions:

1. the thickness of the plate is constant;
2. deformations are purely elastic;
3. deflections of the plate are relatively very small.

Because these assumptions do not exist in reality, the values of H for practical problems
usually should be reduced by multiplying the value /D, D, by the coefficient @, which we may

call the "coefficient of torsional rigidity" or "parameter of torsion".

Therefore:
H=2- /DXDy /2.35/

It has been found by analysis and confirmed by experimental investigations that for steel
decks of an orthotropic type, the value of & < 1 and varies between 0.3 - 0.5. For example, in the
case of the Cologne-Mulheim suspension bridge, it was found experimentally for the steel deck
that [Cornelius, 1952]:

H=03-/D,D,

It should be noted that in this extreme case, the relation between the flexural rigidities was
Dy =20 D,
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2.1.1.10 Solution of Huber’s equation

The solution of Huber's non-homogeneous partial differential equation /2.22/ consists of the
superposition of two solutions:

W =Wn+ W, /2.36/
where

wi, represents a general solution of the corresponding homogeneous differential equation,

4 4 4
D, f;;v +2H afz(‘;’yz +D, ‘Zy‘: =0 12.37/

and

Wp a particular solution of the non-homogeneous equation /2.22/.
Geometrically, equation /2.36/ represents a superposition of the two deflection surfaces wy+
Wp.

wi, represents the deflection of the unloaded portion of the plate or p(x,y) = 0.

Under the effects of such deflections, rotations, lineloads or bending moments are applied
along the edge where necessary to compensate for the departures of the particular solution wyp,
from the required shape of the actual plate.

wp represents the deflection surface of a plate under a given load p(x,y), which possibly
satisfies some but not all boundary conditions of the actual plate.

Therefore, by adding two surfaces, wi + wy, a deflection surface of the actual loaded plate is
obtained which satisfies all boundary conditions.

Consider the technically important case of an orthotropic plate simply supported along the
edges x = 0 and x = a and subject to any boundary conditions along the edges y = const.

A solution to the homogeneous equation can be given by a simple series, involving only one
summation. This solution, first proposed by Levy [1899] to the analysis of an isotropic plate, may
be represented in the general form:

wy =Y A-e™ sin m:" /2.38/

m=1
where
A and « are constants which should be determined, a is the length of the plate.
By substituting the expression /2.38/ in equation /2.37/, we obtain the following characteristic
equation for determination of the function e®.

4 2
D2 e 2| 4Dt =0 /2.39/
* a a Y
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The system /2.39/ defines four values of a. Therefore, in expression /2.38/ for wp, each term
of the series depends on four arbitrary parameters, and a general solution of the differential
equation /2.37/ could be expressed as follows:

mnx 12.40/

o0
W, = A e+ A, e + A e™ +A, e ) sin
h 1 2 3 4
a
m=1

where the constants A, As, A3 and A4 could be determined from the boundary conditions.
In order to find a particular solution of the non-homogeneous partial differential equation
/2.2/, we make the following two assumptions for deflection and loading:

W, =Zam sin /2.41/

m=] a

The loading p(x) can then be expressed by a Fourier sine series as follows:

p(x) = me -sin X /2.42/
a
m=l
The solution of the non-homogeneous equation is a summary:
= a ' mmx
w = z pﬁ[—} +A " +A) ™Y+ Ay e+ A, e |- sin 12.43/
“~| Dy \mn a

2.1.1.11 Analysis of Huber’s equation

Huber's partial differential equation of orthotropic plate /2.22/ has different solutions depending
upon the relations between the three rigidities Dx, H and D,.
Depending upon the relations between the rigidities of the plate, we could consider the
following variations of orthotropy.
Case 1. H? > DDy
This condition of great torsional rigidity is found in the case of an orthotropic deck with box-
shaped ribs.
Case 2. H? = DDy
It is considered that this condition of middle torsional rigidity is found when using reinforced
concrete flat slabs.
Case3. H?> < DDy
This condition corresponds to the small torsional rigidity and exists in the case of an
orthotropic deck with flexible ribs.
Case4.Dx=0
This condition of negligible flexural rigidity in a transverse direction, can be considered for an
orthotropic deck with box-shaped ribs.
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Case5.H=0
This condition can be considered in the case of an orthotropic deck with flexible ribs having
negligible torsional rigidity.

Case6. H=Dx=0
In this case, torsional and flexural rigidities in the x-direction are disregarded. Under this
condition, the plate equation is transferred into a beam equation which is relatively simple and
is satisfactory for the analysis of an orthotropic deck with flexible ribs.

A summary of the above analysis is shown in Tabl. 2.1.

Table 2.1 Relations between the rigidities of the orthotropic plates.

Cases 4 4 4
D, ZX\Z] +2H afzgvyz +D, aay\iv =p(x,y)

1 H?>D, D,
4 D, =0

2 H? =D, -D,
3 H? <D, -D,
5 H=0

6 D,=H=0

2.1.2 Application of Huber’s theory to orthotropic plate analysis

2.1.2.1. Natural and technical orthotropy

In analyzing the composition of an engineering structure, we should distinguish between two
kinds of orthotropic elements. The first shows an orthotropy which is the result of different
physical properties, for instance, the crystalline structure of the material itself may be oriented in
two mutually perpendicular directions. We may call such elements "naturally orthotropic".

The second group includes those elements which are reinforced to ensure strength and
stability, arranged in proper geometrical configurations, or composed of two or more different
materials. Sometimes, the elements, in spite of being formed of isotropic material, may also be
considered to belong to the second group, owing to their geometrical composition.

Typical examples of those structures contained in the second group are: ribbed plates, plate-
girders, and reinforced or pre-stressed elements. Such structures generally exhibit different elastic
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properties in different directions. The various elastic properties in these cases could be expressed
by the different flexural and torsional rigidities of the element in different directions. We may call
such elements belonging to the second group and possessing different rigidities in two mutually
perpendicular directions "structurally or technically orthotropic".

In the elastic domain, this second group may be treated on the basis of the same theory as
naturally orthotropic plates are, with some modifications.

Structural or technical orthotropy is of utmost importance in modern engineering. Examples
of such structures are: bridge decks, floor panels, bulkheads, ship hulls, aircraft wings and
fuselages. In all these structures, the structural orthotropy is the result of geometrical
configuration, rather than the physical properties of the materials.

The following examples illustrate the application of structurally orthotropic elements in
bridge engineering.

a) Structural elements of different materials

A typical example, shown in Fig. 2.6, is that of a two-way reinforced concrete flat slab of
uniform thickness.

In this example, the structural orthotropy is expressed by different amounts of reinforcement
and, consequently, by the different static resistance of the cross sections of the slab in each
direction.

I [l . . . . . s Y

Figure 2.6 Two-way reinforced concrete slab.

b) Geometrical Configuration

The rigidity of a structural element may differ in both directions because of its geometric
configuration, as is shown in the example of a concrete slab reinforced by a set of equidistant
ribs, Fig. 2.7.

Typical examples of structurally orthotropic elements used for bridge decks are steel plates
reinforced with equidistant steel stiffeners in one or two orthogonal directions, as shown in Fig.
2.8 and Fig.2.9.

|

MIESImMERY
1 a4

Figure 2.7 Concrete slab reinforced by a set of equidistant ribs.
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4

Figure 2.8 A steel plate reinforced by equidistant steel stiffeners.

I

%

Figure 2.9 A steel plate reinforced by orthogonal stiffeners.

2.1.2.2. Theory of M.T. Huber

Although the general theory of anisotropic bodies was developed in the 19th century and some
practical applications shown, the wide use of the theory of orthotropic plates in engineering began
in the 20th century, primarily in connection with the development of shipbuilding and the use of
steel plates for ship hulls and aircraft structures.

A great contribution was made by Boobnov [1902] in the application of stress analysis to steel
plates reinforced by a system of interconnected longitudinal and transversal beams in the period
1902 to 1914. The many applications of stiffened steel plates, concrete slabs reinforced by ribs,
plywood plates and similar structural elements give rise to the theory of technical orthotropy.

The idea of the application of the theory of elasticity of orthotropic plates to reinforced
concrete flat and ribbed slabs was proposed and developed by Huber. In his first article, published
in 1914, he considered the problem of a reinforced concrete slab as a slab with elastic properties
differing in two orthogonal directions or as an idealized orthotropic plate [Huber, 1914]. In his
works in the period 1923-1929, Huber developed solutions to these problems which allowed their
practical applications [Huber, 1922, 1923 and 1929]. Improved and refined methods of stress
analysis for technically orthotropic plates were summarized by Huber in books edited in the
period 1948-1956 [Huber, 1950, 1956 and 1957].
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2.1.2.3. Method of elastic equivalence

The basic assumption proposed by Huber for estimating overall bending deflections and bending
stresses in a stiffened slab was to replace such a slab by an equivalent orthotropic slab of constant
thickness having the same stiffness characteristics.

Since reinforcing or ribs in actual concrete slabs are usually arranged in an orthogonal pattern,
the equivalent slab would have the rigidity characteristics of an orthotropic material. The usual
assumptions of "thin plate" theory were made, and the problem was treated in terms of plane
stress. On the basis of this assumption, the analysis of bending of stiffened plates may be
simplified by replacing the plate stiffener combination by an equivalent homogeneous orthotropic
plate.

However, it should be understood that any actual plate stiffener combination obviously cannot
be equivalent to an orthotropic plate in every respect. Theoretical investigations and experimental
data indicate that orthotropic plate theory is applicable to structurally orthotropic plates under
certain provisions as follows:

1. The ratios of stiffener spacing to plate boundary dimensions are small enough to insure
approximate homogenity of stiffness.

2. Itis assumed that the rigidities are uniformly distributed in both directions.

3. Flexural and twisting rigidities do not depend on the boundary conditions of the plate or on
the vertical load distribution.

4. In the case of steel stiffened plates, it is assumed that both the plate and the stiffeners are
fabricated of the same isotropic material.

5. A perfect bond exists between the plate and the stiffeners.

The substitution of an orthotropic plate with the same stiffness characteristics as that of a
stiffened plate may be called "method of elastic equivalence".

By applying the method of elastic equivalence to the analysis of stiffened plates, we thus
reduce the actual system of discrete interconnected ribs to that of a statically equivalent system
with uniformly distributed stiffnesses in both directions.

For practical application in engineering, an orthotropic plate is defined as a plate with
different bending stiffnesses D = EI in two orthogonal directions, x and y, in the plane of a plate.

These may either result from different moduli of elasticity Ex and Ey of the material in two
directions, as for a naturally orthotropic plate, or from different moments of inertia I and I, per
unit width, as for structurally orthotropic plates.

By applying the principle of elastic equivalence, the discontinuous structure of a technically
orthotropic plate is represented by an idealized substitute orthotropic plate, reflecting the
characteristic properties of the actual system.

A practical application of the method of elastic equivalence is illustrated in Tab. 2.2.

By this method, we replace structural orthotropy by natural orthotropy.

To find the solution of the orthotropic bent plate problem due to the action of external
loadings, it is necessary to determine those internal moments and shear forces acting in the plate.
These internal moments and shears are usually expressed by the stress components as the
functions of deflection of the plate. This function has to satisfy a linear partial differential
equation which, together with the boundary conditions, completely defines W. Consequently, the
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solution of the equations gives all the necessary information for the calculation of stresses at any
point in the plate.

Table 2.2 Orthotropic deck analysis. Huber’s Theory. Principle of static equivalence.

Naturally orthotropic plate Technically orthotropic plate | Equivalent orthotropic plate

Differential equation of the orthotropic plate
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Rigorous investigations have shown this method to be correct if the ribs are symmetrically
disposed in relation to the middle plane of the plate, but gives approximate values in the case
when the ribs are located on only one side.

2.1.2.4. Design methods

With the development of the orthotropic deck system, various design methods to determine the
distribution of loads and internal forces were proposed. It should be noted, however, that the use
of orthotropic theory has been somewhat limited by certain mathematical difficulties in the
analysis.

The current methods used for stress analysis in orthotropic deck systems and based on Huber's
theory may be summarized in the following five groups:




a) Ideal gridwork system,

b) Deck as uniform medium orthotropic plate strips,
c) Application of influence surfaces,

d) Semi-empirical method.

e) Methods of deck analysis by computers

All the above methods yield only an approximate solution to the problem.
To show the general nature of those solutions developed, we will briefly review the various
analytical methods mentioned above.

a) Ideal gridwork system

This method is based on the application of the orthotropic plate theory, considering the deck
statically equivalent to open grids or an ideal gridwork system. This is a simple but approximate
method.

Y. Guyon and C. Massonnet

The idea of applying the theory of orthotropic plates to a grid system of a bridge deck by
treating it as an idealized plate was proposed by Guyon [1946a]. It is known in technical literature
as the method of distribution coefficients [Guyon, 1946b]. Guyon, however, analyzed no torsional
structures.

In 1950, Massonnet extended the method by introducing into the analysis the effect of torsion
[Massonnet, 1950a, 1950b and 1955]. Generally, the problem. which is involved is that of .
determining how a concentrated load or system of such loads is distributed among the
longitudinal beams of a bridge system for various degrees of transverse stiffness and torsional
resistance. Basically, the method consists of replacing the actual bridge deck structure, a system
of discrete interconnected longitudinal and transverse members, by an "elastically equivalent"
slab system whose structural properties in the two orthogonal directions are uniformly distributed
along their length.

b) Deck as an orthotropic plate strip
According to this method, a uniformly distributed medium is substituted in two directions for
a stiffened plate.

W. Cornelius Method

A German engineer, W. Cornelius, was the first to use the orthotropic plate theory to analyze
a steel deck stiffened by ribs. He developed a practical method for the analysis of orthotropic-type
bridge decks and described his method in articles published in the period 1947-1951 [Cornelius,
1952].

c¢) Application of influence surfaces

Live loading of a highway bridge deck generally consists of the wheel loads, each one in
effect distributed over a relatively small area. Due to such load distribution, the analysis of bridge
decks is complicated and time consuming. In addition, the first step should be the evaluation of
the critical position of the live loading. This problem for beams is solved by the use of influence
lines.
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By analogy, three-dimensional influence surfaces are used for the plates. The influence
surfaces help to find the moments, shear forces and reactions for the given load positions.
Evaluating the influence surfaces requires a great amount of work, which, however, need only be
done once for a given set of conditions. The influence surfaces may be defined as three-
dimensional diagrams which show the variation of a certain structural action as a bending
moment.

The advantage of the influence surfaces as a design aid consists in the following: this aid is
linked to the practical geometrical range of a particular structural system and is independent of
loading. The design loadings are usually related to the particular country. Also, the loading
specifications are changeable, being updated. In such cases the influence surfaces are especially
useful.

The systematic application of influence surfaces in structural engineering started relatively
late with the first work only appearing in 1938. The theory of the influence surface methods is
given in the works of Pucher [1938], Bittner [1938], Hawranek and Steinhardt [1958]

d) Semi-empirical method

A deck system is designed by any of the above-mentioned analytical methods. Then a model
or full-scale test is made on the designed plating to determine its actual capacity.

For the purposes of superposition of the plating stresses with the overall bridge stresses, the
stresses theoretically computed for plating are reduced by a factor derived from tests.

This approach was used in the design of the 856 foot centre span Save River Bridge in
Belgrade; Yugoslavia [Pelikan and Esslinger, 1957].

e) Methods of deck analysis by computers

Most of the research published since 1960 involves the theoretical studies of stiffened deck
plates and deals with mathematical methods for analyzing such structures. A recent trend has
been to develop computer programs based on particular analytical methods, such as finite
difference [Adotte, 1967], finite element [Zienkiewicz and Cheung, 1964], finite strip [Cheung,
1968] and other methods.

2.1.3 Pelikan-Esslinger method [1957]

2.1.3.1 Introduction

Of all the methods considered in Chapter 2.1.2.4, experience has shown that the most practical is
that of Pelikan and Esslinger [1957]. This method is based on the application of Huber's equation;
however, the parameters expressing certain rigidities of the orthotropic deck are disregarded, as
they are of little importance in the design.

It is considered that the approach developed by Pelikan and Esslinger provides a practical and
relatively simple method for the design of orthotropic-type steel bridges. In this method, the
authors assume that the deck system is a continuous orthotropic plate, rigidly supported by its
main girders and elastically supported by the floor beams. The design procedure is divided into
two stages, Fig. 2.10.

In the first stage, it is assumed that the floor beams, as well as the main girders, are infinitely
rigid. In the second stage, a correction is applied, considering the floor beams as elastic supports.
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The reactions of the plate on the floor beams are replaced by a load group proportional at each
point to the deflection of the floor beam. The total moments are found by superposition, due to

the influence of dead and live loads assuming rigid supports and live loads assuming elastic floor
beams.
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2.1.3.2 Deck with open ribs

For a deck plate stiffened by open or torsionally soft ribs, both the lateral flexural rigidity Dx and
the torsional rigidity H are relatively small by comparison to that of the longitudinal flexural
rigidity Dy. Therefore, for practical design purposes, they could be disregarded. Using

Dy=0and H=0 /2.44/

the general differential equation /2.22/ becomes:

=p /2.45/
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Equation /2.44/, in fact, represents the deflection line of a beam and defines an idealized
structural system representing an actual steel plate deck with open ribs. It is assumed that the
idealized system consists of a series of infinitely narrow plate strips placed side by side, and
running continuously in a y-direction, Fig. 2.11.

Orthotropic Deck Analysis

Pelikan — Esslinger Method

Deck with torsionally soft ribs

4
D=0, H=0, D,IV_p

Yay4

Figure 2.11 Pelikan-Esslinger Method. Open rib deck.

A comparison of the bending moments computed, per unit width, with the full plate and beam
/2.45/ formulas indicates a negligible difference for practical design purposes. Therefore, the use
of the beam formula for a deck with open ribs is fully justified.

For practical design analysis, it is necessary to separately consider a deck on rigid supports
and a deck on flexible floor beams. In both stages, the following data should be evaluated:

First Stage — Deck on Rigid Supports
1. Bending Moments and Reactions in the Deck in a Longitudinal Direction

Theoretically, these moments and reactions depend on the following factors:

a. Dead and live loading,

52



b. The relation between the floor beam and the main girder spacing,
¢. The influence of the flexural and torsional rigidities of the deck system components.

In modern bridges having an orthotropic deck, the floor beams are closely spaced in relation
to the main girder spacing. It is therefore considered that the main girder spacing does not
influence that value of bending moments in a longitudinal direction.

2. Bending Moments and Their Reactions in Floor Beams

The evaluation of bending moments and their reactions in floor beams due to the action of
dead and live loads depends on the composition of the bridge system. In the case of two main
girders only, the floor beam is considered to be a simply supported T-beam. The floor beam is
considered as a continuous T-beam if supported by more than two main girders.

3. Section Properties of the T- Ribs and Floor Beams.

For the evaluation of those stresses in the T-ribs and floor beams, it is necessary to determine
in their sectional properties their effective span in a longitudinal direction and their effective
width in the lateral direction.

Second Stage — Deck on Elastic Floor Beams

In this stage, it is necessary to evaluate the influence of the floor beam flexibility on a load
distribution and, consequently, on their bending moments acting in the T-rib.
To achieve this, the following data should be determined:

1. The influence lines for the bending moments acting in T-ribs, considering the T-ribs as
continuous beams elastically supported.

2. Additional moments in the T-ribs and relief moments in the floor beams.

3. Sectional properties of the T-ribs, namely the effective span, the effective width and the
sectional modulus, considering the influence of flexible floor beams.

4. To evaluate the resulting moments by superposition of both stages and to determine those
stresses in the T-ribs.

2.1.3.3 Deck with closed ribs

In the case of a deck plating stiffened by closed torsionally stiff ribs, Fig. 2.12, the transversal
rigidity Dy is negligible in comparison to the flexural rigidity in the y-direction Dy and effective
torsional rigidity H.
Therefore, the differential equation of the orthotropic plate /2.22/ is reduced to:
4 4
2H aaz:yz +D, ‘Zyzv =p /2.46/
X
It should be noted that those moments computed with the assumption Dy = 0 are generally

somewhat greater than those determined from the complete equation; therefore, they are on the
safe side.
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For the computation of the bending moments in the ribs, the influence surfaces for a
continuous orthotropic plate are used, based on those deflections found in the solution of equation
12.46/.

It should be further noted that in both cases for decks with open and closed ribs, although the
flexural rigidity Dy of the deck plate does not enter equations /2.45/ and /2.46/ directly, its effect
is not entirely disregarded, since this rigidity is a factor in the determination of that effective
torsional rigidity expressed by formula.

Orthotropic Deck Analysis
Pelikan — Esslinger Method

Deck with torsionally stiff ribs
o'w o'w

D, =0, 2H6X26y2+Dy &

=p

Figure 2.12 Pelikan-Esslinger Method. Closed rib deck.

For practical design purposes, the following data should be determined.

First Stage — Deck on Rigid Supports

1. Expressions for the influence surfaces used in the computations of the bending moments in
the ribs, considering different loading conditions.
2. The actual deck loading expressed through the Fourier analysis as a series of sinusoidal

component loads.
3. Properties of the sections, such as their effective span, width and section modulus.
4. Flexural and torsional rigidities of the deck.

Second Stage — Deck on Elastic Floor Beams

1. The influence of a flexible floor beam on its load distribution.
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2. The determination of those additional moments, shear forces and reactions which originate
in an orthotropic deck due to the flexibility of the floor beams.
3. Properties of the sections.

2.2 Large Deflection Theory of Orthotropic Plate

Large deflection theory of orthotropic plate is reviewed on the basis of Maquoi and Massonnet
[1971] and Troitsky [1976].

2.2.1 General equations for large deflection

2.2.1.1 Introduction

The presently known methods of the analysis of orthotropic plates based on the structural theory
of the first order. These methods may be considered as rigorous as long as the basic requirements
of the theory are satisfied, namely, that the deflection of the orthotropic plates is small or w <
0.2 t and has no secondary effects on the stresses. By increasing the magnitude of the deflections
beyond a certain level when w > 0.3 t, we note, however, the lateral deflections are accompanied
by stretching of the middle surface, provided that the edges of the plate are restrained against in-
plane motion. When the magnitude of the maximum deflection reaches the order of the plate
thickness or w =~ t, the membrane action becomes comparable to that of bending. Beyond this,
when w > t, the membrane action predominates.

Although the large-deflection theory of plates assumes that the deflections are equal or larger
than the plate thickness, these deflections should remain small relative to the other dimensions of
the plate.

The large deflection theory of orthotropic plates presents an extension of the classical large
deflection theory of isotropic plates with the necessary modifications. In 1910 Th.von Karman
[1910] derived the following two partial differential equations of the large deflection for isotropic
plates:

2
o*F 5 d*F 64F_E ?w | o’w dw
+ toT ox T2 A2
oy ox~ oy

o oty
¥ 1247/
'w o'w  o'w _L(BJFGQ_Fazw Jr82_F62w ) O*F 8ZWJ

t ayz axz 8X2 ayz axay axay

+2 +
x* eyt ' D

where
F = Airy's stress function
w = deflection of the plate

t = thickness of the plate
p = lateral load
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R

E = modulus of elasticity of material
v = Poisson's ratio

= flexural rigidity

Equations in /2.47/ are coupled, nonlinear partial differential equations of the fourth order.
The geometric nonlinearities are caused either by higher order terms of derivatives or by their
products.

2.2.1.2 General equations for large deflections of orthotropic plates

General differential equations for large deflections of orthotropic plates were derived in 1940 by
Rostovtsev [1940], who extended von Karman's equations by introducing the orthotropic stress-
strain relationship.

In the following discussion, we will begin with the consideration of the bending of an
orthotropic plate under lateral and in-plane forces. If only the first type of force is acting, then the
stress distribution is that corresponding to bending. If only the in-plane forces are acting, the state
of the generalized plane stress prevails.

In studying the combined action of the bending and in-plane forces in an approximate
manner, we assume that the stress components are composed of two parts:

b
G, =0, +0% T, =Tg
_ b m _.m
G, =06,+0, T,,=Ty, /2.48/
_ b m
Ty = Tay +Txy

Here 6,°, 6%, 14" are stresses proportional to z due to bending; 6x™, 6,™, 1+, are values of the
membrane stress through the thickness, arising from in-plane forces only.

In order to obtain the equation which the deflection w must satisfy, we will introduce the
quantities Ny, Ny, Ny, Nyx as in-plane forces per unit length.

+/2 +t/2 +/2
N, = chdz =toy, Ny = Icydz =toy, N =N, = Irxydz =ty 12.49/
—t/2 —t/2 —t/2

Evidently Ny, Ny, Ny, satisfy the equations of equilibrium in the absence of body forces:

ON ON ON
N +—2 =0, ¥ Y=o /2.50/
ox | dy x oy

In order to determine them, it is necessary to solve the plane problem of the plate.

If we divide the plate into rectangular elements of dimensions dx, dy and t, we can then
consider their equilibrium. Besides the forces and moments shown in Fig. 2.13, there will also
exist the longitudinal forces shown in Figs. 2.14 and 2.15.
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Figure 2.14 Normal and tangential forces in a plane.
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Figure 2.15 Components of normal and tangential forces.

Taking the curvature of the plate into account, the forces Ny, Ny, Ny, will not lie in the xy
plane in the deformed plate; we obtain for the components of these forces in the z-direction

2 2 2
Z:(NX ZXY +2N,, SX;VY +N, Zy\;/}dxdy /2.51/

or, per unit area,

_ 2 2 2
7= [Nx vazv +2N,, gxgvy +N, aay\;v]dxdy /2.52/

This force Z must be added to the load p in Huber's Equation /2.22/ and we obtain for the
orthotropic plate
4 4 4 2 2 2
oW o oW +Dyawzp+Nxa—w+2nya—w+Nya—w /2.53/
ax4 axz ayz ay4 axz axay 6}’2

X

The problem of orthotropic plate bending with in-plane forces is appreciably more
complicated if the deflection is not taken as small as when compared to the thickness. In this case,
the deflection and the stress function are determined by a system of two non-linear equations.

Let us assume that the stress components are determined from Eqs. /2.48/ and that the
corresponding strains may also be expressed in two parts

g, =€+, €y =s'; +ey, Yy =ygy +7xy 12.54/

The quantities &, &,° 7" are the middle surface strains, depending not only on the
displacements u and v, but also on the deflection w. From the general expressions for strain
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components, by expansion in series and retaining only the first power of the derivatives of u and
v and the second power of the derivatives of w, we get the known expressions

ou 1(ow) o 1fow) bu v ow ow
g, =—+——|, ey =—+—|—|, Vo =+ —+—-—  /255/
ox 2\ 0x oy 2\ oy dy Ox Ox
Elimination of u and v by means of differentiation gives
m m 2
p%m %y ovh (a’w) ow dlw
+ - = - /12.56/
ayz axz axay axay axz 6y2

The strains &, &, vx," depend on the bending of the plate and are given by the formulas

_ o0*w _ o*w _262w
TR T ey

€ /2.57/

The total stresses oy, Gy, Txy across the thickness lead to in-plane forces Ny, Ny, Ny, expressed
by the equations /2.50/, and to the moments My, My and Myy. The stresses Tx,, Ty, lead to the shear
forces Qx, Qy. The stresses x™, 6y™, Tx,™ satisfy the equations of equilibrium

oo™ oty oty Ooy
DOox [Ty, LT /2.58/
0x oy 0x oy
from which it follows that they may be expressed in terms of the Airy's stress function F
2 2 2
F F F
om-ZE  om ZF om0 /2.59/
These stresses are connected to the strains by the generalized Hooke's law
1 1 1
gl :—(cm—v cm) sm:—(cm—v cml Yo = ——10 /2.60/
X x xPy y y y©Ox Xy Xy
E, E, Gy
The transverse shear and in-plane forces satisfy the equation
ON. ON 2 2 2
N T peN, TV N IV N TV 12.61/

ox oy ox2 Xy@x_é’y y 6y2

which is obtained by considering the equilibrium of a rectangular plate element of Fig. 2.13,
taking into account the force component in the z-direction arising from the longitudinal forces,
Figs. 2.14 and 2.15.

After substituting expressions /2.60/ into /2.56/ and replacing the stresses by the
corresponding stress function F from /2.59/ we obtain
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/2.62/

1 0*F (1 2v,.) &F 1 o'F (w) Pw dPw
E, ' \G E, Joxoy? B, o \oxdy) o o
y X X

The second equation necessary to determine F and w is obtained by substituting expressions
for shear forces into /2.61/ and by replacing the longitudinal forces by the corresponding stress
function F. Thus we obtain

4 4 4
D, ZXY+2H afzgyz +D, zyvf =p+{

20 A2 2 A2 2p A2
OPOW 0P 0w OFOW| pey

Equations /2.62/ and /2.63/, together with the boundary conditions, determine the two
functions F and w. Taking into account the stress function F, we can then determine the stresses
in the middle surface of a plate by applying Eq. /2.59/. From the function w, which defines the
deflection surface of the plate, the bending and the shearing stresses can be obtained by using the
same formulas as in the case of plates with small deflection.

Thus the investigation of large deflections of plates reduces to the solution of the two non-
linear partial differential equations /2.62/ and /2.63/. Integration of these equations is
accompanied by great difficulties as a result of the nonlinear terms in the first equation: the
solution of these equations in the general case is unknown. Some approximate solutions of the
problem are known.

2.2.2 Non-linear theory of the post-critical strength of orthotropic box girders
[Massonnet and Maquoi, 1973]

2.2.2.1 Basic considerations

The problem of the evaluation of the collapse strength of a box girder composed of four thin
walls in steel and subjected to pure bending is of considerable difficulty, because it is influenced
simultaneously by

(a) the geometrical non-linearity (change of geometry effect)

(b) the material non-linearity, due to the yielding of certain portions of the girder
(c) the interaction between the four walls composing . the box girder

(d) the presence of numerous longitudinal stiffeners.

With reference to (a), the Massonnet and Maquoi think that it is sufficiently well established
[Maquoi and Massonnet, 1972] [Massonnet, 1968] that the consideration of geometric non-
linearities is absolutely compulsory, to omit further comments here.

With reference to (b), taking into account simultaneously large deformations and plastic
yielding, though theoretically possible (e.g. by suitable finite elements), complicates the
calculations to such a point that, even with a very powerful computer, they become extremely
heavy. For this reason, the current theory adopts the viewpoint of Wolmir [1962], Skaloud [1970]
and Skalound and Novotny [1962] according to whom collapse of a compressed membrane plate
occurs when the mean membrane stress along the lateral unloaded edges reaches the yield stress
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oy determined by a compression test. This is the first basic hypothesis of the theory of Massonnet
and Maquoi.

This hypothesis is compared with the tests of Massonnet and Maquoi and it is shown that it is
in reasonable agreement with them. As it is possible to measure the value of the mean membrane
strain emc at collapse along the unloaded edges of the compressed flange, it should be possible to
replace the actual yield stress of the steel used by a fictitious yield stress

oy =Eenc /2.64/

Finally, this collapse criterion is expressed by the relation

a/2 —
L ™6.). =+b2® =5, 1265/
a J-a/2 Y

in order to improve the degree of agreement of theory of Massonnet and Maquoi with the
tests.

With reference to (c), it is obvious that the interaction between the compressed flange and the
remainder of the box girder, namely the two webs and the pulled flange, is much smaller than the
interaction between the web of a plate girder and its stiffening frame composed of the two flanges
and the two adjacent transverse stiffeners [Maquoi and Massonnet, 1972].

More precisely, the flexibility of the webs is such that it is very reasonable to adopt, for the
bending boundary conditions of the compressed flange, the simple support condition along the
unloaded edges AD, BC; (w = 6°w/0y? = 0) (Fig. 2.16). This relates to the second hypothesis.

With regard to the membrane boundary conditions, a box girder composed of perfectly plane
plates and subjected to pure bending would obey Navier's bending theory and along the unloaded
edges would be Ny = N, = 0.

If the calculation includes a small unavoidable initial curvature of the compressed flange, the
conditions Ny = Ny, = 0 must remain reasonably correct if the mean collapse stress exceeds only
slightly the critical stress (third hypothesis). The discussion of the test results will show that the
degree of post-criticality n= does not exceed 1.5 for the box girders used commonly in civil
engineering.

Longitudinally, the compressed flange presents a series of buckles alternatively above and
below its median plane, separated by transverse straight nodal lines (Fig. 2.16). Investigations
will be limited to the rectangular panel of dimensions a, b, corresponding to one of these buckles
and bounded transversely by two adjacent nodal lines AB, CD, (Fig. 2.17) along which there is
obviously w = &*w/dy? = 0.

With regard to the second hypothesis (that of simple support along AD and BC), it is obvious
that the non-linear buckling deformations of the panel ABCD must affect the deformations of
both webs and therefore their collapse stress.

However, it must be emphasized that the main aim is to predict the collapse moment Mo of
the whole box girder. The two webs' contribution to the global section modulus of the box girder
is less than 15%, so that a large error on the estimation of this contribution would only slightly
affect the value of M.
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Figure 2.17 Stress distribution of plate

With regard to (d), it should be noted that the large box girders of modern bridges comprise
between ten and twenty longitudinal stiffeners. In these conditions, it is not mathematically
possible to analyse the individual action of these stiffeners. On the contrary, the bending rigidities
of these stiffeners must be spread out continuously, as in the Guyon-Massonnet method for
calculating beam grids and orthotropic plates [Bares and Massonnet, 1968]
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Combining this consideration with the necessity emphasized in (a), to treat the plate as a non-
linear membrane plate, it is necessary to start from the equations of an orthotropic membrane
plate. These equations were first developed by Rostovtsev [1968]. However, these equations are
valid only if the constitutive material itself is orthotropic. In reality, a structural orthotropy due to
one-sided stiffeners must be dealt with. Pfliiger [1947] has established the mathematical model of
such plates in linear regime and it was indicated therefore to generalize Pfliiger's equation by
replacing the familiar relations of linear elasticity

Y e =2 Yo :%+% /2.66/

by the corresponding expressions of non-linear finite elasticity, first proposed by von Karman:

0x
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This generalization was presented by Maquoi and Massonnet [1971]. However, the resulting
equations are rather complicated and comparative calculations showed that the additional terms
due to the eccentricity of the stiffeners introduce corrections of only about 5%.

It was decided, therefore, to adopt the classical formulation of orthotropic membrane plates,
but still to use the refined expressions for the bending and torsional rigidities given by the
extended Pfliiger theory.

2.2.2.2 Fundamental equations and their method of integration

The fundamental equations of an orthotropic membrane plate are two coupled non-linear
partial differential equations in terms of

wo — the initial deflexion of the median plane of the plate (Fig. 2.17)

w — the additional transverse displacement of this plane

¢— the Airy stress function governing the membrane stresses through the relations

Nx =¢7, Ny =¢", Nyy =—0" /2.68/
. S . 0 .0
with the simplifying notations ( )'=—, ()=—.
ox oy
These equations are:
Compatibility equation
I ... 2 . 1 ~ [ RN e
— ¢+ ="+ —¢'"" 1=V wo W) —(wo +wW)—
AR A (U VRS
—(wo"+w")—wo"2+wo"w0”}:O /2.69/

Equilibrium equation
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Bw" 20w 4 Byw [ (wo rw )+ ¢ (wo )20 (wo bw ) =0 /2.70/

The values of the extensional, flexural and torsional rigidities D, Dy, Dy, B, Bx, By, Bxy, Byx, as
well as those of the modified rigidities Bx,By,C,D are given as follows [Maquoi and
Massonnet, 1973]:

Unit extensional rigidities

isotropic plate D = Et > and
1-v
stiffened plate D, = bij.b E(z)dQ, ,
1
D, =— I E(2)dQ
y y
by b,

where the notations J and J represent the

by y
integrals extended to the cross-sections of the
stiffened plate, respectively of width by and by,

Distances of neutral axes of stiffeners to the middle plane z= 0

1 1
e, =—— E(z)z dQ, , e, = I E(z)z dQ,
b, D, Joy b,D, b,
Unit flexural rigidities
3
isotropic plate B= ft 3 and
-V

b
stiffened plate B, = bTX.L E(z\z—e,)dQ, , B, = Ty.[b E(Z)(Z —e, )Z dQ,

y

Unit torsional rigidities

The unit torsional rigidities Byy and Byx are calculated from Saint-Venant's torsion theory. In
the particular case of stiffeners with thin-walled open cross-section, bxBxy and byByx are
calculated by formula G/3Zbe* where G is the Coulomb's modulus and b and e are the dimensions
of rectangles composing the cross-section of the stiffeners.

The torsional rigidity arising in the fundamental equilibrium equation of linear theory is

C = B+Byy+Byx

Modified rigidities according to Pfliiger [1947]
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It has been demonstrated that the eccentricities of the stiffeners affect the preceding rigidities
as follows:
5 -2
= v 2 = v 2
D2 D, BX:BX_——zexDx’ By:B)’_——ZeyDy
1-v I-v

5: 1-v

1-v

—ce.c,D where V=—uw—=V

The boundary conditions (Fig. 2.16) are:
bending: loaded edges AB and CD (x =+a/2):

w =0, My =0, therefore w" =0 /2.71/
unloaded edges AC and BD (y=+b/2):
w =0, My =0, therefore w " =0 /2.72/
membrane: loaded edges AB and CD:
Nxy =0 12.73/

The distance o« between these edges remains constant.
Unloaded edges AC and BD (y=+b/2):

Ny =0, Ny =0 /2.74/

The mathematical problem to be solved is the integration of equations /2.69/ and /2.70/ with
the boundary conditions /2.71/ to /2.72/. The well known eigenfunction representing the first
buckling mode of a compressed orthotropic plate is

w(x,y) =f-cos’> - cosY 12.75/
a b
To simplify the analysis,
(a) the plate presents an initial deflexion
wo(x,y)=1, -cosz-cos% 12.76/
a

related to the first buckling mode (some idea about the importance of this imperfection may
be gathered from reference [Maquoi, 1971]).
(b) in the post-critical range, it takes a supplementary deflexion

w(x,y) =f- cos% . cos% 12.77/

identical to the buckling mode, equation /2.73/.
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It has been shown by Wolmir [1962] that this assumption yields rather small errors as long as
the degree of post-criticality n = G/ G, 1is less than 1.5, which is the case in our flange plates

(fourth hypothesis).

Starting from the expressions /2.75/ and /2.76/ of w and wy, it is easy to integrate the
compatibility equation /2.69/ exactly in closed form. The expression /2.76/ does not, however,
satisfy exactly the equilibrium equation /2.68/. It is necessary therefore to resort to an
approximate variational procedure, namely to the Bubnov-Galerkin procedure, which gives the
value of the amplitude f of the additional transverse deflexion w, by stipulating that the error
represented by the left-hand member of /2.70/ must be orthogonal to w. This condition reads

+a/2

+b/2
J. [left-hand member of equation /2.70/] w dx dy =0
—a/2 J-b/2
2.2.2.3 Collapse criterion

After lengthy calculations, and introducing the non-dimensional quantities

nsz 1- (;)2
fo f b
—=¢gp, —=¢g —=A, ——=k(>0!) /2.78/
t t t 160‘0rt
the collapse criterion /2.65/ may be written:
a2 o | m o k) 1+md
(1+m8)+k——¢(e+ 280)[ (1438)+ ] —sh=— +pp ——sh—=|| = 12.79/
e+g( 22 ] a iy« r

where the new notation is defined as follows [Massonnet and Maquoi, 1973]:

ng’ QZ%’ 822;’ g_on]“)lgy’ 0= D]ij’
3= 2 ei-e? [ LS TN e
Iss oy Iis il
"o Jlshmlchmz—JO:ShTEchh7tJl e :_J]sthlcthz—JO:shTCchth1 e
o a o o o o o o
G :_#—;HS)(EX +2a26+a4§y).
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2.2.2.4 Limit efficiency of the compressed flange

The limit efficiency p; of the compressed flange is defined to be (Fig. 2.17) the ratio of the
mean stress c=5x along the loaded edges x =+a/2 (Fig. 2.16) to the value of the yield stress in
compression — c_sy, at the moment where collapse occurs and collapse criterion /2.65/ [or /2.79/]
is satisfied. By definition, then, the following equation is obtained:

P, = —(c_sx /Ey) 12.80/
The calculations give
2
pt=1—2ka r 5 s(8+280) 12.81/
7\‘2 1+ mo

2.2.2.5 Correction to the discontinuous character of the stiffening

The theory discussed so far is based on the assumption of 'smeared' stiffeners. In fact, the
plate panels enter rapidly in the post-critical range and present, between two adjacent stiffeners, a
series of alternate buckles. The diagram of the longitudinal membrane strains &« shows therefore
girdles which increase in depth with increased bending of the box girder. It is possible to take
account approximately of this effect by introducing a partial efficiency o', which is the ratio of the
total effort transmitted by the actual stiffened panel by the effort transmitted by the continuous
substitution panel considered in present study. According to Fig. 2.18, this partial efficiency is

belo) A
,_mbve(a)aHmAra_i.(c)n,.ﬂ
P (mb’t+mAr)c_s - Ay

b't

/2.82/

1+

where b'e (c_)') specifies that the effective width of the local plate strip of width 5’ must be

calculated for a maximum membrane stress at the edges of this strip, ¢"max, equal to c.
Maquoi and Massonnet [1971] gives a critical review of the various effective width formulae.
The result of it is to show that the best formulae are those of Faulkner:

('&j 2% 19 12.83/
Faulkner

o BYlo| B’ [of
with
= % /2.84/
tVE
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and Winter:

/2.85/

N\
=| =
N——
=
=4
e
I
@|5
a2
|
S
a2

i
|
11

il

ot

N

;

Figure 2.18 Stress distributions with stiffenings

The Winter formula given is not the version used in Maquoi and Massonnet [1971], but the
modified, slightly less conservative version introduced in the 1968 edition of the Commentary of
the AISI Specifications.

In effect, o differs from strip to strip and is minimum at the middle of the stiffened panel
(Fig. 2.18). If the stiffening is sufficiently strong, this pocket in the o, diagram is not too large
and the reduced effective width of all panels may be calculated by Faulkner's formula, equation
/2.83/, where H = |G_x| =pOy, pr being computed by equation /2.81/. The local efficiency p'is

then immediately furnished by equation /2.82/. For weaker stiffenings, the calculation of p’ is

more involved Maquoi and Massonnet [1971]. The global efficiency of the stiffened plate, p,, is
clearly given by the expression

Pe =P’ /2.86/

where p; is given by equation /2.81/. The mean collapse stress is then

Gu = P40y 12.87/
2.2.2.6 Ultimate strength design of a box girder bridge

Summarizing the preceding theory, Massonnet and Maquoi recommend designing box girder
bridges by adopting for the collapse loads determined by the theory described, the same safety
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factor as that imposed by the specification regarding the yield stress of the steel for the considered
loading case.

The Massonnet and Maquoi believe that the theory summarized here is a reasonable
equivalent, for box girder bridges, of the collapse design methods of plate girders, namely the
Basler-Thurlimann model and the various improvements made to it at the London IABSE
Colloquium of March 1971 [Maquoi and Massonnet, 1972].

The theory described in the preceding sections may be immediately adapted to any kind of
load factor or, equivalently, limit state design theory that should be substituted to the
conventional factor of safety approach.

2.2.3 Results Comparison and Comments of Tests [Massonnet and Maquoi, 1973]

2.2.3.1 Design of test girders

The behaviour of the test girders must be as similar as possible to that of an actual box girder
bridge. Therefore, the following principal parameters must be considered:

(a) the thickness b/¢ of the compressed stiffened flange
(b) the number (m-1) of longitudinal stiffeners

(c) the relative rigidity y of longitudinal stiffeners

(d) the side ratio ¢ = a / b.

After examining the dimensions of recent large box girder bridges, it appears that it is not
possible to make a model exactly to scale, because of the extremely large dimensions compared
with the small thickness of the plate. Therefore a minimum thickness of 4 mm for the plate has
been adopted to avoid welding problems.

The following requirements have been determined:

(a) the ratios b/t and b/t are such that 25 < b/t <70 and 250 < bt <750
(b) the height of the webs is about 0.5 times the breadth b of the girder
(c) the side ratio a is often larger than 1 and about 1.2

(d) the neutral axis lies approximately at midheight of the girder.

The test girders are subjected to pure bending and the number of longitudinal stiffeners
remains constant in all tests. For convenience, the section of the test box girders is not closed;
however, it is sufficiently braced to guarantee the permanence of the rectangular cross-section.

The aim of these tests is to verify the theory of post-critical behaviour presented in the first
part of [Massonnet and Maquoi, 1973] and, more precisely, to examine the effect of the rigidity
of longitudinal stiffeners. If y* is called the 'optimum rigidity' of the linear buckling theory, the
actual rigidity of longitudinal stiffeners will vary between 0.4 y* and about 4 y*.

For all the tests, the following data were selected:

thickness of the compressed plate t =4 mm

breadth of test girders between axes of webs b = 1600 mm
height of webs h =726 - 732 mm

length of stiffened panelsa = 1920 mm

spacing of longitudinal stiffeners b'=200 mm
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length of the test girder 3a = 5760 mm

Thus:
m=38, b/t = 400, b'/t =50, a=1.2.

To avoid early instability of stiffeners, these are made of angles; furthermore, they are so
designed to have rigidity ratios y/ y* equal to 0.4, 1.0, 2.0 and 3.5. The intention is to make two
additional tests on stiffened panels with transverse flexible stiffeners.

To emphasize the post-critical range, all the parts of the test box girders, as well as those of
the re-usable end girders, are made of high strength steel.

In the fabrication of these test girders, welding sequences have been recommended which
minimize the residual stresses. It has also been forbidden to use any artificial treatment intended
to reduce the initial deflexions of the plates.

A general view of the cross-section of the test girders is shown in Fig. 2.19.
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Figure 2.19 Cross-section of test girders.

A preliminary test led [Massonnet and Maquoi, 1973] to modify the stiffening of the test
girders for the test panels adjacent to the bolted joints with the re-usable end girders. Indeed,
these joints constitute a 'hard spot' and, in the preliminary test, local buckling was experienced in
their vicinity. Therefore, an upper stiffening has been added to these panels, whose height
decreases linearly from the joint to about 10 cm of the transverse stiffener.

2.2.3.2 Comparison of results and comments

Figures 2.20, 2.21 and 2.22 show, for the global efficiency, a very good agreement between
the tests and the theory of the first part of [Massonnet and Maquoi, 1973] since the maximum
difference is about + 5 %. This result must be judged as excellent if the rather simple bases of the
theory and the extremely complex character of the post-critical strength of stiffened plates are
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considered. Massonnet and Maquoi believe that this difference between experimental and
theoretical results could be reduced further if the loading corresponding to the collapse criterion
could be determined more precisely. With regard to the centre deflexion, the agreement is still
better, as shown in Table 2.3.
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Figure 2.20 Comparison of results, test girder |  Figure 2.21 Comparison of results, test girder II
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Figure 2.23 Comparison of results, test girder 111

Table 2.3 Comparison of results.

Global efficiency Centre additional deflexion,
Test 5 X : = - e .
. Experimental | Experimental | Theoretical t e Experimental | Theoretical
girder No. . . p —-p
mid-span end section, p L
section, pm® pe° pt
I 0.54 0.57 0.53 -4.7% 38 41.8
II 0.65 0.66 0.69 5.0% 29 28.0
111 0.77 0.82 0.81 1.9 % 10 12.1
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3 Limit States and Modelling of Orthotropic Plate

3.1 Collapses of Plate and Box Girder Bridges

On the turn of sixties and seventies the professional public opinion and the public were deeply
shocked by some serious collapse of bridges (Fig. 3.1). In 6 November, 1969. the new Danube-
bridge was snapped, which was built on the ring-road, but fortunately the bridge did not collapse.
The next bridge was the Cleddau-bridge at Milford Haven (Wales, United Kingdom), where the
steel box-girder with slant web-plate collapsed during the cantilever method of erection. In 15
October, 1970. the box-girder of the West Gate bridge at Yara-river collapsed during the
cantilever method of erection. 35 people died in the accident, among them the erection manager
engineer and his assistant. Just one year after, the steel box-girder of the Rhine-bridge at Koblenz
(Germany) collapsed during the cantilever method of erection, 18 people died. Already at first
sight, there was common factor in the four accident: all of the four cases the main girders were
web-plated box-girders and all of them collapsed during the erection [Cartledge, 1973].

From the beginning of thirties, the web-plated steel structures started widely applied in
Europe at building of larger bridges. At this time, the Arpad-bridge in Budapest was started to
build, and if it could be finished, the span of the bridge could be a world record. During the
bridge reconstruction after the Second World War this structure become more and more popular,
and spread rapidly by the “I”-section the so-called box-girders, and the so-called orthotropic steel
floor slab is naturalized. All this caused sharp turn against the bar-static, since these were difficult
spatial plated-structures. Worked out the theory of gridworks, the calculation method of
orthotropic plates, and the theory of the stability of plates (examination of plate buckling) rapidly
developed. The way looked soft, the sky looked unclouded, when the four mentioned accident
had occurred. Certainly immediate examination started in every case to discover the reasons of
the accidents and to find out the responsibility. The national fact-finding committees discovered
the causing reasons, pointed out the conditions and factors, which take part in the accident. The
international professional public opinion summarized the cases and selected that reasons, which
were common in all accidents. It was typical at every accident, that some reasons collective effect
caused the collapse. However two reasons were find at every accident, thus general conclusions
could be done.

Buckling occurred in all the three accident and at the structure damage in Vienna. The
capacity of one of the element of the box-girders (bottom or web-plate) against buckling is used
up, the plate deflect from its plain, thus the girder lost the rigidity. That could be occurred,
because there were not correspondence between some basic assumptions of the buckling theories,
which theories were developed by very big scientific apparatus and invariably do not disputed,
and the everyday building practice. The theory basically assume plain plate and straight bracing,
and assume the linear behaviour of the steel plate until a certain critical strength. These are
idealistic assumptions, which necessary for solving the problems by mathematically. The
everyday reality is somewhat different. In practice, there are not perfectly straight and plain
plates. Yet a very thick plate deflects a little from its plain in the structure because of the welding
stresses. Similarly the bracing, which is welded to the plate, deflect from the theoretical straight.
Neither the unloaded ready structure is free from the stresses, because it contains the welding
residual stresses. The calculated results therefore necessarily a bit differ from the reality, even if
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the manufacturer of the steel structure working with modern technology thus with maximal
precision. Together with the increasing production imprecision, the deflections are increasing,
too.

The another common problem was the magnitude of the safety against the fracture in the state
of erection. Previous to the accidents the common opinion was that, smaller safety reserve is
enough during the erection than the safety against the calculated maximal load on the finished
structure. Now it is known this opinion is theoretically incorrect. The prescribed moving loads of
the finished bridge are such big, that the real occurrence on the bridge is very improbable. On the
other hand the construction loads are really effective in every state of erection, and the possible
instabilities are bigger during the erection. Therefore it is not justified, that the official regulations
ordain bigger risk for the building contractor, than the operator of the finished bridge. The
conclusions arisen from the box-girder-catastrophes were reached in every country. During the
official orders, the designing and constructional regulations were revised and co-ordinated, the
undertaking conditions were rendered more severe.

The bridges at Milford Haven, at Melbourne and at Koblenz were erected, the Danube-bridge
at Vienna was repaired, and today they serve the traffic undisturbedly. Gently the confidence
restored against the box-girders and nowadays new bridges are erected.
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(Australia)
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Figure 3.1 Collapse of bridges at the end of Sixties and at the beginning of Seventies.
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Figure 3.2 Plate buckling curves.

3.2 Design Criteria for the Different Substructures [Sedlacek, 1992]

The post-critical behaviour of sheared plate-panel and compressed plate are similar in several
respects, such as the post-buckling state is occurred in the load carrying capacity state, however
in other respects they have different behaviour (Fig. 3.2).

All elements of the deck have to be designed for

— the ultimate limit state,
— the serviceability limit state, and
— fatigue

In general the reserve of subsystems S1 and S2 to overloading by static local loads is so great
because of their potential membrane strength, that the ultimate limit state does not govern design.
This is illustrated by Fig. 3.3 [Pelikan and Esslinger, 1957] which shows the load-deflection
curves for two tests conducted with a test deck, made of Fe 235. Tests revealed the results in
Table 3.1 for the loads P [kN].

In general the serviceability criteria:

— no excessive local curvature of the deckplate (to prevent cracking of the asphalt
surfacing) and

— no accumulated deformations,
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together with fatigue criteria are the relevant limit states for the design of the deck plate and
the longitudinal stringers. These permit the use of an elastic structural model for the analysis.

Table 3.1 Test results.

Limit State 1 test 2" test
Calculated Experimental Calculated Experimental
First yielding 35.2 41.0 20.01 22.0
First cracks 54.2 480.0 31.0 361.0
Ultimate load >560.0 372.0
A-B {P
‘ T T ¢ T 1
295 2501 | +300+
e s i
1&0%8-150:1200 ~—*—~f‘il‘0
’ 1480 — =
-—iD
= e
T clJ [ J
P N . ’r‘
tieeodikesel ) B8 H=S
= o [+ ‘
IR
L H ) ‘*,
| oyl
!
~—C
{a)
Mlgeyloo oo oo T —————-{ultimate lood capacity]
’ first crack in the stringer total deflection —— =
le————npermanent deflection jelast. defl, j-
3046 L~ !
25.62 /‘///
= 206k ////
(29
= 1566
2 1210 ///
8 68 /// elastic limit of the stringer
602 7 98 | |
310900 42 = o d el o /oL - 1 [heoretical capacity]
R Il (St S el etk il el s ok —lik S

(b)

deflection [mml

Figure 3.3 Results of loading tests. (a) Testpiece A for 1% deck (deck plate and ribs only); (b) testpiece B
for 2" test (deck plate, ribs and cross-beams).
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Figure 3.3 Results of loading tests. (a) Testpiece A for 1 deck (deck plate and ribs only); (b) testpiece B
for 2™ test (deck plate, ribs and cross-beams).
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Subsystem S3 is also normally analysed using an elastic model to calculate moments and
shears and deflections because the cross girders in general are not compact and so need to be
treated elastically. From the analysis of the subsystems S2 and S3 the bending moments and shear
forces in the longitudinal stringers and cross girders are derived. To calculate the ultimate limit
states of the cross girders with respect to web buckling, e.g. the plate or lateral buckling of the
bottom flanges of cantilevering cross girders, Fig. 3.4, full or partial plastic resistance models
may be used. For serviceability limit states and for fatigue assessment purposes the models
should be elastic. Particular care should be given to the inclusion of the total transverse frame in
the assessment of fatigue strength.

The ultimate limit state check of the main girders of the bridge involves the superposition of
the local effects from substructures S2 and S3 and the global effects from substructure S4, that
take place in the orthotropic plate deck.

As the extreme values of the local traffic loading do not coincide with the extreme values of
the global traffic loading, combination factors such as those given in Fig. 3.5 [Sedlacek and
Merzenich, 1991] may be used when checking the deck.

When the bottom flanges of the bridge are in compression, the stability checks for the bottom
flanges of box-girders or of open bridge sections may be performed taking account of the
restraints provided by the integral action of the girders with the deck. For example, in Fig. 3.6 the
spring stiffness of the cross frames influences the buckling wavelength of the bottom flanges of
the open girders.

IGVERVEVEVAVAVAVAVAVAV

Jl <560m !
-4 without web stiffeners

Figure 3.4 Cantilevering plates.
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Figure 3.5 Combination factor for global loads for local plate verifications.
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Figure 3.6 Spring stiffness of the frame depending on the buckling wave length /.

3.2.1 Analytical model for substructures S1

It is not normally necessary to model the deck plate in substructure S1 to check the ultimate limit
state, as tests and background studies have shown that the stresses in the plate due to local
bending may be neglected in design provided the minimum stiffness criteria for the durability of
the asphalt layer given previously are satisfied. The ultimate local load capacity of the plate is so
high, that the ultimate limit state is never relevant.

Tests also suggest that compliance with the minimum stiffness criteria and with the
recommended welded details given for full penetration welds in Fig. 3.7 negates the need to carry
out more elaborate fatigue calculations for the stringer-to-deck plate welds. Such welds may be
laid without bevelling by automatic welding, when evidence of sufficient penetration is provided
by proof tests.

It should be noted that the minimum stiffness criteria are only valid for stringers running in
the longitudinal direction. When stringers run in the transverse direction, the situation for the
durability of the asphalt surfacing worsens due to the 'wash-board-effect' of the traffic loading.
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When no suitable minimum stiffness criteria are available serviceability and durability criteria
should be established to limit the stresses, deflections or curvatures of the steel plate as calculated
by superimposing the effects from substructures S1 and S2 [Giinther et. al, 1987].
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Figure 3.7 Weld preparation for the connection of the stringers to the deck plate [Kahmann, 1973].
3.2.2 Analytical model for substructures S2

3.2.2.1 Transverse stiffness of the orthotropic plate (Dx)

The transverse stiffness of the plate supported by rigid beams and elastic crossbeams is identical
to the plate itself, besides the small stiffening effect of the longitudinal and transverse beams is
neglected even in case of exact calculation. According to this:
b - E * E-t}
*o2a-v?) 10927
where FE is the Young’s modulus, ¢ is the thickness of the plate, and v is the Poisson's ratio (v

= 0,3 for steel).
As it was mentioned earlier further on D=0 approximation is used.

/3.1/

3.2.2.2 Longitudinal stiffness of the orthotropic plate (Dy)

The longitudinal beams stiffen the plate. When consider the plate as a continuum, the longitudinal
stiffness of the orthotropic plate is the unit stiffness of the longitudinal beams, so:
EL,
AR

where EI, is the bending stiffness of a longitudinal beam where the effective width of the
composite plate, as the flange is taken into account, « is the distance between the beams.

The only problem here is the consideration of the effective width of the plate. Pelikan and
Esslinger provide an approximate calculation. Fig. 3.8 shows the cross section of the floor
structure, where a, real width belongs to a longitudinal beam. ay effective width results from the
condition, that if the ap width plate strip is compressed with the sliding force acting at the
connection of the beam and the plate, the elongation of the plate strip will be identical to the
elongation of the plate at the connection of the beam. According to this condition the effective

/3.2/
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width depends on the a/k; ratio and on the loading of the longitudinal beams. Here k;- since the
longitudinal beams are multi-span beams — is a smaller value than £, the span of the longitudinal
beams. k; is the distance of the points of zero moment, approximately k;=0.7k. If only one
longitudinal beam is loaded the effective width will be ap=0,3627k;. If each longitudinal beam
has the same loading the ay/a ratio can be taken from the graph of Fig. 3.9 in the function of
B=m-a/k;.
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Figure 3.8 Effective width.
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Figure 3.9 The determination of effective width [Halasz, Hunyadi, 1959].

If the loading of the longitudinal beams is not the same on each, we will be allowed to count
with a* instead of a (Fig. 3.10). a*is:

X 2A
=0 4 /3.3/
AO + A]
where Ay is the load of the beam No “0” and A4 is the load of the beam No “1”. In this case at
the graph of Fig. 3.9 a* is used instead of a. The ratio of @ */a can be taken from Fig. 3.14.b in the
function of b,/a. The determination of the loading of the longitudinal beam is discussed in chapter
3.2.3.1.
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Figure 3.10 Effective width of differently loaded longitudinal beams.

3.2.2.3 The torsion stiffness of the orthotropic plate (H)

Torsion stiffuess of longitudinal beams with open section

The torsion stiffness of the open section beams comes from the stiffness of the plate and the
beams (Fig 3.11):

- plate:
3
=p-Z2t /3.4/
10,92
- beam:
GI .43
2H,, :_T:M, /3.5/
a 3a
Here G is the shear modulus, /7 is the torsion inertia of the beam.
The complete torsion stiffness is:
3 3
H=H1+Hb=Et +Gd h, /3.6/
10,92 6a
In the further calculations the torsion stiffness of the beams will be neglected and we consider
that D, = H=0.
£
ol
el
s | & |
L Ll Ll

Figure 3.11 Longitudinal beam with open section.
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Torsion stiffiess of longitudinal beams with closed sections

The determination of the torsion stiffness of beams with closed section is rather difficult. Pelikan
and Esslinger determines the torsion stiffness of semicircle, and trapezoid sections. The torsion
inertia for closed sections

2
IT :%, /3.7
Zi

S

is adequate only in case of pure torsion (here 4 means the area of the closed section). The
effect of the section-distortion is taken into account by A reduction factor. An assumption based
on energy-principle is used, that the deformation work from the torsion in the real longitudinal
beam is identical to deformation work of an idealized beam (with reduced torsion stiffness) from
pure torsion. According to this, the torsion stiffness of the longitudinal beams in Fig. 3.12:

Gl
2a+e)’

T ~—~T ©

/3.8/

®

a e a

Figure 3.12 Longitudinal beam with closed section.

The value of A reduction factor depends on the cross-section geometry. The formulas for
trapezoid and semicircle section are available in the above-mentioned reference.

3.2.3 Analytical model for substructures S3

As it was already mentioned earlier, in case of plates stiffened by simply longitudinal beams the
approximation of D,=H=0 can be used and through this the differential equation of the
orthotropic plate is:

d*w
dy
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The plate with D, longitudinal bending-stiffness can be calculated as many endless continuous
beams close to each other with the same spans, which are supported by the elastic crossbeams.
The calculation is carried out in two steps. In the first step the crossbeams are considered as rigid,
so the stresses are calculated on continuous beams with fixed supports. In the second step the
deformation of the crossbeams is taken into account, and correcting elements are determined (Fig.
3.13).

e

IITTTTITIT

Second step

— 1‘—_
] i
F,F f f R R

The sum of the first and second steps

Figure 3.13 The Pelikan-Esslinger method [1957].
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3.2.3.1 The determination of the loading of the longitudinal beams

The plate transmits the load between the beams. When determining the load-transmitting role of
the plate, this can be handled as many continuous crossbeams close to each other, which are
rigidly supported by the longitudinal beams. The loading of each longitudinal beam is the
reaction force of these beams. It depends on the arrangement of the loading, the width of the
loaded strip and on the distance between the longitudinal beams. For a general longitudinal beam
the loading can be obtained from the graph of fig. 3.14.a.
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Figure 3.14 The loadings and the effective width of the longitudinal beam [Halasz, Hunyadi, 1959].

3.2.3.2 Determination of bearing forces, considering rigid crossbeams

Moments on the longitudinal beams

The bending moment depend on the loading, the distance of the longitudinal and crossbeams, but
independent on the sizes of the beams, so they are calculated for a structure only once. The
moments can be calculated when knowing the loads, with the help of the influence diagram for
continuous beams. Pelikan and Esslinger provide formulas for different loadings. These can be
used because of their easy use [Pelikan, Esslinger, 1957] [Visontai, 1965]:
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1) Moments of span

In cases of shown in Fig. 3.15 the formulas are the following:
a) load-case, A concentrated force in the middle of the span distributed on a strip with 2¢ width

(A=2cq):

2
Mgy =A k- [0,1708 + 0,1057(8 - 0,2500ﬂ , /3.10/

b) load case, concentrated load in the midspan:
Mg =A-k- {0,1708 + 0,3170(k

¢) load case, concentrated load in an optional span:

Moo =A-k-{0,3170[1‘11

d

3|

2 d
j ~0.5000+ . 311/

0,1 830%](—0,2679)m , /3.12/

where m is the smaller value from the numbers of the loaded span

2C d
-*—ﬂl‘A
7 !
|
k 1 & 3
d\,A
G P G , ¥ ©
, k | Kk | k J k k il

Figure 3.15 Load cases for moments of span.

2) Moments at the supports

The moment at the support “0” for the load cases shown in Fig. 3.16 is given by the following

formulas:

a) load case, A concentrated force in the middle of the span distributed on a strip with 2¢ width

(A4=2cq):
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2 3
Mgy =A-k-|0,8661 d -0,3661 d —O,Si+
k k k

s

2
+ Gj .(0,2887 - 0,3661%” (-0,2679)™.

The authoritative location of the load:

d =0,3800,
k
and the moment at the support for this

2
Mg =A k- {- 0,0850 +0,1496 (ij }

b) load case, concentrated load in an optional span:

d)? a2 4 m
Mg =A k- 0,8661(Ej —0,3661&] -0 |(-02679)™,

where m is to be understood as previously.
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/3.14/
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Figure 3.16 Load cases for moments at the supports.

86



Bearing forces of the crossbeams

The load from the longitudinal beams to the crossbeams is calculated as the reaction force of the
fix supported continuous longitudinal beams. According to the reaction force influence diagrams
the formulas can be used for the load cases shown in Fig. 3.17.

a) load case, a concentrated force in the 0-1 span:

2 3
Bog=A-[1-21961| L | +11961] L] |, /3.17/
K K
b) load case, a concentrated force in an optional span
2 3 1
Bg=A- 1,3923(%] —0,5884(%] —0,8039% (-0,2679)m~ 1, /3.18/

where m is the smaller value from the numbers of the loaded span
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Figure 3.17 Load cases of fix supported continuous beam.

"'l——‘———-aN

When calculating the reaction forces, the distributed loads can always be substituted by their
resultant, so only concentrated forces are used.

The bearing forces from the transmitted loads can be determined on the crossbeam as a
simply supported beam.

3.2.3.3 The effect of the elasticity of the crossbeam

After the loads of the crossbeam are determined, assuming continuous longitudinal beams with
fix supports, we remove the fix supports and the external load at the joints, then we load the
crossbeams with the reciprocal value of the determined reaction forces. Since according to our
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assumption, the system contains infinite number of longitudinal beams, this load will be
distributed. Although the torsion stiffness of the orthotropic plate is neglected, the load cycles of
each longitudinal beam will not be independent on each other and due to the elastic deformation
of the crossbeam — as the support of the longitudinal beams — some longitudinal beam will be
loaded which normally would be unloaded. If the longitudinal beams are handled as continuous
beams with sinking supports it will be necessary for the sinking of the supports to be proportional
to the loading. Mathematically this means:

deflection _ wix)  wlx)

= =p =const. /3.19/
load p(x) El¢p w""(x) P
For the length of the whole crossbeam. From this:
w=p-Elcp-w"" /3.20/

where p is the proportionality factor is the Young’s modulus, Ely is the inertia of the
crossbeam.

If the deflection curve is taken as a sine function variable (or function series) the load function
will be a sine function too, since its fourth derivative is also a sine function. So the loading of the
crossbeam has to be expanded in Fourier series and for the effect of the partial loads the
calculation has to be carried out on the longitudinal beam as a continuous beam with elastic
supports. The research of Pelikan and Esslinger resulted that the in often appearing cases when
there are only two beams, it is enough to take into account only the firs member of the series ( a
system with half wave) (Fig. 3.18).
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Figure 3.18 Partial loads of crossbeam [Halasz, Hunyadi, 1959]
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The spring constant from /3.19/ after four integrations:

4 4
T b . T
Elop -w"" =p(x) =p1 -sin—x, w(x) = —p(x) = -——-p1 -Sin—x
cb p(x) =p1 5 (x) Elgp 4 p(x) Bl pL-sin
but the w(x)=p - p(x), therefore
4
p= ! b— /3.21/
Elgp 4

The Fourier series for the most often appearing load cases are shown in Fig. 3.19.

b
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ﬂ”=ﬁ.ﬂﬂ7 cos T S 7

Figure 3.19 The most often appearing load cases [Halasz, Hunyadi, 1959]

The bearing forces of the longitudinal beam from the elastic deformation of the crossbeam

can be obtained in a way, that we determine the influence line of the continuous longitudinal
beam with elastic support with the above-determined spring constant, and we load these curves
with the partial loads. Pelikan and Esslinger provided some influence lines. The tables of these is
a function of y:

4
y—— 1bb /3.22/

ch~k3~a-n4
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where
Iy is the inertia of the longitudinal beam
b is the inertia of the crossbeam,

b is the span width of the crossbeam,
k is the span width of the longitudinal beams (the distance between the crossbeams)
a is the distance between the longitudinal beams

The spring constant p is included in y.

3.2.3.4 Calculation of orthotropic plates in case of longitudinal beams with torsion stiffness

In case of longitudinal beams with closed sections, the torsion stiffness of the plate H cannot be
neglected; Dy bending stiffness can be neglected. The differential equation will be the following:
4 4
2H-8—W+Dy ¥ by), /3.23/
ox2oy? oy*

so the calculation has to be carried out according to the plate- phenomenon. The general
solution of the equation:

w = (C; -shay + C; -chay + Cy -ay+C4)~sinn%, /3.24/

The integral constants are determined according to the supports. The solution is an infinite
series, so the loads have to be expanded into Fourier series.

The calculation is carried out in two steps. First the bearing forces at the place of the
crossbeams are calculated as continuous plate, than the elasticity of the crossbeam will be taken
into account. This last process is the same as written in the previous chapter.

So the problem is the determination of the bearing forces of an infinite length — continuous
plate fix supported at the places of the crossbeam. The calculation process is similar to the
process with the continuous beams. First the influence surfaces for the moments at the supports
and the mid-spans and the reaction forces are determined, then these are loaded with the given
load. The determination of the influence surfaces is a cinematic method; the surfaces are

. . . NmX . L .
determined so that in case of moment surfaces 3=1- smT relative rotation is applied at the

. e . . . . . NmX
midspan (its distribution is a sine function) and in case of reaction force surfaces w =1- smT

deflection is applied at the supports (its distribution is a sine function too), and from the
deflection surface the solution is given. There are formulas for the moment- and reaction force
values of these surfaces. Of course the influence surfaces and the loading were expanded in
Fourier series in these calculations and the result is given as series too. The accuracy of the
calculation depends on the number of the elements taken into account.

The general formula for the moments:
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M:q.k.zq—"-%, 13.25/
q .

Here q is the intensity of the loading of Fig. 3.16, q«/q is the load’s Fourier coefficient and
Q=qx2c.

The unit moment of M/(Qxk) is:

a) in case of moment in the span

k
M 1 cho: 2 ) M h ]
- J1- 3 0| e, = b /3.26/
Q-k 2ak-ac cha X k ac pa X
2 2
where:
qtm. 28 ;3.27/
b \D,
M K 1

/3.28/

2
K:—c+\/cz—l, /3.29/

C_Otk'Cth(lk—l

, /3.30/
- ak
shak

a* =1 E‘kk, /3.31/
Snhou

b) in case of moment at the support, formula /3.26/ is used, but instead of /3.28/ the following
member comes in:

M
_02*;2, /3.32/
ka®.(1-x%)

of course these formulas have to be generated as a sum of n member, by taking into account
that in o n=1,3..n.

For the determination of the Fourier coefficients for the two load cases of Fig. 3.20 we have
the following formulas:

a) case

q_xzzisin%, n=135...,
q nm b
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b) case

8 .
q_X:Z—-coszﬁsmﬂ, n=135...,
q nn b b

g g f
[T mn'[rq a)
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clel clel
L L b)
b

Figure 3.20 Load cases of crossbeam.

For the determination of the crossbeams, the determination of the reaction forces is necessary.
This can be done according to the beginning of this chapter. The calculation of the crossbeams,
and the correction from the elasticity of the crossbeams can be carried out according to the
beginning of this chapter.

3.2.3.5 Stresses in the floor slab from direct loading (tertiary stresses)

The floor slab is a fix supported continuous isothropic plate, with infinite number of spans,
supported by the longitudinal beams. The load is divided between the beams through the floor
slap, while there are bending stresses it it as well. These stresses are called tertiary stresses. Load-
transmitting and dividing role of the plate has already been discussed in 3.2.3.1, and we
concluded that from the load transmitting point of view the plat can be modelled as plenty of
beams with infinite length close to each other. But the stresses in the plate cannot be determined
like this. Since the orthotropic plate itself is a statically indeterminate structure it has huge load
bearing reserves, so the use of the plate phenomenon is not necessary either. Pelikan and
Esslinger provides an approximate process, which is simply and enough accurate [Pelikan,
Esslinger, 1957]. The essence of this process is that the bending moment in the plate is a product
of K plate coefficient and the moments of the structure modelled by beams.

m; =K-myg, /3.33/

Where m; is the unit moment (mMp/m) in the plate, K is the plate coefficient and m; is the
moment of a 1 m wide plate-strip as a beam.
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Figure 3.21 Load cases of floor slab.

The value of K is given for three load cases (Fig. 3.22)

During the calculation process first the moments of the plate as beams according to /3.10/-
/3.13/ are determined, than from the graphs of Fig. 3.22 we obtain K. the real moments of the
plate are obtained from /3.33/.
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Figure 3.22 Plate coefficients [HALASZ, HUNYADI, 1959].
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3.2.3.6 Calculation of gridworks

3.2.3.6.1 Introduction

Gridwork is a spatial structure, which consists of beams in two directions, which are connected to
eachother in some way (Fig. 3.23).

The layout of the beams can be totally random. Here we discuss only the calculation process
of such gridworks, where two spreads of beam (consists of parallel beams) are connected to
eachother in a way that some relative deformations are allowed. Mostly the beams are
perpendicular. The longitudinal directional beams are called main girder, the transversal
directional beams — supported by the main girder — are called cross-girder. The connection of the
main and the cross girder is usually rigid, which is able to carry torsion moments as well, but in
some cases e.g. steel structures, where the torsion stiffness of the main girders are small, this can
be neglected [Szabd, Visontai, 1962].

Further on we discuss special gridworks, where the main girders are parallel, simply-
supported with identical spans, and the cross girders are perpendicular to the main ones.

Figure 3.23 Gridworks a), b) simple and multi-span open main girder ¢) simple span box girder,
d) multi-span variable web-plated main girder.
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The basic models of the calculations can be divided into two classes:

a) the torsion is neglected, so the connection is able to transmit only vertical forces
b) the connection has torsional stiffness

In both classes assumptions are made, in order to make the calculation easier, but of course
they provide approximate results.

In case a), the most often applied assumption is to use one ideal main girder. This comes from
Faltus, but it has been is known from Leonhardt [Faltus, 1927] [Leonhardt, 1938].

It is worth to mention the process from class b), where the gridwork is substituted by a plate.
Since the bending stiffness of the full gridworks is different in the directions of the main and the
cross girders, the gridwork has to be substituted by an anisotropic plate where the elastic
parameters are different in the two directions. If these directions are perpendicular, the plate is
orthotropic plate. Guyon and Massonnet investigated this topic in details [Guyon, 1946a]
[ Massonnet, 1950c]. Huber and Cornelius made investigations on the exact calculation of
gridworks with torsional stiffness.

Further on we show the approximation method of Leonhardt and the one from Guyon and
Massonnet.

3.2.3.6.2 Analysis of a straight gridwork with one cross-girder with compatibility method
[Szabo, Visontai, 1962]

The assumption of the primary structure

The basic model of the analysis is shown in Fig. 3.24. The connection of the girders is able to
transmit only vertical forces, so the cross girders works as an elastically supported continuous
beam. The primary structure of gridwork can be taken in a way that we cancel the connections
between the main and the cross girders. The grade of the indeterminateness of the gridwork is
identical to the cross girder’s (as an elastically supported continuous beam) indeterminateness. In
case of r pieces of main girder the indeterminateness is 7-2. The cancelled connection forces are
substituted by r-2 pieces of (now unknown) X; force, which are vertical in case of vertical loads.
So these forces are the intermediate reaction forces of the elastically supported continuous cross
girder. With the determination of these forces the gridwork is solved, since we know all the forces
acting on every member.
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Figure 3.24 Straight gridwork with one cross-girder.
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The easiest way for the termination of these X; forces uses the so-called cross-distribution
factors. The cross-distribution factors are the joint forces, which arise when a unit load acts at a
joint. The sign of these factors is qi, where the first index denotes the location of the joint, the
second one denotes the location of the Po = 1 kN unit load. So qix means the joint force at joint i,
which arise from the effect of Py unit load at joint k. The cross-distribution factors are unit factor-
like, but their components mean forces.

Determination of cross-distribution factors

According to the previous interpretation, the cross distribution factors are the reaction forces of
the elastically supported continuous cross girder when the unit load is on a joint. So the reaction
force influence lines of the elastically supported continuous cross girder have to be determined.
The ordinates of these lines at the supports give the cross distribution factors.

The spring constant of the supports of the cross girder can be obtained from the deflection of
the main girder under unit load. So in case of simply supported main girders with constant
stiffness, when the cross girder is in the middle:

3
48EL;

Pi
The reaction force influence lines from the already known formula:

n(B;)=n(B;)° + > Byn(Xy).
i=0

where B; is the reaction force influence line of the support “i”” of the body structure of the

cross girder Bix means the reaction force when the unit moment acts at k. 1(Xx) is the moment
influence line of point £.

For instance in case of a gridwork with 5 main girders, the reaction force influence line of the
cross girder at point 2 (Fig. 3.25)

N(B3)=n(B;)" + By, -n(X;) +Bay -n(X3) +Baz -n(X3),

where

The ordinates of the reaction force influence line at the supports give the cross distribution
factors qo, q21, q22, q23 and qpa.

When determining all the influence lines of the reaction forces, we get all the cross
distribution factors (Fig. 3.26).
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Figure 3.25 The reaction force influence lines of the cross girder.
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Figure 3.26 Determination of the cross distribution factors.
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There are some relations between the cross distribution factors. On the one part because of the
equilibrium of the structure, the sum of the reaction forces of a loading is unit, so.

n
D dik =1=+qpp +q12 +d2 +q32 +q4p =1
i=0

On the other part according to Maxwell’s reciprocal theorem:
Cki = Cik>
so:
Pk "dki =Pi ik
from when:

Pk
9Qik =— "9ki-»
Pi

When the main girders are of constant stiffness and the main girder is in the middle:

L;
dik =7 "9ki>»
Iy

These formulas are either for checking, or for make the calculation process easier.

Determination of influence lines

The vertical loads of the grid can act within region 7. We can analyse the value of effect Cy, at
point (1) for the force P(§,n) respectively the effect C as a function of 1/2Cy(&,n). This
function under region T can be demonstrated by a surface, which is called influence surface.
When determining the influence surface of a cross section the basic assumption is that the forces
acting between the main girders are transmitted by virtual simply supported beams, parallel to the
cross girders. From this comes, that its vertical sections, belonging to the plane of the main
girders, can obtain the influence surface of a cross section. So the same number of sections can
determine an influence surface as the number of the main girders.

A section in the plan of a main girder — which is an influence line — provides the chosen
bearing force as a function of the location of the unit load. Two cases are distinguish:

1. P force acts on the same main girder where the chosen cross-section is
2. Py force acts on an other girder

These two cases are demonstrated on the example of the previous gridwork with 5 main
girders. Let section & on the main girder No. 2 be the one where the bearing forces are analysed
(Fig. 3.27).
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Figure 3.27 The layout of the examined gridwork.
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Figure 3.28 The model of main girder No. 2.

1. Py acts through the main girder No.2, so the section of the influence surface C of cross
section k is to be determined at the main girder No.2. Main girder No.2 is directly loaded besides
Py by joint force X as well. The question is the value of X,. According to Leonhardt, we make
the following assumption. If main girder No. 2. were rigidly supported by the cross girder, the
structure would be a two span continuous beam. Let the reaction force of the intermediate support
be Bom (the second index denotes the location of Py, see Fig. 28). let us ignore the assumed fix
support; this means that we put a force on the girder, which has the same value as Bon, but its
direction is opposite. However this force is distributed among the main girders through the cross
girder. From this the force on girder No. 2 is BomXq22, acts down. So altogether:

Xy ==(Bym = Bom *d22)=-Boyn(1-9q22),

force (acts upwards that’s why it is negative) acts on main girder No. 2. So Bon means the
reaction force influence line of the main girder fix supported in the middle. In case of a girder
with constant inertia, when the analysed cross section is in the middle of the cross girder, the
reaction force influence line can be determined analytically. According to the kinematic way of
solution:

99



where e denotes the deflection influence line of the simply supported beam, and e;, denotes
the deflection of the mid-section under unit force (Fig. 3.29). The value of the deflection of a
point with abscissa x:

1(1¢ ¢ xZ2 x| 1(¢F X3
em2 = —— X——— = —X—— =
EI|24 2 4 3] EIll6 12

3 3 ’
_ T x4
48El| /¢ /

and
o
22 7 48Rl
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X X 3
B =33)-43) -2
p-1
m
£ N .
92 &2
7 ™
em, |C22 la
\

Figure 3.29 Bending moment and deflection curves of simple span beam.
With this we obtain the value of the joint force, which is:
Xy ==€(1-q2),
The bearing of the cross section is a result of the bearing forces from Py and X»:
C=Cy +X,C,,

where C, denotes the bearing force under the unit load at joint 2.
In case of influence line:
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NC) =n(Cp) +Cyn(X;) =n(Cp) - CrE(1—q22),

The value of C; is the ordinate of n(Co) at the joint (at ¢/2 distance); let us denote it with g «
2

o
N(C©)=n(Co) —&- Mg« -1 -a22).
and in general, when main girder 7 is analysed:
n(C€)=n(Co) =& Mg -1 -7j),

Let us determine the bending moment influence line of cross section k (Fig. 3.30):

n(Mk)=n(Mko)—a~%-(l—qn>,
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Figure 3.30 Preparation of the bending moment influence line and the shear force influence line of &
section.

101



Or the shear force influence line (Fig. 3.30)

n(Tk)=n<Tko>—a%-a—qﬁ),

2. Py acts through main girder No.4. The girder is not loaded directly, the value of the force
transmitted at the joint:

X4 =942 "Bom>
The value of a bearing force:

C=m: 942 'Bom =g "d42°5;

For example, the section of the influence surface of & at girder 4:

3
M) =ng ¢ a2 -E==-+da2 &,

Or in general, the section at girder j:

2
n(Mk>=71-qﬁ-a,

so any section at any other girder is proportional to diagram &.

The sections at the girders determine the influence surface. In case of forces acting between
two girders, the loading of the main girder is calculated by assuming simply supported beams. So
linear ranging of the influence surface sections is assumed. For instance a moment influence
surface is according to Fig. 3.31.

Figure 3.31 The bending moment influence surface of & section.
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According to the influence surface, the effect of an external load is obtained in a way that the
intensity of the load, distributed on area F, is multiplied by the volume of the influence surface
under the loaded area, so:

Ck =p- Vn B
In case of concentrated load, the volume turns into an ordinate:
Ck =P. n,

Let us analyse the behaviour of the grid of fig. 3.32 parametrical according to Lindner and
Bamm [1982], by changing the characteristics of the cross girder. The load is located at girder 1.

girder 1
girder 2
girder 3

examined girder
loaded girder

Figure 3.32 Behaviour of gridwork with one cross-girder.

It is observable, that a detectable rearrangement of the bearing forces occurs at the values of
z>=2. Fig. 3.33 shows the effect of the change of z.

Fig. 3.33.a shows the cross distribution diagram. According to this in case of small values of
z, only main girder 1 will be loaded, while in cases of high values of z the other girders will be
loaded as well.

Fig. 3.33.b illustrates the behaviour of gird 2.

Fig. 3.34 shows the behaviour of the grid with more cross girders. The value of z was taken to
43.

Fig 3.34.a shows the cross distribution diagram of girder 1, in case of more cross girders, Fig.
3.34.b illustrates the behaviour of girder 2.
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Figure 3.33 The effect of varying the z factor.
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Figure 3.34 Behaviour of gridwork with more cross-girders.
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3.2.3.6.3 Approximate calculation of gridworks by substituting them with orthotropic plate

The Guyon—Massonnet method

Calculation of orthotropic plates and grids is a quite often appearing problem, and the only
difficulty of these, that the known calculation methods provide the result after long calculation.
[Bolcskei, 1968].

The Guyon-Massonnet method provides the load distribution by easy-to handle and fast
graphs. It takes into account also the forsion stiffness of the grid members. It is applicable for
every grid and orthotropic plate, where the value of the bending and the torsion stiffness (related
to unit length) of the main and cross girders can be assumed as constant. The simplest case
according to this for example the regular grid, where, the distance between the main and cross
girders is constant, both, in longitudinal and transversal direction, and the stiffness of every
member is identical as well..

The solution of the differential equation

The form of the general solution of the homogeneous equation

2 . mnx
w(X,y) = D Y (y)-sin 7

m=1

In case of one line-load, the above given solution is valid for every point of the grid outside
the loaded line. The loading is a sine function, and the general equation is [Szabd, Visontai,
1962]:

p©O=3pm sin
m=l1

By substituting the above formula of w deflection into the homogeneous equation, we get:

4 4 2.2
—mf —2HYI’;1m;T
/ /

AY +BY!'=0,

m

Guyon offers in order to make the calculation process easier, the assumption, that the
transversal load distribution is independent on the collinear load’s character. So the calculated
values of the cross distribution factors for a loading are valid for every other loading as well. Let
the collinear load be according to one sine wave (m=1):

p(&)=p 'sin%,

and the differentia equation:
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4 2
T[ 14 Tc nn
AY; (Y)€—4 - 2HY] (}’)Z—2 +BY["(y)=0,

With the substitution of H = a+AB and the dividing of the equation by B, we get:

=
Y{"(y)- 2\/7—Y (y)+ YI(Y)_:

}\’2_752 A
s

by inserting

we can write:
nn 2 14 4
Y1 (¥) = 2027 - Y{ () + 47 - Y, (y) =0,
This differential equation was solved by Massonnet for o. = 1, and by Guyon for a. = 0, so:

Y]// "_ 2}\’2 . Y]" + }\‘4 . Y] =0 , (Massonnel‘)

" ot Y =0, (Guyon)
The solution is:
=A™ 4B Ay +C e +D) Aye ™Y,
and the integral constants are determined from the adequate boundary conditions. Namely the
line of the collinear load divides the plate into two half, and for each of these parts the general

solution can be written. Let the solution for the one half plate be Y1, and for the other Y. The 8
unknown coefficients of these functions comes from the following conditional equation:

— - at the edges the moments and the shear forces are zero:

— - at the connection at the two parts, the deflections the rotations and the moments are
equal, so:

I ol ol My o lyn \»
Yy =Y, (Y))'=(Y1)', (Yp)"'=(Y1)",

— - the difference between the shear forces is equal to the line-load:
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P 10
Yl "7+_: Y "/’
(Y1) i (Y1)

Let the width of the plate be 2b, the span /, the coordinate of the location of the line-load 1
and the coordinates of the unknown w deflection x and y (Fig. 3.35). Then with the substitution of

SZEKZEE\/E:E\/E,
b n/\B (¢\B

the w deflection of every point with x and y coordinates is computable in a function of 3. The
wo(x, n)deflection of the simply supported beam at the line of the collinear load is computable as
well. The quotient of the two results is the cross distribution factor:

\%%
K(y,n)=—,
Wo

The cross distribution factors also give that how many of a load at 1 location acts at a strip of
y width.

These cross distribution factors were determined in the function of the parameter 9, by
Massonnet for a = 1 and Guyon for o = 0 for different load cases. The results were summarized
in graphs and tables.

Figure 3.35 The position of the line-load.

The introduction of the calculation process
The process is based on the differential equation of the orthotropic plate [Bolcskei, 1968]:

4 4 4
DXG W+2H 0w +Dy6_wzp(x,y)’
6x4 aXZayZ ay4

We insert the following notations (Fig. 3.36):

El, bending stiffness of one main girder

107



El.  bending stiffness of one cross girder
Gl torsion stiffness of one main girder
Gl torsion stiffness of one cross girder
h distance between the main girder

k distance between the cross girders

Ny

Figure 3.36 The geometry of gridwork.

Neglecting the effect of the contraction, the constants of the differential equation will be:

D:EI_m D:ﬂ H:E.Iﬂ+lﬁ
X n 0 Y 2L h k)

Writing H in the following form: H=oa, /D, Dy , the characteristic value for the torsion

stiffness of the gridwork:
G Imts i ILt
h k

o= /3.34/
I I
JF.-M 4 "€
h k

while the characteristic parameter for the bending stiffness of the gridwork:

g=byIm/h 1335/
1\ 1. /k

At the members of the gridwork oo =0 and H=0 lower limit shows the neglection of the
torsion stiffness, the upper limit is oo =1 value for the isotropic plate’s two directional torsion
stiffness.

The calculation is based on that, anywhere the load is on the main girder, the distribution of
the loading is always identical in an optional cross section (in the direction of the cross girder).

From practical point of view the determination of the cross distribution factors is essential
[Boleskei, 1968]. These two factors are seen in the graphs of Fig 3.37 — 47 in the function of a
and 3.

Kois the cross distribution factor for the limit state oo =0
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K. is the cross distribution factor for the limit state oo = 1
These values are theoretically valid for orthotropic plate, but they can be used for gridworks

with one cross girder too.
In case of when the characteristic value for the torsion stiffness is between oo=0 and a.=1,

the cross distribution factor has to be inter interpolated in the following way:

KOL ZKO +(K1 —Ko)\la , /3.36/
=0 v, J
oc="1 —_—
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Figure 3.37 Cross distribution factors. Figure 3.38
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Now the bending moment of the main girders is computable.

Let us assume first that simple case that the loading is one force system, acting at distance n
from the axis of the bridge according to Fig. 3.48. Let us determine the moment of the main
girder’s x cross section, which is in f'distance from the bridge axis.

Figure 3.48 The position of loading.

Firstly we determine the My(x) bending moment from the whole loading on the virtual simply
supported beam at the line of the loading in the usual way, then we multiply this with Ka(n./)
from the diagrams. Ko, K; (from the diagrams) and K (from formula /3.36/) give the ordinates of
the cross distribution diagrams of the main girders at the eighths of the bridge cross-section. In
case of orthotropic plate they relate to the points at the eighths of the cross section the area of the
cross distribution diagram is 2b. Therefore in case of orthotropic plate the unit value of the
longitudinal moment at a point of the cross section:

my (f,x) = ‘Ko, 1), /3.37a/

Mo (n,x)
2b
In case of gridwork the longitudinal moment for one main girder comes from the product of
distance 4 and the moment of formula (4a):

M, (f,x)=my (f,x)-h = %-Mo(n,x)-Ka(n,f), /3.37b/

If the load acts along more lines the moment at an optional place is the sum of the moments
calculated according to the above-described way.

3.2.4 Analytical model for substructures S4

The influence of the deformation of the cross section on stresses has been analyzed by the
Advanced Theory of Bending, Torsion and Distortion [Tesar, 1977] [Ivanyi et al., 1990] which is
a simple method of analysis but precise enough to study the three-dimensional behaviour of the
bridge.

Besides the axial deformation vi, the two displacements v, and v3 and the rotation of cross
section v4 displacement elements further sectional deformations develop in accord with the cross-
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section’s transverse stiffness. These are equivalent to the relative position change of prismatic

plates.
In case of open sections the number of displacement degree of freedom (v) equals to the

number of joint-hinges (n). With the formation of the joint-hinges the cross sections’
frame-stiffness ceases. To secure the kinematical stability of this “released” section n additional

bars are needed. (Fig.3.49.)

MALTRR R ALLAA

1\‘“‘"‘1“= 21{”,’[
- j\\ WA =
L -~
B R e it

———— stabilize rods

Figure 3.49 Displacement degree of freedom in case of open sections
(n is the number of the hinges that breaks up the frame-stiffness of the section,
v is the number of stabilizer bars)

In case of closed cross section (Fig.3.50.) the further number of displacement degree of
freedom (v) are to be calculated according to the following formula:

2n—(s+3)=v /3.38/

where n is the number of the hinges that breaks up the frame-stiffness of the section, and s is
the number of the section’s prism-components (elements).

n=4; s=4 n=8; =10
-
\ ,.—”I/ \L/’ /’ ,-"T —-——— stabilize rods
v=2.4-(4+3)=1; v=2-8-(10+3)=3,

Figure 3.50 Displacement degree of freedom in case of closed cross sections
(n is the number of the hinges that breaks up the frame-stiffness of the section,
s is the number of the section’s prism-components (elements),

v is the number of stabilizer bars)

The complete deformation of the cross section can be determinated, as the linear combination
of the independent elements of the displacement of distortion of cross-section v, (p>4). We will
get these components (elements) if we progressively operate suitable chosen unitary 9=1
deflections on the section that is released by hinges, while there is always a stabilizer bar released

(see Fig.3.51).
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n=5; s=5

_|%]-
1r-|w|-2

Figure 3.51 Kinematics of cross-sectional degrees of freedom

So the V displacement vector:

Vl E_’
Va n
V3 ¢
~ Vt ,\74 S
V== =
Vol |Vs| | Vs /3.39/
Yo | |9
_Vn _Vn

of which has v, rigid body modes and Vp distortional modes (p subscript refers to the

displacement of the distortional cross-section).

Moreover we assert the basic principle of bending-torsion, which says that all the section’s
prism-components keep their shapes. So the Bernoulli-Navier hypothesis is valid for each prism
(plate element).

According to the previous conception, the formula /3.39/ can be extended, which gives the
tangential component of the strain:

df ’ ' ' ’ r . ’
d—X:f =fi+fy =m"-cosa+C"-sina+9 -y +
+V5 T +Vg Tg+...+Vp T,
So
r_onT ~
f'=() -t /3.40/
Where
0 g ]
cos o n'
sina. ¢
~_ |t ™ ;'_{Y;}_ ¥
r=|< |= R =<, ==,
114 L i Vp Vs
% V6
L& [V ]




and B, Tg, ..., Lare the referring sectional prism’s force arms to the rotation-centres.

The axial component of the displacement of thin-walled section centre-line:

T=-[@" Tds=—F)" - [Tds=-F)" - /3.41/
Where W is the warping vector.
Values of W for open sections (Fig.3.52)

1
z
~ | W ~ o /3.42/
W=|:'L“t':|=‘|‘r ds=|-M
Wp Wiy
W6
_Wn_

Figure 3.52 The axial component of displacement of the thin-walled section centre-line

In case of closed cross sections we extract the open “statically determinate” basic system first,
with suitable chosen sections.
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We can take into account the condition for continuity for the hollow section through the

extension of ¥ _ ¥p vector.

We get an gnalogfle equation system with /3.42/ for the vector components:

Fpiot . Wp . Gy 54
- j P-J ds+f PJ g5 j Lds:'[?pds
. t .t . t .
-1 j j j
The warping vector is:
w hd
o2t
Wp
o0 ][ 0 ] (1]
cosa 0
/3.43/
sina, 0 z
I Iy Valtll o |ou
= e [ S: B
55 ys/t ws
T Yo/t W
L T ] [Wa/t [Wn
The normal stress of cross section centre line:
5=-E-(W"T-w /3.44/
The primary shear stress is:
W
3 = G-(W)T .—_tp /3.45/

Where v is the section’s global deflection vector according to /3.39/. The relation between
the rotation vector of the section’s prisms §p = {gp,m} and the section’s Vp formal-change

vector is the following:

When 1~3p matrix has to be compiled by taking into account the chosen Vp basic formal-
changes (Fig. 3.51).
So the torsion moment vector referring to the sectional prisms’ free torsion is the following:
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T=G-K-F-¥'=G-F*.¥'

< |Vt - |E
V=l and F*=|.!|,where F*_x.F . /3.46/

We have to determine the relation between the transverse moments in the section’s prismatic
element and the section’s Vp formal-change vector. So we compile the prism’s common relative

rotations at the hinges ¢&;,,, in the common deflection vector of the section-walls € (Fig. 3.53):
=5} = 8= AF ¥ 1347/

Where

Figure 3.53 Relative rotations of walls of cross-section: g; = A9

The rows of matrix AF come from matrix F matching rows’ difference. Further on we can
suppose that the plate-stiffness of the wall can be substituted by the bending stiffness of infinitely
many and infinitely broad frames that are close to each other. So the plates’ torsion moments, and
longitudinal moments in the section-wall are neglected.

If EI. the bending stiffness of the unitary wide sectional frame, than M, , transversal

moment at hinge i and which is a function of Ej, the common rotations of the section-walls at j

places, comes from this formula:
My =Y B - & and 1\/Ir:{Mri}:B‘E

In case of a simply open section of which centre line is developable to a continuous line, the
coefficients in matrix B = BIJ E come from the inverse of matrix D = TSI_] ?, where §;; elements

are unit factors of a statically determinated basic system according to the compatibility method
(Fig. 3.54).
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Figure 3.54 Determination of the B elements as the elements of inverse of matrix D = {Sij }of continuous

beam

If we express the rotation vectors of the section-walls, according to /3.47/ we’ll get:

M, =B-AF-V = AF*.¥ /3.48/

Where AF* = B-AF .

We depart from the principle of virtual work. The work of the internal forces comes from the
extended formula bellow:

L
M ipgemal = || [ (086 +1y -8y 1)-dA+TT -59'+M; -5 |-dx,
0LA
~ ~T
¢ ~nT (~ ~T ~p ~nT \ilp \Ljp
Migemal = [[EG' [ -5 dA 57"+ G(¥) (jT~—dA+ 13,49/
0 A A ’ ’

+(FHT-F)-6v + VT (AFHT .Aﬁ).av]dx

If we do the examination of the energy balance, that means we use
OIT = 81T piermal — 1T extemal =0
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condition, and do the partial integration, by taking into account the following extended

stiffness matrixes:
T_& ~ ~T
I= {Iwiwk }= [w-w'da /3.50/
A
as the complex warping stiffness matrix,
'
K:{Kik}: [==dA+E)"F /3.51/
t t
A
as the simple torsional stiffness matrix
/3.52/

R = Ry |= (AF")T - AT
and as the transverse bending stiffness matrix, then we get the extended simultaneous
equilibrium system of differential equations:
ET-9"-GK-¥"+R-V-p-T-[n"-% -dA=0
A
L
=0

—ET-VM+GIZ-V'+jn-\7v-dA—P-? /3.53/
A 0

[T -9+ N %) =0

These equations give besides v global deflection vector, the effect of the section centre-line

change as well.
When solving open sections (Fig. 3.55) in case of ordinary plate slenderness of bridge

systems, the torsional stiffness of the walls (prisms) can be neglected.

a) 1 Ele

<11 A 1= effective width

b)

-l

Ejp— stiffeness of cross girders

e V4
c) :Il 1 Et [I:

Figure 3.55 Different shapes of open sections
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In case of open sections if we diagonalize matrix I and R, it is obvious, that we can separate
all the four deflection components of the shape-keeping section (€, n, € and 9).

After the normalization we get the independent difference equation system with I and R
diagonal stiffness matrixes, where every element of v global deflection vector are equivalent to a
model of a continuously elastic supported bar with R; and with EI; bending stiffness, and which

is loaded by p-r; load intensity in cross direction (see Fig. 3.56).

m
€|
o
-+
Fel|
1
=]
91

Figure 3.56 The normal function in case of
3" R* open sections
a) The partially normalised simultaneous
differential equations from the first phase to
determine the eigenvectors

E3vE + Ry =pr

in case of open section
1S f " #stl"'lm I i § “#&VG"'I b) Totally normalized itlljdependent differential
b) x equations
E3 X + R in case of open section —analogue of the
" continuously supported transversally loaded bar
"ol
PR g3,
"l"lgﬂ]%ﬁﬁrr i34

In case of closed cross-sections (Fig. 3.57) a relevant torsional stiffness comes because of the
gp /t vector. So it is suitable to neglect the cross directional stiffness of the section, which

means that we assume that the section is a closed hinged mechanism (Fig.3.58). The fault of this
assumption, that the fourth component of the deflection (9) is not independent.

Figure 3.57 Shapes of closed sections
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Iii "]| A 1§ MI £ - Figure 3.59 The normal function in case of
a) X | open sections
3 R~ -6k [ _g 4 = pF a) The partially normalised simultaneous
{ Y é X2 differential equations from the first phase to
I < determine the eigenvectors
= —= in case of closed section
Elo™ - 6Kv = pr | b) Totally normalized independent differential
T r equations
[§§n ‘}‘i"';-ul 1§ E ¥y in case of open section —analogue of the
b) ¥ i transversally loaded and tensioned bar
Y o i pr
! x,

[ 1w

lﬂﬂl l’P"'i EX GK;
« i) -)‘L

After the normalisation we get an independent system of differential equations with I and K
diagonal stiffness matrixes, where each component of v global deflection vector equals to a bar
with EI; bending stiffness, with a transverse load of p-r;, and with GK ; fictive axial load at the
ends (see Fig. 3.59).

For further details see Ivanyi [2002].

3.3 Shear Lag Phenomenon and Effective Width

Shear lag phenomenon and effective width is reviewed on the basis of Nakai and Yoo [1988] and
Sedlacek and Bild [1984].
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3.3.1 Shear lag phenomenon

The normal stress distribution c,(x) in the flange plate of a © beam made of thin plates does not
have a constant value, as is obtained by the elementary beam theory, but varies in the direction of
coordinate x axis, as illustrated in Fig. 3.60. Then the maximum flexural normal stress Gz max
occurs at the junction point of flange and web plates, and this result is significantly different from
G, = constant, which is calculated by elementary beam theory. This phenomenon is caused by the
lag of shear strain in the flange plate between the web plates and is referred to as the shear lag
phenomenon.

Normal stress distribution
due to shear 1909

Figure 3.60 Actual bending normal stress distribution in a thin-walled beam.

The shear lag phenomenon can be analyzed on the basis of the theory of elasticity by
assuming that the flange plate can be analyzed as a plane-stress problem. Figure 3.61 shows the
stresses Gy, Ox, Txy, Tz N @ small element dx - dz, removed from the flange plate of a beam shown
in Fig. 3.60, so that the equilibrium condition of stresses in the direction of the z axis can be
written

ac_z_f_atizo

oz X /3.54/
Py, T g

[5).4 oz

The relationships between displacements u and v in the direction of coordinate axes (z, x) and
strains &, €, and . can be written as

qu :@, Yo :@+@ /3.55a-c/

2% Tk ox | oz

In addition, the compatibility equation for plane stress elasticity is given by
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/3.55d/

Figure 3.61 Actual bending normal stress distribution in a thin-walled beam.

Stress-strain relationships for two-dimensional elasticity are

1 1 T
g, =—lo,—po,) &, =—=(o,—uo,) ~ == /3.55e-g/
. =5 (0, —hoy) slox—ho,) v = g
where p is Poission's ratio and G = E/[2(1 + p)]. Substituting the stress-strain relationships in
Eqgs. (3.55¢) to (3.55g) and the equilibrium condition in Eq. (3.54) into the compatibility equation,
Eq. (3.55d), we can derive a general compatibility condition in terms of stress:

o* o’
gﬁ-y (GZ+GX)=O /3.55h/

Thus, the shear lag problem is reduced to solving for the stresses o,, ox and 1., such that
equilibrium and compatibility conditions are met.
These procedures can be much simplified by introducing Airy's stress function ®(z, x):

2 2 2
z:a (D7 xzad)a sz:_a ® /3.56a-c/
ox? oz* 0z0x
Then Eq. (3.55h) can readily be rewritten as
4 4 4
0] D 0]

o L 52 . 9 LA /3.56d/

0z 0z°0x ox
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3.3.2 Definition of effective width

If the normal stress distribution 6,x) in the flange plate is determined by the preceding
procedure, it is convenient to define the effective width of the flange plate for practical design
use. Fig. 3.62 illustrates a normal stress distribution in the deck plate of a = beam. In this figure,
the most important stress in our design calculations is the maximum stress o, max at the junction
point of the web and flange plates, so we try to obtain the same stress on the basis of elementary
beam theory. For this purpose, it is assumed that a middle part of the flange plate does not
cooperate with the cross section of m beam but that the flange plates in a region b, are only
effective as shown in Fig. 3.62b.

= h

O, max

L

=

Oz max

jn’
u

(b)

Figure 3.62 Definition of effective width: (a) original stress distributions, (b) idealized stress distribution
and effective width b.

However, since the normal forces acting on the flange plate of Fig. 3.62a and 3.62b must have
an identical value, the following equilibrium conditions should be satisfied:

Iobcz(x)dx =010, mx /3.57a/

Accordingly, the effective width b,,, can be estimated by

[0, (x)ax
b, = —— /3.57b/
Gz,max

When a new centroidal point C' and the corresponding geometric moment of inertia I'x and I'y
and product of inertia I'yy are calculated by taking into account the effective width by, as
illustrated in Fig. 3.62b, the flexural normal stress o, max including the shear lag phenomenon can
be estimated on the basis of the elementary beam theory. From this, we see that a conservative
and rational stress analysis can be conducted by introducing the concept of the effective width of

the flange plate.
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3.3.3 Simplified rules for the determination of the effective width of bridge decks
caused by shear lag

(a) General

Now it presents an approximative method to allow for the effects of shear lag in the elastic
range when calculating the stress distribution over the cross-sections of two bay bridges due to
bending and torsion (Fig. 3.63).

T\ T AU A UV A WV A v A WV A W A W A W A W A W A W J AW AW W |

Figure 3.63 Cross-section of a two bay highway bridge with orthotropic deck.

(b) Approximate calculation method for the effects of shear lag in two bay bridges with an
orthotropic deck [Roik and Sedlacek, 1971] [Sedlacek, 1982]

The stress distribution in a cross-section without shear lag is generally considered as a linear
combination of four orthogonal elementary warping distributions caused by tension, bending
about the strong axis, bending about the weak axis and torsion (Fig. 3.64).

torsion ¢

tension & Mding n bending & ¢ ¢M/‘

[ T-TT9 2[5 T %

wy=1 Wo=
1 2=y 4 WTzﬁtds

W3=Z

Figure 3.64 Elementary stress distributions "1" due to tension, "y" and "z" due to bending about the strong
and weak axis respectively and "wt" due to torsion.

The cross-sectional stiffnesses for the corresponding deformations &, m, { and ¢ can be
derived from these elementary distributions as follows:

area: A= j1 ‘1dA /3.58a/
moment of inertia: Ay = Iy -ydA /3.58b/
moment of inertia: A, = JZ -zdA /3.58c¢/
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torsional warping stiffness: Ay = J w-wdA /3.58d/

The torsional effects are normally calculated with the solution of the differential equation for
torsion

“E-A, - 0"+G-Tp ¢ =My, /3.59/

where Ip represents the Saint-Venant stiffness:

3
a.-t:
I, =Z J3 ! +Zk:1D0k 13.60/

]

with Ipek = torsional stiffness of the longitudinal hollow stringers and Mt o is the bimoment
due to torsion without Saint-Venant stiffness.

For taking account of the effects of shear lag the number of elementary distributions can be
extended to more than four by allowing for additional non straight lined distributions wg, e.g.
parabolic distributions according to Fig. 3.65.

r Y oo

Ws1 Wg2 4

= v TvT 11

Ws1

Figure 3.65 Additional elementary warping distributions wsi for taking account of shear lag.

Each of these assumed basic distributions ws allows for an additional deformation vs, which is
defined by the equations
e=-wy-V'

/3.61/
c=-E-w-v'

From the curvature of an additional basic distribution ws a new shear distribution results,
which can be defined by

Y =WV
T=-G - WV /3.62/
ow
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This definition corresponds to the assumption that the transverse deformations of the fibres of
a cross-section are infinitely small and that only longitudinal deformations are allowed:

=y /3.63/

From the additional elementary distributions one can derive additional warping stiffnesses Ajx
and shear stiffnesses Sik

/3.64/
Sjk = J.W.j'w.k'dA

In order to get independent equations for vy; (only diagonal values) the additional elementary
distributions ws; must be orthogonalized by firstly eliminating all components of the base
distributions 1, y, z, wr and secondly combining them linearly. From this procedure a set of
additional warping distributions follows (Fig. 3.66).

T T 1y 71T 1T7

Ws1 Ws2 Visq

Figure 3.66 Orthogonal additional elementary warping distributions with the stiffnesses.

Ass,i = J‘Wsi 'VNVsi -dA

~ /3.65/
Sl = Jﬁ.si w si dA
This leads to a set of independent differential equations
—E-Ay WG+G- S, Wy =My /3.66/

which are fully analogous to the differential equation /3.59/ for torsion.
By using the well known solutions of these differential equations, the additional stress
distributions due to shear lag can be determined by

0 =2 00 =D "B W W =Z“§“’f’ W 367/

and added to the stresses

M M M
o=Nogy vy M My o /3.68/

A A, T A, T A,
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which are calculated without regard to shear lag. An example for the resulting distribution for

symmetrical and asymmetrical loading is given in Fig. 3.67.

ES

T~ .

- A

stress distribution for stress distribution for
symmetrical loading asymmetrical loading

Figure 3.67 Resulting stress distributions with shear lag considered.

(c) Parametric study to determine the effects of symmetrical and unsymmetrical loading

The calculation method described in section (b) is applied for a double span continuous girder
bridge under, uniformly distributed loading on the webs (Fig. 3.68).

I 7

1
1—— b J OO T T IO P
a; +— 3 —F Voum 7o) 2
\JuuuU\fluuuuu $ L t L }

‘I’ \wawaw
|
as -

| T ! T + 1+

Figure 3.68 Cross-section and longitudinal system of a highway bridge.

The geometrical parameters which are modified are a

<100 0<22 <y
b

_.
IA
o |-

The purpose of the parametric study is to compare the values of the effective width of the
deckplate at the inner support as calculated for the indicated unsymmetric loadings with the ones
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calculated for only the symmetrical part of the loadings. The differences will demonstrate,
whether the asymmetrical effect on the effective width may be neglected as it is common practice
or not.

The stress distributions including the effects of shear lag are calculated with the bending
moment, the bimoment due to torsion and the stress resultants due to the additional deformations
at the inner support, which can be calculated by

M, =-———"-f(y) /3.69/

-L /3.70/

f(v)=i-y'smhy”'(césm_l) /3.71/
Y v -coshy —sinhy
The effective width by, is determined by
b,=A-b /3.72/
jcds
with A= /3.73/
G max ‘b

for the symmetrical and unsymmetrical case (Fig. 3.69).

+—bM —+

S bM —+ S
|
|

|

o [ !

max |
1

0T+—
S
>~ _— |

symmetrical loading asymmetrical loading

Figure 3.69 Definition of the effective width.
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For the loading situation 1 the resulting As and A+, - values are shown in a three dimensional
graph in Fig. 3.70.

Figure 3.70 Three dimensional graph.

The results show that As and A+, are almost equal for small 1/b-values. For large I/b-values the
As values are approaching As = 1 whereas the As:,-values approach values, which result from the
effects of bending and torsion only without any influence of shear lag. The position of the web
under the bridge deck has no significant effect on the A --values, however the A s,-values depend
sensitively on the ay/b-values for large I/b-ratios.

The maximum differences can be found for cross-sections with edge webs and medium 1/b-
values. They are observed for extreme conditions of the cross-sectional shape and of the loading
simultaneously.

The small differences between the A s and A s+o-values for bridge loadings justify the common
practice to apply the A s values only and to allow for asymmetrical loading merely by determining
the load part on one girder by level distribution.

(d) Derivation of a practical formula for the determination of the effective width

As demonstrated in section (c), the effective width may be derived from a symmetrical cross-
section defined by
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/3.74/

as indicated in Fig. 3.71.

o
+— 2b + W, “GarT

o

I
Ll o l \ E;

h
2
Ar=2bt z distribution ws distribution
A, =h-s A zﬁ.AF.a_H
A A~ Lp2, batl 15 6o +1
F zz F-’
o =—F 12 a 16 t
Ay S=—.—
3 b

Figure 3.71 Cross-section and cross-sectional values.

In order to consider different support- and loading conditions in a simple way, it is
advantageous to subdivide a continuous girder according to the existing bending moment

distribution into independent parts, which are separated at the counter-flexure points as shown in
Fig. 3.72 [BS 5400, 1982] [Eibl, 1983].

Figure 3.72 Subdivision of a continuous girder in independent parts.
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By this subdivision the problem of determining A -values for different kinds of supporting
conditions of a girder and different loading may be reduced to the problem of developing a A-
formula for the midspan of a simply supported beam loaded by both a uniformly distributed and a
single load (Fig. 3.73).

L LI T TP TT e

AN paN _p-l
e

shape parameter:

Figure 3.73 Explanation of the shape parameter y.

The shape of the bending moment distribution is thus governed by the factor

_4-AM
M

max

/3.75/

Special cases for this shape parameter are indicated in Fig. 3.74.

l |

Figure 3.74 Special cases for the shape parameter .
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The stress resultants for the bending deformation £ and the additional deformation vy due to
shear lag are indicated in Fig. 3.75. The resulting stress distribution is given in Fig. 16.

‘P lk7 - P
E-«A 5 E.A
22 / SS
s ' ™ T
w G-S L\____(’/' G-S
z vy
t T T T T T TTT T p A I I O D I A R N R S
]
M. | M=lepie o er,y
2z 4 T+y s 4 T+y S Y
with -3, ¢
h 6a+1
_ |3 6o+l 1
"V Tadl b
E
k:a'(l_aonh)
PRE
orth_w

z a, = totalarea of additionalstiffeners

connectedwith thedeckplate

2 1
f(\v,v)=(1+w)-—~tanh%—w-i2- 1-
¥ v cosh’
2
Figure 3.75 Stress resultants and total stress distribution.
6]
1 %51
g —_——— —1% /OSZ G, :_lp.l. 1 . 1 . 6a
z \O 4 l+y Ag-h 6a+1
2 1 1 1 60 50
4 I1+y Ag-h 6a+1 a+l1
1 1 1 60 5 2o+1
G, =——P-1- . . fy,y)-=
4 1+y Ag-h 6a+1 4 o+l

Figure 3.76 Resulting stress distribution.
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Equation /3.73/ gives then:

r=1,2.22 /3.76/
3 3 o
or, according to Fig. (3.76)
1
A= /3.77/
5 6a+1 1
1+g‘ -y y)- 1
1-=-——-fly,
6 a+l (W Y)

This formula ought to be simplified for practical use.
The first step of simplification will be achieved by eliminating the effect of the cross-section.
A parametric study with oo =0, oo = 1 and o = co shows that o. = oo gives the lowest values for A
(Fig. 3.77).
W

1

0.

1 10 100

Figure 3.77 A- values according to equation (20) for oo =0, oo =1 and o = oo.

By putting oo — oo equation (20) becomes

1
W
1+5-f(\|1,y)

The next step of simplification will be to replace f (y,y) as given in Fig. 3.75 by a more
suitable expression f* (\,y) that approximates f (y,y) with a sufficient accuracy in the range y > 2
and deviates from f (y,y) for y <2 in such a way that the approach to A-values determined by
more accurate methods [Maquoi and Massonnet, 1982] is improved.

/3.78/
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This condition is satisfied by adopting

* 2 4
f (\y,y):(l+\p)~;+(l—\u)~y—2 13.79/

which is compared with f (y,y) in Fig. 3.78.

£ £
]

0.5 1

0

0.1 1 10 100
Figure 3.78 Comparison of f (y,y) with £*(y.,y).

Inserting equation /3.78/ into equation /3.78/ gives

1
A=
10 20
L (y)-—+(-y)-=
Y Y
15 1
ith - =2
W1 Y kb
and finally
1
A= /3.80/

k1 kK (b)
1+ (0 e (e y)— 2
+ +“’)\10.15 b+( v) 0,75 (1}

This formula is identical with that developed in [Maquoi and Massonnet, 1982] for y = - 1.
Some A-values calculated with equation /3.80/ are shown in Fig. 3.79.
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0.57

— 1

07 10 100 b

Figure 3.79 A - values for the effective widths bm = A - b calculated with formula /3.80/.

(e) Comparison of the effective width formula /3.80/ with code-specifications

For the practical application of formula /3.80/ for bridges the assumption as given in Fig.
(3.80) may be made [Eibl, 1983]:

bending moment distribution

A A 11=D.8'L1
™~ %N\~ \i/a 1,=0.25 + (L1+L;)
13:0.6'L2
t11 ‘,le A— 1 _,L 1, 1,=0.25 + (Lo+L3)

15=0.8 'L3

l
\l

ﬁ A
(b b \/

Figure 3.80 Geometrical assumption for the determination of the effective width.

A comparison with code-specifications, e.g. BS 5400 is given in Table 3.2.
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Table 3.2 Comparison of formula /3.80/ with BS 5400 [1982].

A — values b/l Glorth = 0 Clorth = 1
BS 5400 | /3.80/ BS 5400 | /3.80/

0 1 1 1 1
0 B O N - 0.98 0.98 0.97 0.97
& —2 01 0.95 0.94 0.89 0.88
0.2 0.81 0.78 0.67 0.64
0.3 0.66 0.62 0.47 0.44
y=-1 0.4 0.50 0.47 035 031
0.5 038 037 0.28 022
0.6 032 029 0.24 0.17
0.8 021 0.18 0.16 0.10
1 0.16 0.13 0.12 0.07

0 1 1 1 1
1 0.05 0.80 0.82 0.75 0.76
< — |01 0.67 0.69 0.59 0.60
0.2 0.49 051 0.40 0.41
0.3 0.38 0.39 0.30 0.30
y=0 0.4 0.30 031 023 0.22
0.5 0.24 0.25 0.17 0.18
0.6 0.20 021 0.15 0.14
0.8 0.14 0.15 0.10 0.08
1 0.12 0.12 0.08 0.07

LTI | o 1 1 1 1
4 0.05 0.68 0.71 0.61 0.63
0.1 0.52 0.55 0.44 0.46
0.2 035 038 0.28 0.30
0.3 027 0.29 0.22 022
y=1 0.4 021 023 0.17 0.18
0.5 0.18 0.19 0.14 0.15
0.6 - 0.17 ; 0.12
0.8 - 0.13 : 0.10
1 ; 0.11 ; 0.08

137




4 Construction of Orthotropic Steel Bridges

4.1 Structural Systems and Erections of Collapses of Orthotropic Steel
Bridges

Two periods could be distinguished in the construction of steel structures: the period of riveted

structures were built from the last decades of eighties until the forties of the last century, and the

period of welded or modern structures. The method of joining has basic effect for all structure:

determines the construction, the grade of the basic material, the technology of manufacturing and

erecting, the methods of controlling, and eventually the aesthetic aspects of the establishment.
The significant differences are the following between the two system:

— in the riveted structures the elements join each other by bracers and angles made applying
simply tools, while in the welded structures the elements join directly each other by
difficult cohesive holds;

— the implementation, the sufficient quality and the controlling of riveted connections are
simple manual work, while the welding requires big apparatus and qualification;

— the manufacturing and erecting units of riveted structures are planar, relatively small
elements join at in-situ joints; while the welded units are three-dimensional, and in an
erecting unit often big numbered (30 — 60) elements join to each other;

— the riveting is not sensitive for the position of the joint and the erection conditions, thus —
contrary to the welding — practically it is indifferent, that the joint is made in the factory
or in-situ;

— the welding — contrary to the riveting — changes the property of basic material, and
generates stresses, shrinking, deformations, cracking and rigid-fraction.

The building procedures of the traditional structures are simple, most of them could be done
by semiskilled workers.

The manufacturing and erection of welded structures — mainly the difficulties of the
producing and controlling of welding, the difficulties of keeping the shape and size according to
the plan, and the difficulties of making of the in-situ connections — is a extremely demanding
work, which requires highly qualified professionals.

Due to the above mentioned differences the changeover to the welded structures was a multi-
stages, long procedure.

In the beginning, the designers had to convert the rules of the construction details of riveted
structures according to the requirements of the new joining method, the welding.

The main object of the construction was to produce and apply the sufficient basic material, the
welding methods, the welding materials, the welding technology, and controlling methods.

The material saving characterized the second phase of the development — in the years after the
world war. Today, in the third phase, the main object is to increase the effectiveness of the
erection and to improve the working conditions. This could be reached by simplification of the
construction and by mechanization of the manufacturing and erection [Domanovszky, 1984].

The manufacturing and erecting of the modern steel bridges are close-knit with the structural
system. The floor slabs of modern bridge structures consist of orthotropic plates, which draw up
special conditions against the erection, too [Weitz, 1966, 1974, 1975].
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Opened Rib Cross girder

Existing structures to traffic | Shape of fongitudinal nibs | spacing | spacing
in “a" (mm)| “b"(mm)
=
Rhine bridge 7951 | 1 ‘ l 7 1910
Diisseldort-Neuf
I IO
Rhine bridge
Cologne-Miitheim | 1351 305 1770- 1870
. . N N b L N
Biirgermeister bridge | [
Bremen 1952 Jo0 1750- 1960
Rhine bridge Speyer | 195 Js0 1750
Northern bridge  Diisseldorf | 1357 400 1800
) Example:
st Albaq bridge Basel | 1255 500 670 the floor structure of the Sava bridge
Sava bridge Belgrade | 1358 M so02 1562 in Belgrade, Yugoslavia
Severins bridge Cologne | 7959 293- 8¢ 2000 - g
Rhine bridge Kehl-Strafburg | 7950 300 2560
Furope bridge Innsbruck | 7963 370 1500

Northern Efba bridge Hamburg| 1957 + | avg- 360 2670

Rhine bridge Mainz-Weisenau | 1961 300 1599
Kaiserlei bridge Frankfurt | 1952 309 w5
Jilicherstrafie bridge
Dissseldort | "% 00 2000
Figure 4.1 Variants of orthotropic plate with open longitudinal ribs.
Opened Rib  |Cross girder
Existing structures to traffic Shape of longitudinal ribs spacing | spacing
in “a* (mm)|_"b" (mm)

[ " |
Weser bridge Porta | 15¢ l || o 2360
E ‘ A !

Ahine bridge Duisburg-Homberg) #5¢ | =4 = | a0 | wezoss
Rhine bridge ] ; :
Mannheim-Ludwigshafen| 158 || t - - | 200 2010
city highway Duisburg | 1953 [_+ o . T )| 2m-a30| z000-2200
i g !
Haseltal bridge 1351 | | | o 2310
Rhine bridge Schierstein {1962 | ~ | 300 3000
; ! Example: N
e the floor structure of the Rhine bridge
I I in Schierstein, Germany
Fulda bridge Berghausen | 196z |- s 00 2650~2750
Rhine bridge Leverkusen | 196% | ¥ | 00 2530
N
I !
Rhine bridge Emmerich | ms¢ || | 295 2525
Rhine bridge Bonn-Nord { under I ! 4 300 2243

| _

Figure 4.2 Variants of orthotropic plate with closed longitudinal ribs.
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1. Orthotropic plate with open longitudinal ribs 0.3 cross girders per melres of the plate

. T—JOU—T-J“OO —T-JUO—T

0.6 intersection points per units of longitudinal ribs and metres of plate

I
4 - .
—_——

4 fongitudinal welds per units of longitudinal ribs

v

2. Orthotropic plate with hollow longitudinal ribs 0.2 cross girders per metres of the plate

0.2 jntersection points per units of longitudina/ ribs and metres of plate

raw —T—.?UU —1—300 —T
= N { .
7 U 2 \_/
| VR
2 longitudinal welds per units of longitudinal ribs ; G o

3. Orthotropic plate with built-up longitudinal ribs 0.25 cross girders per metres of the plate

t JUG—T—JUU —T—300 1

0.25 intersection points per units of longitudinal ribs and metres of plate

]/Y\z Y
3L 4
L —

4 longitudinal welds per units of longitudinal ribs

e

V2 O .3
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cross girder
longitudinal ribs
floor siab
Fabrication scheme 1 Fabrication scheme 2
d
d
floor sfab with longitudinal ribs interrupted floor slab with longitudinal ribs continuous
and continuous cross girders and cross girders cut into comb-like shape

Figure 4.4 Fabrication of the floor slabs of light steel bridges with hollow longitudinal ribs.
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Figure 4.5 Division of an orthotropic steel bridge floor structure, using welded joints, in the context of the

cantilever method of erection. a) transversal mounting system; b) longitudinal mounting system.
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Figure 4.6 Sava bridge at Belgrade, Yugoslavia

The division of the structure into fabrication units, and formation of mounting joints.
Example for the transversal division. Numbers relate to the building sequence.

142

- longitudinal joints of the main girder:

- transversal joints of the floor slab:
- longitudinal joints of the floor slab:

- joints of the cross girder in the floor structure:

- joints of the longitudinal ribs in the floor structure:
- transversal joints of the main girder:

- joints in the bottom flange of the main girder:

riveted webs,

riveted cross bracings

butt welded

no joint,

no joints in the lower flanges
no joints in the webs

butt welded

riveted webs

riveted



elements of the floor

. 1 structure [ riveted cross girder foint
S e —
A ST Y
=P © ¢4
. ® e
25777
,@2‘5 \\0\ preloaded bofted joinits @ putt welded transversal ioint
8 “&0 in the longitudinal stiffeners el foints
\Q‘\Q\\

prefoaded bolted || it
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= transversal joints ks
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) 8 bottam piates
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E
butt welded
transversal foints

Figure 4.7 Europe Bridge in Innsbruck, Austria

The division of the structure into fabrication units, and formation of mounting joints.
Example for the transversal and longitudinal division. Numbers relate to the building

sequence.

- transversal joints of the floor slab: butt welded

- longitudinal joints of the floor slab: riveted

- joints of the longitudinal floor stiffener: preloaded bolted
- joints of the floor cross girder: riveted

- transversal joints of the main girder (web and flanges):preloaded bolted
- longitudinal joints of the main girder: riveted

- transversal joints of the bottom plate: butt welded

- longitudinal joints of the bottom plate: riveted
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The longitudinal joint of the
main girder was formed
at the pre-assembly site

Figure 4.8 Rhine bridge at Wiesbaden-Schierstein, Germany

The division of the structure into fabrication units, and formation of mounting joints.
Example for the longitudinal division of elements. Numbers relate to the building sequence.
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- longitudinal joints of the main girder:

- transversal joints of the floor slab:
- longitudinal joints of the floor slab:
- joints of the floor cross girder:

- joints of the longitudinal floor stiffener:

- transversal joints of the main girder:

- joints in the lower chords of the main girder:

butt welded webs,

riveted web and flanges in the cross
brace — at the pre-assembly site

butt welded (Fusare process)

butt welded (Fusare process)
bottom flanges butt welded,

webs with preloaded bolts

butt welded (with backing plate)
riveted (bolts used near the floor
structure)

riveted



Rhine bridge Speyer 1356 Rhine bridge  Wiesbaden-Schierstein w5z
16251 ) 3790+
B = | - —
50— 153 ' 107 : l—— 0‘5\#’ 205 V .95—;
322 d - 375 -

Field joinis on the sections
assembled from scaffolding

field joints on the sections
assembled using floating crane

L 1780 |

Spacing of field foints

. Space for pre-assembly is needed
2

Two differeat meunting processes with
ihree different initiaf positions

@

Three apparatus of different kinds,
applied al thee different focalions

There is no definitely permanent mounting direction

[ERNEN

The division of cross-sections is changing in
aceordance with the different mouniing processes

=

A mounting bent is needed in the river bed

. No pre-assembly spacefs needed

n

0ne single unfform mounting procedure

=1

Two identical compositions of machines in two appiication
places, organized according to the same principles

4. The

ing direction is definitely p

»

The dismembering of cross-section (along the length of the bridge)
Is not changing, a rythmical mouniing sequence can be applied

Erection by the cantilever method in the fiver bed.
without mouniing beat

o

Figure 4.9 Comparison of the mounting processes of the slab-and-beam bridges (long span river bridges)
at Speyer and Wiesbaden-Schierstein, Germany
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1. Bridge floor elements
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1.1. Barrel plate

1.2. Flat plate panel on stringers

top view
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1.3. Plane plate panel on longitudinal stiffeners and cross girders
{orthotropic plate)

bottom view

2. Structural system of the main girder (planar and spatial structures)

2.1. Gridwork

2.2. Torsionally rigid box
(uni- or multi-cellular)

2.3. Separale boxes

3.=2 +1. Combination of the main girder structural systems and light bridge floor structures: structural unit

Examples:

Rhine bridge: Bonn-Beuel

PRhine bridge: Cologne-Deutz

Rhine bridge: DiIsseldori-Neuf3

Figure 4.10 Development of highway bridges with light steel floor structure.
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Al shop and field joints riveted

Erection: from scaffolding, with portal cranes

All shop and field joints riveted

Erection: by the cantilever method, with a floating
crane

o

Alf shop joints welded, alf field joints riveted

Erection: with assembly fixture

Figure 4.11 Development of large span bridges: the example of three Rhine bridges.



1. Rhine bridge  Cologne-Deutz 1948 slab-and-beam bridge
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All cross-sectional elements riveted

2. Rhine bridge  Cologne-Mitheim 1951  suspension bridge
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Elenents of the main girder riveted,
floor structure elements welded

3. Rhine bridge  Diisseldort-Neu 1951  slab-and-beam bridge
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Al cross-sectional efements welded

A freld joints riveted

Figure 4.12 Development towards the structural continuum
Step 1: The assembly of planar cross-sectional units

4. Auckland-Harbour-Bridge 1969 slab-and-beam bridge

All cross-sectional elernents welded
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5. Sava bridge  Belgrade 1956  slab-and-bearn bridge
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Elements of the main girder riveted,
floor structure elements welded
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welded transversal joint in the floor slab,
floor slab main girder joint niveted, with two splice plates

6. Berfiner bridge ~ Duisburg 1963 slab-and-beam bridge

!
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All cross-sectional elements welded

welded floor slab joint,
foor slab main girder joint with preloaded boils

Figure 4.13 Development towards the structural continuum
Step 2: “Transversal” systems. Transition between from the planar to the spatial cross-sectional units.
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7. Rhine bridge ~ Wiesbaden-Schierstein 1962 slab-and-beam bridge
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Al cross-sectional elements welded

8. Rhine bridge  Diisseldorf-Oberkassel 1973 cable stayed bridge

g vt s e A L

All cross-sectional elements welded

Figure 4.14 Development towards the structural continuum
Step 2: “Longitudinal” systems. Spatial cross-sectional units.

4.2 Hungarian Examples

4.2.1 ‘Erzsébet’ bridge [Catalogue, 1998]

Location and name of the bridge

Figure 4.15 The Castle of Buda, the Lanchid and the Erzsébet Bridge.
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1898-1903

N 1959-1964

1430 290.00 Jl 4430

km 164600 HIGHWAY BRIDGE

Figure 4.16 General view.

Figure 4.17 The view of Erzsébet Bridge from the Gellért Monument.
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Name of the bridge "Erzsébet" bridge
Distance: 1646+000 km
Country: Hungary
City/town: Budapest
Year of building - completion: 1898-1903
Year of rebuilding - completion: 1959-1964

Span lengths:

Figure 4.18 The view of Erzsébet Bridge from top of Gellérthegy.

Main bridge over streambed: 44.34290.0+44.3 m
Roadway widths: 4.45+18.2+4.45 m
Designer: UVATERYV, Pal Savoly,
FOMTERYV, Janos Juhasz
Main contractor: Ganz-MAVAG, Kéroly Massanyi, Janos Fekete,
Karoly Vogt Bridge Construction Company
Construction cost: 381 million HUF

Traffic function of the bridge

Highway:
number of lanes: 6

Antecedents; the history of the bridge

Before the construction of the "Erzsébet" and "Szabadsag" bridges, international tenders were
invited for both bridges together. The first price winner plan was for the "Erzsébet" bridge, while
the second price winner was the design for the "Szabadsag" bridge. But the winner design was
not realised, mainly because of the limited technological possibilities.
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The first prize winner plan of the common tender finally has not been realized. Its main
reason was, that it was a cable bridge, and at that time in Hungary cables of the required quality
had not been produced. Therefore a chain bridge was built. Although during construction this

change of the solution caused controversy, the realized structure later became famous and found
approval.

Figure 4.19 The first prize winner plan of the 1894 tender by Kiibler, Eisenlohp and Weigle.

Figure 4.20 The bridge.

The bridge, named after Queen Elizabeth of Hungary, was the largest span suspension bridge
of the world for three decades, and is still considered as the most attractive suspension bridge
ever built. In addition, it involved several new technical features (design by Istvan Gallik),
including the hinged pier with hinged chain connections and the special joint types of the
continuous stiffening girder.
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Figure 4.21 The erection of the bridge.

The plans of the realized construction were made by the Bridge Department of the Ministry of
Trade Affairs, headed by Aurél Czekelius, and they applied the statical calculation method of
Antal Kherndl, professor of the Technical University, who was a very important personality of

the Hungarian bridge engineering.

A new design was carried out by Aurél Czekelius in the form of a chain bridge solution and it
was realised. Fully propped erection method was applied.

Near the end of World War I, in January 1945 the Buda side anchorage chamber was blown
up, the pylon and the chain together with the stiffening girder of the bridge felt into the river, only
the pylon of the Pest side remained in the original position.

Figure 4.22 The bridge as blown up, 18 January 1945
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When the bridge was blown up, the pylon of the Pest side (some 3000 metric tons) remained
in its position; it was later supported by temporary structures, and was not removed until 1960.

As the original structure, by the opinion of a lot of people was one of the nicest chain bridge
in the world, reconstruction was first planed in the style and form of the destroyed bridge. But the
width of the roadway (11 m) was not enough the fulfill the requirements of the increasing traffic.
For this and other reasons a completely new structure was designed in form of a cable suspension
bridge.

Special model tests have been carried out in the laboratory of the Department of Steel
Structures, TUB, to help the design of the erection of the new construction.

The model was of a scale of 1:50. Forces in the suspension cable, as well as, the characteristic
deformations of the structure in different erection phases have be measured.

The technical data of the bridge

H/7 BUDAPEST, "ERZSEBET"-BRIDGE
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Figure 4.23 General view.
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Figure 4.24 Cross section

Structural system, span lengths, widths

The two bundle of cables contains 61 elementary cables. It is formed in the shape of a regular
hexagon resting on its vertex. An elementary cable contains 115 pieces of wires and it has a
diameter of 54.5 mm.
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Deck
The stiffening girder and the floor structure of the bridge is an orthotropic steel construction.

To prevent the slip of the asphalt layers on the deck plate, zig-zag shaped ribs were welded on
the top of the deck plate.

Figure 4.25 The floor system

Foundation, substructure

The abutments needed a thorough rebuilding due to the different layout of the new bridge.
After demolishing of the original ones the reinforced concrete blocks of anchorage chambers
were built. The embankment piers also required a complete repair.

Bearings
At the pylons, the original hinges were applied

Figure 4.26 The new pylon, similarly to that of the old structure, is hinged.
The original hinges were re-used.

Quantities of applied materials
Weight of steel structure: 6300 t
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Method of construction/erection; joints

The portal frames of the pylons were built first, each of them containing two columns, made from
six elements and a transverse beam. For transferring the cables from one bank to the other, an
assembly "carpet" of 420 m long was built on both sides. The two carpets were stiffened to each
other in five sections by tubular trussed constructions. The cables were drawn through form Buda
to Pest side, they were clamped into the disc shoe and were fixed into the anchorage chambers.

Figure 4.27 The erection of the bridge.
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The stiffening girder and the floor system containing 195 assembly units, was manufactured
at the yard of Ganz-MAVAG at Lagyméanyos and they were shipped by barges to the building
site. The units were lifted with the help of a floating crane of 100 t capacity. First the middle
element was positioned and the further ones were lifted in a symmetrical order. The units were
connected to each other with temporary hinges, the final connections by riveting were done, when
the total structure was build and it was preloaded with 2400 t of sandy gravel ballast to achieve
the final shape.

Corrosion protection

Re-dusting of the steel deck plate was performed by sand blasting, and after cleaning it was
furnished with a zinc-coating.

Other parts of the steel construction were furnished with a double prime coating of red lead
and a semi-synthetic painting in two layers.

Traffic situation

After reconstruction the bridge carried a two track tramway line, which was removed in 1973.
This way the number of road lanes could be increased from four to six.

Test loading(s); periodical assessment of serviceability

The loading test, after finishing the construction, involved measurements of deformations and
those of stresses around the intermediate supports of the main girders. Results of these later ones
clearly showed that in case of such a great number of flange plates in a riveted construction the
stress distribution is not linear along the flange thickness and its maximum develops around the
centroid of the complete chord.

4.2.2 ‘Arpad’ bridge

Location and name of the bridge
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Figure 4.28 The side view of Arpad bridge.
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Figure 4.29 The Arpad bridge.

Name of the bridge "Arpad" bridge
Distance: 16514400 km
Country: Hungary
City/town: Budapest
Year of building: 1939-1942
Completion: 1948-1950
Widening: 1980-1984

Span lengths:

Widening of the bridge began in 1960, according to a new concept. The original two main
girders carry the loads of the trams, and the two new girders carry the road traffic

Main bridge over streambed: 60.0+65.0+45.0+82.0+2*103.0+

+ 82.0+90.0+ 76.0+102.0+ +76.0+36.9 m
Roadway widths: 2.73+11.3+7.2+11.3+2.75 m
Designer: FOMTERV, UVATERV, Alajos Petur
Main contractor: Bridge Construction Comp., Ganz-MAVAG
Construction cost: 2325.365 million HUF (whole complex)
Owner of the bridge: City of Budapest
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Figure 4.30 Cross sections.

Traffic function of the bridge

Highway bridge with tramway:
number of lanes: 6
number of tramway tracks: 2

Antecedents; the history of the bridge

The idea for a new bridge on the north part of the city was initiated by the fact, that the left bank
was a developed industrial area, while on the right one there was a dense population. Law No.
XLVIIL in 1908 ordered the construction of the bridge, but its completion was cancelled because
of World War 1. Later the development of the south part of the capital had a higher importance,
therefore the design process started only in 1930.

The conditions were quite difficult, as the Danube has four arms in this area with very
different distances to span over, and it was rather hard to decide, how the divide them, where and
how to give the axis of the complete construction, etc. As not all of the conditions were clearly
drawn, the designer teams should give recommendations for the solutions.

Two plans were honoured by the first prize, both of them were certain arched solutions, made
by university professors Janos Kossalka and Gyula Wilder, and by Gydzd Mihailich and Ivéan
Kotsis, with the main difference, that the arches were trusses in the first plan, while plated ones in
the second. But the question, where to situate the bridge, was open. This caused delay in starting
the construction and meantime some new ideas came into existence concerning the statical
system of the new structure.
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Figure 4.31 The original cross-section; continuous girder with four main girders.

Figure 4.32 The erection of Arpad bridge.

The erection of the Buda side of Arpad Bridge before the war, with four main girders as
according to the original plans. The work stopped in 1942, and the structure survived the war in
Budapest (Fig. 4.32.a). The erection of Arpad Bridge after the war, 1948-50. Only the two central
main girders were erected (Fig. 4.32.b).

Finally taking into account, that an arch system would cause high horizontal forces to balance,
which would increase the mass of foundations, it was decided, that a series of multi-span
continuous plated structures would be realized. The final version of the bridge was planned by
Karoly Széchy, and the construction started in 1939, but after the building of the foundations it
was interrupted by World War II.

The original plan of the bridge was partly realised for 1950. This structure was very narrow,
its width was enough to carry the tramway tracks and two lanes of 2.22 m widths for the road
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traffic. As the bridge is the northest one, crossing the Danube on the Hungarian territory, it has a
very high infrastructural importance.

The technical data of the bridge
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Figure 4.33 The side view of Arpad bridge.

Figure 4.34 The Pest side, the Buda side and the Hajogyari Island section of Arpad Bridge.
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Structural system, span lengths, widths

The original part of the bridge is carrying the two tramway lines, for road traffic two new, box
plated structures were built, carrying 3 lanes each.

The cross sectional layout of the new bridges is identical everywhere, only the height of the
main girders and its profiles, as well as the shape of the transverse bracings is different.

The cross girders are plated ones, the distance is 4250 mm. Their height between the web of
mains is 800 mm.

The height of the main plated girders varies between 3747 and 5460 mm, web thickness is 12-
20 mm, and they are stiffened both horizontally and vertically.

Figure 4.35 The three independent main beams, with two main girders each, are similar.

Deck
The deck is an orthotropic steel plate, stiffened by horizontal stiffeners and the cross beams.

Figure 4.36 Cross section at the supports and at mid-span

Foundation, substructure

All the abutments and river piers of the old bridge were built for a total bridge width of 27.6
m. But for the new structural beams to be laid out, the pier had to be rebuilt at a height of about
1.5 m under the bearings. The middle part of the piers and abutments (under the remaining old
structure) had been left unchanged
Quantities of applied materials

Weight of new steel construction: 8330 t (Grades used: A 38 B, 37 B-C, 52 C-D)
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Method of construction/erection; joints

For the widening of the river bridge, a floating crane of 120 t load capacity was ordered to be
built by the Bridge Construction Company in 1979. It was finished for February 1981 and was
named after the constructor of the Chain Bridge, Adam Clark. The first elements of the bridge
were lifted in May 1981.

Manufacturing and erection of the steel construction was carried out by Ganz-MAVAG Steel
Factory. As the bridge had to serve the traffic during widening, first the south extension structure
was completed in full length, then the northern one. In the Ganz-MAVAG yard at Lagymanyos, a
BK 300 type tower crane and a moving crane of 50 t capacity were built

The pre-assembled structural units were taken by ships to the building site. The construction
was stated from steel pedestals, built beside the piers by incremental launching.

Figure 4.37 The erection of the bridge.
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Corrosion protection

The orthotropic plate of the bridge is covered with a synthetic resin insulation of type VDW
from Germany, which was performed in three layers after sand blasting and a degreasing by
acetone. The third layer was faced with spread crushed stone to increase the adhesion between the

insulation and asphalt topping.

Test loading(s); periodical assessment of serviceability

Certain parts of the complex construction were tested by different times and methods. In some
cases only the characteristic deflections were measured, while other times more detailed
measurements, containing measurement of strains (stresses), the vertical alignment, etc.,. were

carried out.

4.2.3 ‘M0, Haros’ motorway bridge

Location and name of the bridge

Figure 4.38 The Haros bridge.

Name of the bridge MO circular motorway Danube-
bridge at Haros

Distance: 1632+810 km

Country: Hungary

City/town: Budapest

Route: MO circular motorway in section
15+010 km

Year of building - completion: 1987-1990
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Span lengths:
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Figure 4.39 The general layout and the general cross-section of the Haros bridge.

River bridge: 3 x108.50 m

Flood plain bridges: 3 x 73,50 m (two bridges)

Roadway widths: 4 x 17.50/4 m

Designer: UVATERYV (Engineering Consultants for Transport and
Communication), Dr. Tibor Sigray (chief engineer)

Main contractor: Bridge Construction Company

Construction cost: 883.954 million Ft

Owner of the bridge: Motorway Directorate

Traffic function of the bridge

Highway:
roadway width: 17.50 m
number of lanes: 4
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Antecedents; the history of the bridge

The idea to construct the MO circular motorway to provide a connection between the M1 (to
Vienna) and M5 (to Belgrade) motorways arised in the early seventies. The 28 km long southern
sector of the belt to encircle Budapest crosses the two arms of the Danube outside of the capital.
The invitation for the tenders was based upon detailed design and included two bridge system.
The main Danube bridge at Haros was designed in the tender documentation, as a continuous
prestressed, reinforced concrete bridge having 11 spans and constructed by the cast-in-place
cantilever method. For this structure 6 alternative solutions (concrete and composite) were
proposed and finally the composite construction of the tender by the Hidépito Vallalat (Bridge
Construction Company) has been found by the international jury, as the most economic one. The
detailed design was carried out by UVATERV (Engineering Consultants for Transport and
Communication).

The technical data of the bridge

Structural system, span lengths, widths (Fig. 4.39)

The superstructure of the bridge consists of three independent, continuous three-span bridges
and its total length is 770.42 m. The main dimensions of the cross sections of the bridges are
uniform. The bridges are composite ones consisting of a steel box girder of constant depth and a
reinforced concrete deck slab.

The river bridge has the longest spans (3*108.50 m) of this kind in Hungary. The two flood
plain bridges are identical, spanning 3*78.50 m each.

The complete width of the deck plate is 22.05 m. It supports a cycle path of total width of
3.30 m on the north side and a service walkway of 1.25 m width on the south one. The entire
width for the four traffic lanes is 17.50 m.

The four traffic lanes have a constant cross fall of 2.5 % to the north direction, therefore the
heights of the two webs are different, resulting an asymmetric cross section.

Quality of steel: grades 52C, 52D, 37C and A38B.

Figure 4.40 The general plan of the bridge.
Deck

Reinforced concrete deck, general thickness: 23 cm, at haunches: 29 cm, at cantilever edges:
20 cm. Prestressed by vertical movement of supports and above the intermediate supports of the
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river bridge by post-tensioned tendons. Concrete quality: C25 (flood bridges) and C30 (river
bridge), reinforcement quality: B 60.50.

Quality of the post-tensioned tendons over the intermediate supports of the river bridge:
1570/1770 N/mm?.

Foundation, substructure

The foundation for the abutments, intermediate piers of the flood plain bridges and the
common pier with the river bridge on the west side could be executed by drilling of large
diameter piles started from the dry area. It was a routine job.

The foundation of the intermediate piers of the river bridge and the common pier on the east
side could be executed by a basically new method. First a reinforced concrete casing element of
105 t weight and of dimensions 8 m * 18.70 m should be placed in the riverbed very accurately.
In the second step 1.500 mm dia Soil-Mec piles were drilled from a catamaran. After positioning
the steel upper casing element, under water concreting took place in a thickness of about 4.5 m.
Pumping out the water, the reinforced concrete foundation and the rising walls were prepared in
dry construction pit. Later the upper steel casing element was removed.

Figure 4.41 The piers of the bridge.

Bearings

Synthetic rubber bearing imported from East-Germany.

Fixed bearings of flood plain bridges: on the abutments, that of river bridge: intermediate pier
on Buda side.

Quantities of applied materials

steel structure: 4340t

HSFG bolts: 174.000 pieces

studs for composite connection: 80.000 pieces

reinforced concrete: 13.150 m*

reinforced concrete slab: 3950 m?

steel reinforcement: 13751

Soil-Mec piles: 1300 m (diameter 1200 mm) 900 m (diameter 1500
mm)
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Method of construction/erection; joints

The steel box girder was divided longitudinally into construction units, not exceeding the weight
of 100 t. The flood plain bridges were built up from 13 elements each, while the river bridge from
21 ones. These units were further divided by longitudinal connections during fabrication. The
typical connection among the section elements in plant was welding, while in site mainly HSFG
bolted connections were used, combining with welding for the elements of secondary importance.

Figure 4.42 The erection of the bridge.
The construction schedules for the flood plain bridges and for the river bridge were similar,

but different in details. The steel girders were erected in an overlifted position, using temporary
support in the mid-spans (except for the middle span of the river bridge, which was open
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permanently for navigation). Certain lengths of the deck plates were concreted in different phases
to reduce the development of tension stresses in concrete slab under traffic conditions.
Combination of removement of temporary supports, vertical movements of final supports and
(only for river bridge) post-tensioning resulted an acceptable state in every part of the composite
structure during erection and in the finished position

Traffic situation
The clearance of the navigable fairway is 100 m in each span of the river bridge. Possibility

for 30 pieces of telecommunication cables and two water pipes of 1000 mm diameter has been
taken into account during design.

Test loading(s); periodical assessment of serviceability

Figure 4.43 The piers of the bridge.

Time: September 29-October 2, 1990.

applied methods: static and dynamic loadings

vehicles, loads: 48 trucks filled with 18 t soil and weighted
nature of measurements: deflections:

52 points on river bridge,

42 points on flood plain bridges

stresses (strains):

80 points on river bridge,

60 points on flood plain bridges

relative displacements at bearings natural frequency
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4.2.4 ‘Lagymanyosi’ bridge

Location and name of the bridge

Name of the bridge "Lagymanyosi'" bridge
Distance: 1643+230 km
Country: Hungary
City/town: Budapest
Year of building - completion: 1992 - 1995
Span lengths:

Figure 4.44 General view of the Lagymanyos Bridge with the Southern Railway Bridge.

Main bridge over streambed:

49.26+4x98.52+49.26=493.80 m

Roadway widths:

2x8m

Designer:

UVATERYV, Dr. Tibor SIGRAI

Main contractor:

METRO Investment Co., Bridge Construction Co.,
Ganz Steel Construction Co.

Owner of the bridge:

City of Budapest
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Traffic function of the bridge

Highway bridge with tramway:
number of lanes: 2 x 2 and a pair of tramway lanes

Antecedents; the history of the bridge

Construction of the bridge was decided as early as in 1972, when a tender was held. Its realisation
is on agenda from the end of the eighties.

The axis of the bridge is in a distance of 27.98 m from the northern structure of the Southern
railway bridge. This fact determined the spans of the bridge

Figure 4.45 The general cross-section of the Southern Railway Bridge and the Lagymanyos Bridges; the
ensemble of the highway and railway bridges and aerial view of the bridge.
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The technical data of the bridge

Structural system, span lengths, widths

Figure 4.46 General plan and cross-section of the main girder.
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The main girder is a six-span continuous asymmetric double cell box girder, having
cantilevers on both sides to support the carriageways, walkway and bicycle track. Above the
intermediate supports the main girder is suspended by inclined (appr. 30 °) rods, having a box
section of 1.5 x 1 m. Pylons carrying the lightening have the cross section of 3 x 1 m. Their
height is 35 m from the deck.

Figure 4.47 The erection of the columns

Total width of the bridge is 30.67 m.

Box width: top: 17.1 m, bottom: 13.1 m. Webs are inclined.
Box heights: large spans: 3.76 m, side spans: from 3.76 m decreases
to 3.26 m parabolically.
Cantilever lengths: north: 7.685 m south: 4.485 m.
Deck

Figure 4.48 Laying of the elements of box girders and Pre-assembly of the main box girder sections at the
GANZ-MAVAG plant
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Structure, arrangement: Orthotropic slab, trapeziodal stiffeners
Spacing of cross girders: 4.105 m

Foundation, substructure

Piers in the riverbed are situated on 48 pieces of Soil-Mec piles having a diameter 1.5 m and
length of 24 m.

Abutments are r/c structures, being 31 m long, 11.78 m wide and 14.77 m high.

Figure 4.49 Lifting in of the upper casing element

Bearings
A pair of Maurer-type disk bearings is at each supported cross section, fixed ones are situated
at the middle pier. Longitudinal sliding of the bridge is free in two directions.

Quantities of applied materials
Total amount of steel structure: 6500 t

Method of construction/erection; joints

Erection started on both banks from scaffolds, and was continued by free cantilever method using
temporary supports. Erection units are of the length 10.21 - 14.32 m, unit weights are not
exceeding the lifting capacity of floating crane "Adam Clark" (120 t) . The double cell cross
section was divided into two asymmetrical parts.
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Figure 4.50 The erection of the bridge.

Traffic situation

Situation of navigation: the clearance widths are the same as in case of the Southern railway
bridge.

The public utilities (bicycle track and sidewalk; heating steam conduits, gas and water
pipelines, electric and postal cables) are placed on Northern side.

The bridge has a unique illumination system based on special mirrors located at the tops of
the pylons placed above the supports. These mirrors receive the light from reflectors located at
the joints between the pylons and the inclined rods, and transmit it to the surface of the bridge,
ensuring practically uniform distribution of light for the highway.
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Figure 4.51 One of the lightening pylons with the mirrors and the erection of the lightening system.

Test loading(s); periodical assessment of serviceability

The construction was finished at the end of 1995, and the load tests has been carried out.

Figure 4.52 Load tests for the bridge.
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4.2.5 ‘Szekszard’ bridge

Location and name of the bridge

Name of the bridge Highway-bridge
Country: Hungary
City/town: Szekszéard

Year of building - completion: 2001 - 2003

A bridge close to Szekszard was tendered 1988 and the construction started in 2001, will be
completed early 2003.

Main data of the bridge

The bridge is situated along the M9 perspective motorway, between the main roads No.6 (parallel
to the right riverside) and No.5 (parallel to the left riverside), crossing the Danube close to
Szekszard, the Tolna country-town. [Koller, 2001]

The spans are as follows: At the left side flood area 3x65.5 m, over the riverbed 80.0 m +
3x120.0 m + 80 m, and at the right side flood area 3x65.5 m, the full length is 916.0 m
(Fig. 4.53). In the cross section the bicycle way, the carriageway and the sidewalk are 2.95 m +
10.0m+ 1.05 m=14.0 m.

The realised superstructure is a continuous composite box girder (reinforced concrete deck
slab and steel spines and bottom slab) over both flood areas, and over the riverbed a continuous
steel box girder with an orthotropic plate deck. The structural depth is constant, approx. 4.0 m.
The elevation of a bay is seen in Fig. 4.54, the steel cross section above the riverbed in Fig. 4.55
and the composite cross section above the flood area in Fig. 4.56. The piers have a deep
foundation using bored piles and are made of concrete.

Span lengths:
o o gﬁE [y - £-) a E‘E a a
3 x65.50 80 | 3x120 L 80 3 x65.50
196.50 i 520 i 196.50
composite bridge steel bridge compaosite bridge
Figure 4.53 Span arrangement of the Danube bridge at Szekszard.
Main bridge over streambed: 3x65.5 + 80 + 3x120 + 80 + 3x65.5 =916.80 m
Roadway widths: 2.95+2x5.0+1.05=14.0m
Designer: steel bridge: Pont-TERV, Dr. Erné KNEBEL
composite bridge: UVATERV, Zsolt KOVACS
Main contractor: Magyar Hidépité Konzorcium
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Bridge length 919.60 m

continuous steel box girder with orthotropic

plate over the riverbed 520.00
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Figure 4.54 Elevation of a span of the steel bridge.
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Figure 4.55 Steel cross section of the steel bridge over the riverbed.
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Figure 4.56 Composite cross section above the flood area.

Figure 4.57 The general view of the bridge.
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Figure 4.58 The erection of the bridge before lifting the last element.

Figure 4.59 The connection of the orthotropic deck and webplate.

Figure 4.60 The lower flange plate and the cross bracing.
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Figure 4.61 In-situ connection of steel bridge and lower flange plate of composite bridge.

Figure 4.62 Outer support of the concrete slab and the connection of the concrete slab and steel girder.
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5 Refurbishment of Orthotropic Steel Bridges:
Case studies from Germany

5.1 Traffic Data of the Examined Bridges

Lately, an increasing number of crack has been apparent in several steel highway bridges built
between 1950 and 1970. Most affected are sway bracings, diaphragms, web stiffeners,
components of orthotropic decks and crossing connections These problems are not confined to
German bridges [Nather, 1991] [Ivanyi, 2002]. Earlier reports from the USA describe similar
damage, and for some time fatigue damage detected in Japanese bridges has been reported too
[Nather, 1991].

The main cause of the increasing number of damages is the development of traffic. Most
bridges suffer more severe loading than was envisaged during their design due to increased traffic
and higher axle loads. Other causes include inadequate fatigue design of structural details and
fabrication defects. Another reason for fatigue cracks in steel bridges is inadmissible
simplification of statical systems, mainly because the three-dimensional behaviour of bridges and
secondary stresses are usually neglected in design practice.

Data of traffic flow and vehicle composition is necessary for bridge rehabilitation and
investigation of damage. Earlier forecasts of lorry traffic on these motorways underestimated
current traffic conditions. For instance, lorry traffic over the Haseltal bridge increased from 5700
lorries per day in 1978, to 9000 lorries per day in 1988. Over the period from 1980 to 1989, the
number of applications for permission of special transports almost tripled [Nather, 1991].

Because of the predominant local traffic, the portion of vehicles with four and more axles did
not exceed 55%. Further measurements indicated that the rate of capacity utilization was low and
that the impact factor depends to a high degree on the velocity of vehicles. In assessing remaining
fatigue life, development of future traffic must be considered. For instance with the European
Community liberalization beginning in 1993, permissible axle loads and maximum weight of
commercial vehicles will be increased.

5.2 Cracks in Connections of Cross Beams and Stiffeners.
Fatigue cracks have been detected:

— in fillet welds between the cross beam flange and the web or flange of the inside or
outside main girder stiffener (Fig. 5.1, Detail No. 4)

— in the seam between web and flange of the cross beam (Fig. 5.1, Detail No. 2)

— in fillet welds between cap and connection plate of transverse stiffeners (Fig. 5.2, Type I,
11, II) or sway bracings (Fig. 5.2, Type I, VI)

— in fillet welds connecting the connection plate to the main girder web (Fig. 5.2, Type III,
V)

— in the butt weld between connection plate and transverse stiffener (Fig. 5.2, Type V, VI),
and

— in the connection between longitudinal and transverse web stiffeners.
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Depending on the position of axle loads that may be located either between the main girders
or on the cantilever, the haunches receive bending moments of changing signs. These moments
are usually not considered during design of the connection. On curved bridges, the influence of
local loads and forces due to the curvature are superimposed. On the Haseltal bridge (Fig. 5.1) the
outside vertical stiffeners have been torn down in some spans. This led to a drop of the safety
factor for lateral buckling of the bottom chord in compression. Fatigue assessment showed that
fatigue cracking of the haunches could have been foreseen.

The Danube bridge near Sinzing (Fig. 5.2) has a superstructure for each lane. The main lane is
located between the main girders, and every passage of a lorry results in bending stresses in the
stiffeners. Field measurements and structural analyses revealed stresses larger than the yield
stress even under service loading in welding outlets of nodes V and VI. Consequently, 17 of a
total of 18 nodes of type VI and 47 of a total of 62 nodes of type V were cracked. The main
reason for this damage was an inadequate statical system assumed during bridge design, i.e. the
support points of the cross beams were assumed to be hinges.

On Fig. 5.2 node III, cracks are indicated in welded connections between vertical stiffener and
cap plate. These cracks have been detected at an earlier date and repaired in 1977. Although 384
of a total of 424 welding showed cracks, no investigation of the causes of these cracks was
conducted. Additionally, reinforcing plates have been mistakingly welded on top of the flanges of
transverse stiffeners, and cap plates were also welded on flanges of cross beams. Thus, the cause
of cracks was not eliminated, and new cracks similar to those presented in Fig. 5.2 developed.
During repair work, 1990 diagonals had been fastened between transverse stiffeners and cross
beams, as indicated on Fig. 5.3.

The influence of the deformation of the cross section on stresses in various structural details
of the Danube bridge near Sinzing has been analyzed using the Advanced Theory of Bending,
Torsion and Distorsion, which is a simple method of analysis but precise enough to study the
three-dimensional behaviour of the bridge. Structural analysis indicated that the bending stresses
in vertical web stiffeners reached values larger than those allowed (Figures 5.4 and 5.5).
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Figure 5.1 Haseltal bridge

183



19.510

s 415 050 1500 AL
[o] (o] o ] LS /‘L‘g
X | S
l A 17 T S ERARAA] | T T T T T T T T TP e T T
T T T T T vy Ty }! T T
@ ® ®
A Ar 1L
).080 ' 2788 { 2250 ).L18 1408 1.500 1750
' i o0
~— Nirnberg Regensburg _
z - o~ X—ﬁL———-ﬂ——n——ﬂ&w{F_/
a- . el T it ! 7
30000 89910 I 90019 | 95017 I 100616 | 105012 ' 185224 L 12986} | 115000
T t v T K T T L T
21000 22000
Type 1 Type 11
——
: |
—
Crack
=3
Type III (VII) Type IV
\ | |
—
Crack
A Crack
Crack
Type V

[ ]

Butt weld Butt weld
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Figure 5.3 Danube bridge near Sinzing: Reconstruction of node type III (VII)

Figure 5.4 Haseltal bridge: Influences in the design calculation
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Figure 5.4 Danube bridge near Sinzing: Reconstruction of node type III (VII)

5.3 Cracks in Orthotropic Decks

Between 1960 and 1973, 25 steel bridges have been built in Germany with orthotropic deck and
ribs of «Y»-(«wine glass») or «V»-shape. Ribs are cut into the floor beams, and their «V»-part is
buttwelded with bevel groove welds to the floor beam webs. Outside Germany, only one bridge
with «Y»-ribs and one with «V»-ribs has been built, i.e. the Bosporus Bridge (with continuous
ribs) and the Komatsugawa Bridge (with backing strips).

The ideal case of a cross joint of the longitudinal V-stiffener, shown in Fig. 5.6, does not often
occur. The axis of «V»-ribs tend to misalign, and an incomplete penetration may lead to fatigue
cracks that are not visible from the outside. These fatigue cracks may even penetrate the cross
beam web. For instance, the cracks in the rib-to-floor intersections of the Haseltal bridge could
not be detected from the outside.

The ribs are directly stressed by the wheel loads. Structural analysis showed that a single
passage of a vehicle causes several stress cycles of relatively high amplitude. For repair, short
reinforcing plates have been welded first to the cap plate and then to both the deck plate and the
«V»-rib by fillet welds (Fig. 5.7). Finally, the cap plates on both sides of the cross-beam web
have been connected using high strength bolts. A fatigue assessment has been made for this
connection to adapt the fatigue life of the ribs to the design life of other important structural
members, i.e. 50 years. The detail category of 36 according to [ECCS, 1985] and a partial safety
factor of 1.0 were chosen. From this, section modulus of the strengthened joint of 611 cm? has
been determined, while for the original joint it was 290 cm®.
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Figure 5.7 Haseltal bridge: Reconstruction of the connection of V-stiffener to cross beam

Three different designs of the intersection between «Y»-ribs and floor beams are known (Fig.
5.8). The tee-portions of structural type A are spliced by a formed piece which runs continuously
through circular cutouts in the floor beams. This detail has been used in the Sinntal bridge. The
tee-portions of design B and C run continuously through the cut-outs and are welded, either
single-sided or on both sides, to the floor-beam web by fillet welds. Design B for example, was
used for the Rhine bridge near Leverkusen. In the deck of this bridge, a multitude of cracks
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developed from the lower end crater of the fillet weld, and some of them run through the inclined
weld to the cover plate.
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a) Splice profiles run through cutouts of the floor beam
b) Tportions run continuously through cutouts of the floor beam

Figure 5.8 Rib-to-floor-beam junctions

The numerous welds in the intersection of design A represent various possible locations for
fatigue cracks. In a first phase of rehabilitation of the Sinntal bridge, cracks have been found in
welds of the inclined plates of the «Y»-ribs. At some locations, the ribs were almost completely
torn down. As a consequence, the grid effect of the deck was reduced which resulted in a
propagation of damage similar to the opening of a zip-fastener. The accumulation of cracks in the
last four spans near the southern abutment was explained by high dynamic stresses in the bridge
deck caused by the traffic. It could be observed that trucks overtake one another even though no
other vehicles were on the bridge.

In the second phase of rehabilitation, many new cracks have been detected which could not be
attributed to fatigue. A considerable quantity of cracks may have developed as a result of the
Sinntal bridge reached 115 °C on the side of the base.

The damage in the rib-to-floor intersection is typical for this type of structural detail. Cracks
are not expected where the ribs with hollow sections run continuously through the cut-outs of the
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floor beams. Insufficient fatigue strength of rib cuts welded to floor-beam webs, has already been
described in 1961.

5.4 Strengthening of Main Girders under Traffic

Increasing traffic loads, the high probability of occasional overstressing and a high utilization of
the material without considering fatigue, are the main causes that may require strengthening of
bridges [Nather, 1991]. The possibilities of strengthening and broadening of bridges, even under
traffic, is the main advantage of steel structures. Two methods of strengthening are described
next:

1. To reinforce the Haseltal bridge, two lattice girders were mounted between the existing
main girders as shown in Fig. 5.9. Transverse truss bracings have been built-in, every 9.24
m, to form a grillage with the main girders. At the centre, pier hinges were built in the
lattice girders to avoid additional loading of the cross bracings at the support which could
result in replacement of the existing support bracings. The support reactions of the
additional lattice girders are taken over by additional support bracings, from where they
are led off to the main girders and finally to the bearings.

2. Another suggestion, shown in Fig. 5.10, is to build an additional lattice girder in the centre
line of the bridge together with a torsional bracing that is fixed above the bottom chords of
the existing main girders. The floor-beam cantilevers are braced by diagonals to the
stanchions of the torsional bracings. These stanchions and diagonals form, together with
the cross beams and web stiffeners, transverse diaphragms to keep the cross sections
elastic. All joints are bolted using high-strength bolts. To reduce the stress-resultant
components, additional transverse bracings may be built-in. In case removal or
strengthening of the existing support bracing is not possible, the new lattice girder may
also be supported spatially by diagonal bracings that are directly supported by the bearings.

5.5 Final Remarks.

Experiences derived from the rehabilitation of highway steel bridges have been described.
Fatigue cracks in orthotropic plates and in connections of cross beams and stiffeners have been
detected, and repaired, on three steel road bridges. The main cause of the increasing number of
damages, is the more severe loading of bridges due to increased traffic and higher axle loads.
Other causes include inadequate fatigue design of structural details and fabrication defects.
Repair and strengthening of steel bridges can be conducted relatively easily under traffic.
Additionally, inadmissible simplification of statical systems is a further reason for damage on
steel bridges.
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Figure 5.9 Strengthening of the Haseltal bridge
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6 Design of Steel Bridges with Structural Eurocodes

New design rules for steel bridges have been developed by CEN/TC 250/ SC 3. The result of
the work in the EN-version of Eurocode 3 Part 2 (EC3-2).

For educational purpose some chapters are presented helping the knowledge of design of steel
bridges. The rules concerning with design of planar plated structures without transverse loading,
presented in Appendix II., and with design of planar plated structures with transverse loading,
presented in Appendix III., belongs to this topic.

The summary is reviewed on the basis of Johansson et. al [1999] and Johansson et. al [2001].

The Figure 6.1 summarizes the general procedures calculating the interaction between shear
force, bending moment, axial and transverse force.

The Figure 6.2 shows the flow chart of the procedure for the determination of effective cross-
section properties of a longitudinally stiffened class 4 panel.

The Figure 6.3 shows the flow chart of the procedure for the determination of effective cross-
section resistance in the shear buckling.

The Figure 6.4 shows the flow chart of the procedure for the determination of the cross-
section resistance under patch loading.

The Figure 6.5 shows the interaction between effective widths due to shear lag effects and
effective widths from plate buckling.

The presented examples are reviewed on the basis of Eisel-Miiller-Sedlacek [1995] and
Bancila [1996].

Example 1: Truss element (Danish-Swedish truss diagonal)

Example 2: Stiffened bottom plate of a bridge in compression (French bridge)
Example 3: Stiffened bottom plate and webs of a composite bridge
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Figure 6.5 Interaction between effective widths due to shear lag effects and effective widths from plate
buckling.

197



Example 1: Truss element (Danish-Swedish truss diagonal)

Geometry
U / 20 x 250
S =<
s
n 15
| 1500 |
1 1
L=150m

Material: S 355

Effective breadths (5.3.6.2 (10), 5.3.5)

plate subpanels

b=750 mm, t=15mm

T bt 750015
P 84.efk,  284-081-40

o = (Xp - o,zz) / hop = (1,087 —0,22)/1,087% = 0,734

=1,087

bog =0,734-750 = 551 mm

stiffener subpanels

b=250 mm, t=20 mm

T b/t  _ 250/20 _ 0829
284-e-.Jk,  28,4-081-,/0,43

p = (Xp - 0,22) / %p = (0,820 - 0,22)/0,8202 = 0,886

by =0,886-250 =221,5 mm
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Global plate buckling (5.3.6.3)
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To¥ —3
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551
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| Agerr= 44,4 cm? (5.3.6.3 (3))
1L Agr=127,1 cm?

z=13,88 cm

1=5398 cm*

Comment: (5.3.6.3 (4))

Open section stiffeners shall be proportioned so as to be fully effective.
In this case a reduction has to be done.
A reduction of the breadth is chosen.

n’Elg,  m2210000 -5398 -10%

Nopo =7 5% = P g972k9
a 15000 —
N V5398 104 153 1500
Nerp =105 B- X502 105210000 - — 6480,1 KN

(5.3.6.3 (8)) and (5.3.6.3 (7))

Alternative calculation of N, (Petersen):
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1500

M =375

VAN AN
3
P 309,1
\l/ 0,91-12
EIS = +-3752 1500

1500 3
# A
c=2=0923—

mm

diagram Peterson (p. 468):
4 4
/i:\/ 0923-15000° __ )
EI 210000 -5398 -10

System Il = =0,27

12210000 -5398 -10*

N
(0,27-15000

=6820,9 kN

cr,c

The continued calculation will be done with N, = 6480,1 kN.

N
g=—"C_1=12,03
Nere (o will not be calculated) (5.3.6.2 (9))

= &=10 = p=p,

Calculation of 7_»p with Agefr:

_— . 2 .
Ap = 127,1-10 3355 0,834
6480,1-10

pp =(0.834 ~0,22)/0,8342 = 0,883 (5.3.6.2 (7))
p=pp =0,883

A :zAst,eﬁ +zpp 'bp Pyt py =L0
A, =209,4cm?

(5.3.6.2 (11))
Acer =p-Ac =0,883-209,4=184,9 cm?

NRa =Acef fy /1M =184,9-10%-355/1,1 =5967,2 kKN

Buckling resistance (5.5)
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H /20x250 A =1100 cm?
A [mm] [ =3770951 cm?

1=58,55cm
n 15

1500

-
1500
a) Deterfhination of A and [ Wltf}"the ross area (5.5.1.2 (1))
_ S _ 15000
i 5855 ’
A =T E/fy =939-£=93,9-0,81=76,1
A .
po Aot _ 4-184.9 —0.672
A 1100
- A 25,6
A= — /BA = 0,672 = 0,276 (5.5.1.2(2)) and (5.5.1.2 (1))
A 76,1
o =0,34

$=0,5" [1 +0,34(0,276 — 0,2)+ 0,276 ] =0,551

1 1
X = =
b+yd2 =1  0.551+40,551% —0,276°

2
Np.ra =% -Ba - A-fy [ym =0,973-0,672 1100 -107 -355/1,1 = 23212 kN

=0,973

b) Determination of A and I by a cross section with equivalent thickness tc.equi = Acefi/be

184,910
c,equi = W = 12,3 mm
A =738 cm?
3 2
3 [mm)] [=2767547 cm
12,3 1 :61,24 cm
— B
| 1500
1'
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s 15000
1 612,4

AM=T E/fy =93,9-£6=93,9-0,81 =76,1

poAer 41849
A 1100

245

S
L JBa =222 0,672 = 0,264
A Pa 76,1 (5.5.12(2)

)

o =0,34
$»=0,5- [1 +0,34(0,264 —0,2)+ 0,2642]: 0,546
. 1 _ 1

o+ \/¢2 5% 0,546 ++/0,5462 — 0,264

=0,977

Npra =X Ba -A-fy [y =0.977 0,672 1100 -10% -355/1,1 = 23307 kN

Example 2: Stiffened bottom plate of a bridge in compression (French
bridge)

Geometry
\ aVavaVa) /
41/92(;)%/ 60(1—1 ngoqv
v 7000 iy
/1 P
’: 250 ‘

R / N
L / \ ﬂ:
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Distance between diaphragms: L = 4000 mm

Material: S 355

Global plate buckling (5.3.6.2 (1) and 5.3.6.2 (3))

A=700-15+4-(2-271+250)-8 =105000 + 25344 = 130344 mm?
z =26,5mm

I, = 46473 cm*
El, _ 210000 - 46473 -10*

D, = = = 13941900 Nm
7000 7000
3 3
D, - Et : _21000015% _ o
12'(1—H ) 12-091
S [Px [13941900 146
D, 64904
a=2_3000_, 4
b 7000
a 0571
y=10 = o =2="21 _0149<1
Yy a6
2 2
= Kgp=|a+r]| = 0,571+ 12601 _ses 8
’ o 0,571

t)? 15 )
G, =189800 '(Ej — 189800 (WJ —0.872

Gerp =Ko p O =688,8-0,872 =600,6 N/mm?

_n2-D, _ m%-13941900 -10° (5.3.6.2 (4)and 5.3.6.2 (5))

(e}
=< 2. 40002 -15

f
Y = 35—5=O,769
Serp \ 600.6

=573,3N/mm?

>
=]
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Pp= (Xp - 0,22) / Xﬁ = (0,769 -0,22)/0,769% = 0,728

_ f
he = X = | 335 787 (53.62(7)and 5.3.6.2 (8))
Ser,p 573,3

i_\/b~Dx _\/7000.13941900
A-E V130344 -210000

=59,71 mm

NA stiffeners

/e

e=110

= / . - —
NA plate + stiffeners Né‘[e

NA — neutral axis
Calculation with gross area!

o = o,34+w - 0,34+& = 0,506

i/fe 59,71/110
* (- =2 5
d. =0,5-[1+a (xc —0,2)+ Ao |=0,5-[1+0,506(0,787 —0,2)+0,7872 |= 0,958

1

Pe = —- — 0,665 (5.3.62 (10))
b + \/¢§ - 7\«3 0,958 + \/0,9582 - 0,7872
(e}
¢ Sep | 6006\ oo
Ser,c 573,

p= (p10 —Pe )g(z —&)+p. =(0,728 —0,665)-0,048 - (2 - 0,048 )+ 0,665 = 0,670

Local plate buckling (5.3.6.2 (10) and 5.3.5)
plate subpanels

b =920 mm, t=15 mm
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ol = 189800 - - _50,45N/mm2
920

1

-G, =4,0-50,45 = 201,8 N/ mm?>

/355 = 1,326
Gerp V2018

= (1,326 - 0,22)/1,326% = 0,629

b =600 mm, t=15 mm

ol = 189800 | - _118,6N/mm2
600

b O =4,0-118,6 = 474,5 N/mm?

GCI‘ P
/ = 0,865
Gcr o V4745

pp = (0,865 -0,22)/0,865% = 0,862

stiffeners subpanels

b =250 mm, t=8 mm

2
ol = 189800 - —— | —194,4 N/mm>
250
Gurp = Kigp O = 4,0-194,4 =777,6 N/mm?
/ = 0,676
ccrp 777.,6
py = (0,676 -0,22)/0,676% = 0,998

b =271 mm,t=8 mm
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2
ol = 189800 -[ =~ | =165,4 N/mm>
271

Gurp = Kig.p -Op =4,0-165,4 = 661,6 N/mm?

A 355 =0,733
ccrp "V 6616

=(0,733-0,22)/0,733% = 0,955

Ac=Y Ager +2.Pp-bp Pyt (py=10)

A, =4-8-(0,998-250 +0,955-2-271)+5-0,629 920 -15+4-0,862 - 600 - 15

A, =989,8cm? (5.3.6.2 (11))
Acer =p-Ac =0,670-989,9 = 663,2 cm”

N = Acef -fy /¥y = 66320 -355/1,1 = 21402 kN

Consideration of shear lag effects

\ﬂﬂﬂﬂ/

i /N e

L/

L 600 L
1

Distance between diaphragms: L = 4000 mm
Material: S 355
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Span lengths: (5.4.2.3.3 (6), Fig. 5.18)

A 38m A 44 m A 38m 1

L, =0,2-5-(38,2+44,0)=20,5m

%:JH%:\/Hw:UM
3500 -15

1 1

P2 = 2- 1,114 -3500 11143500 )
1+6,0-“E'b+1,6-(“0’b] 1+6,0- > 6( : j
c

20500 20500

c
%gb 1,114-3500
Peomb =PB T =0,670.0,455 20500 = 0,670-0,681 = 0,577

Aceff =Peomb *Ac = 0,577 -989.8 =571l cm?

= Ag e -y /ym =57110-355/1,1=18431 kN
d easiB ]

(5.4.2.3.3 (4) and 5.4.2.4 (1))

Example 3: Stiffened bottom plate and webs of a composite bridge

Material: S 355

Distance between diaphragms: L = 4000 mm

2
Agross =3219,08 cm

z=95,50cm
4
IgroSS =28627 744 cm
Geometry
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15000 L

[..n-- . .« * e . e .« o . ¢ e . o [} - ] . . o , -250

\ 850 x 50

_ 2000 x 12 _
5 | 25020 _ . 2000
B 1 N /N [\ [N _1_

_[60j800; | 760 7000 x 15

[mm] 7000

Y 400

800 |

|
A —+—

K ~ 7~ N
JA 38,0 ——ﬁL—— 44,0 ——ﬁ‘h— 38,0 ——Ja

Classification (and local plate buckling) (5.3.5)

+ v =-2,297
w0
S i=@=125<62'8.(1—\u)~ [(~y)=
-— o t 12
(@) w
wn
- =62-0,81-(1+2,297)-4/2,297 =250.9
3
< = Class3 (orlowerclass)
i 12
—ﬁrﬁ—-—
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€20 1h5514.6214.081=113
£ 20

= C(Class4
o
N
:*: y=10 = K ;=043
250
_ 250/20
28,4-0,81-,/0,43

p=(0,829-0,22)/0,829% = 0,886

b = 0,829

— 8’2 —
°  1,05+0,476

y=0476 = K
d 500 42 42081
tW

5,37

=2 =417> = =
12 0,67+0,33-y 0,67 +0,33-0,476

41,1

_|
955

= C(lass4

= 500/12

Ap=—T
28,4-0,81-4/5,37

p=(0,782-0,22)/0,782% = 0,919

%\) 500 | 455

=0,782

%=%=50,7>42~s:42~0,81:34,0

© = C(lass4
=%

760 v=1,0 = K, =043
= 76015
P 28.4.081-/4.0

p=(1,101-0,22)/1,101% = 0,727

=1,101
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| 800 |
| |

400 | 555
)

i1/

955

b 800

2= o533542.6=42-081=34,0
t 15

% = Class4
emeemeeeeromonem———

v=10 = K, =043
= 80015
P 28.4.081- /4.0

p=(1,159-0,22)/1,159% = 0,699

=1159

b 400
t

= C(lass4

v=10 = K, =043
= 4008
P 28.4.081./4.0

p=(1,087-0,22)/1,087% = 0,734

=1,087

p— 8’2 —
°  1,05+0,581
42 -¢

y=0581 = K

T= g =30>42:6=42:081=340

5,03

42.0,81

- 447/8
Ap=— o
28,4-0,81-,/5,03

p=(1,083-0,22)/1,083% = 0,736

=1,083

Global plate buckling (5.36)

210

> = =
0,67+0,33-y 0,67+0,33-0,581

>



) el N o N N U o -I'Z‘

760(800; | 760
OO0 L7

7000

7000 x 15

A =1464,1 cm?

z=7,41cm

I, =273 286 cm?

_ EI, _ 210000 -273 286 -10*
7000 7000

3
D, - Et3 _210000-15% _ o
( 2) 12-091

[81 985 800
64904
_a _ 4000

s =0,571
b 7000

=81985 800 Nm

X

= 05T 6096 <1

(04
Jr o 3554

2
= Kgp=|a+r| =[0571+ 35,54 _3945,4
’ o 0,571
2

\VZI,O = o) =

>

2
c. =189800 - =189800 - 15 =0,872
b 7000

Gerp =Ko p o =3945,4-0,872 =3440,4 N/mm>

n2 D, n2 81985800 -10>
40002 -15

/355 =0321 = p,=10
cscrp 3440,4

GCI'C_

=3371,5N/mm?>

/]

(53.6.2(2)
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212

Ae = fy _ |35 =0,324
Gap V33715

i:\/b-Dx :\/7000-81985800 _ 136,6 om
A-E 146 410-210 000
NA stiffeners
_ /e
N.\
S N~
<t [o9)
— _— — = T
(—— = 2
T — T ——
NA plate + stiffeners NA plate

NA — neutral axis
Calculation with gross area!

0,09 0,09

o =034+ =034+ ———— =0,464
i/e 136,6/187,7
s [— =2
d. =0,5- [1 +a (xc - 0,2)+ Ao } =0,5- [1 +0,464(0,324 —0,2)+0,3242 ]: 0,577
Pe = ! = ! =0,948
b + \/d)f e 0577+ J0,5772 —0,3242

(e}
£ = P g 3440,4 120,020

Ger.c 3371,5

Ac =D Ager +2Pp by -yt  (py=10)

p=(pp —pe E(2=8)+p, = (1,0—0,948)-0,02-(2—0,02)+ 0,948 = 0,950

A, =4-(0,734-8-400+2-O,736~8-447)+5-O,727-760-15+4-0,699-800~15

A, =1054,4 cm?
Acer =p A =0,95-1054,4 =1001,7 cm?

Npg = Ao - fy /v =100170 -355/1,1 = 32328 kN



Web

112
750 1006.4 L 166
256.4 =t 16.6 '

250

Ag =162,27 cm?
z=3,20cm

Iz =7001,9cm*

J7001,9-10% 123 - 2000

VI tob
N, . =105-F

p L —1,05-210 000
b;-b, 500 -1500
2 2 4
El . . .
N, - TEe 210 000 - 7001,9-10 —0070.2 kN
—= ? 400072 —

New calculation of N, (Petersen)

\l/ M =375
123

=———=158,2
L PAN 091.12
1500 C=l=0,354L

*—+ A oo

4 4
et | 0354-4000 2
EL 210000 -7001,9-10

= B=0,86

=4573,4kN
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5 4
N p = 20000 7001910 _ 5 63,6 1o

— (0,86 -4000 )*

2
162,27-10 3355 0,685
Nerp 12263,6-10
= (0,685 -0,22)/0,6857 = 0,991

2
7vc _ 162,27 -10 §55 0,797
Nere 9070,2-10

NA plate
stiffeners

A gross =290 cm?
| ~— NA stiffener

I I gross =9098 cm

ﬂ\ NA plate i= Igross 9098 —5.6cm
I Agross 1290

u— e =103,4 mm

%

21,6 1034

009 _034+—29 506
i/e 56/103,4

~ =2
0. =05 -[1 v (e —02)+2e } =0,5- [1 +0,506(0,797 - 0,2)+0,797° ]: 0,969

1 1
Pec = =
bc + \/ o2 - e 0,969+ \/ 0,9692 —0,797>

=0,658

g Jerp 122636
er.c 9070,2

p= (pp —pc)g(2—§)+ pe =(0,991-0,948)-0,352 -(2-0,352)+ 0,658 = 0,851

-1=0,352

(¢
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A = ZAst,eif +pr 'bp Pyt (pv :170)
A.=0,886-250-20+1500-12+0,919-500-12

A, = 279,44 cm?
Ac,eif =p-A.=0,851-279,44 =237.8 cm?

Shear lag effects

VAN 38m AN 44m /\ L AN
L,=0,2-5-(38,2+44,0)=20,5m
2-8-(400 +2-447)
aoz,/1+ﬁ: =1,181
b-t 3500 -15
Pa= ! 5= 1 5 =0,440
1+6.0.20°D o [ao-b 146,0. 181-3500 , o 1,181-350())
7L ’ L 500 20500
(S (S
So'b LI81:3500
Peomb =P-B ¢ =0,950-0,440 20500 0,950 .0,847 = 0,804
Ao =Peomb Ac =0,804-1054,4 =847,7 cm?
Shear buckling resistance of the web
= 4000

: 2 90

d = 2000 d
~F 250

§ 7%'; A
3 I =6793,2cm
S
~F 3

Il 2 A 2

I

N Ktst:9'(gj % :9.(1) % =21,00
— 20 : a) (3 .d 2) 11232000 —
X
(=)
<t 1 1

! 2.1 (I )5 2,1 (6793,2-104 )3
2 )12 Kt,st,min = =— =5,67
2| = ty, \d 12 2000
N

<
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2 2
KT:5,34+4,0-(EJ +K, St:5,34+4,0.[9 +21,00 = 27,34
. :

N = d _ 2000 102
374t e /K, 37,4-12-081-,/27,34

Largest subpanel

a =4000 a
— =2,667
dl = 1500 dl

2
d
K =534+40- [—lj +K g =534 +4,0-0375% =5,903
a

d I
Ay = 1 - 0 = 1,698
T4ty 6Ky 37:4-12-081-/5903
137 137
p=—2 ==L 571
07+h, 0,7+1698
1%
' -~ o o o o A o . L 3 i3 ] .
p,=0.734 —
5/=0.736 J ,=0.886
AN LN} geoos
/ p=0.727
7/=0.699
1%
- P =0.851
/ (R, =0.571)
P=0.95

( Poomp = 0.804)
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I.1 Serviceability Limit States [prENV 1993-2:1997, Section 4]
I.1.1 Basis

A bridge shall be designed and constructed such that all relevant serviceability limit states are
satisfied. In general the following serviceability requirements should be taken into account:

a) restriction to elastic behaviour in order to exclude:
- excessive yielding;
- deviations from the intended geometry by residual deflections;
- accumulation of deformations;
b) limitation of deflections and curvature in order to exclude:
- unwanted dynamic impacts due to traffic (also deflection limits together with natural
frequencies);
- infringement of required clearances;
- cracking of brittle layers (of asphaltic pavements for example);
- impairment of drainage;
¢) limitation of natural frequencies in order to exclude:
- vibrations due to traffic or wind perceptible to pedestrians or passengers in cars;
- fatigue damages caused by resonance phenomena;
- excessive noise emission from plated elements;
d) limitation of plate slenderness in order to exclude:
- visible buckling of plates;
- breathing of plates (also in view of fatigue);
- reduction of stiffness due to plate buckling, that may result in an increase of deflection;
e) achievement of sufficient durability by appropriate detailing to reduce corrosion and
excessive wear;
f) ease of maintenance and repair throughs:
- accessibility of structural parts to permit maintenance, inspection and renewal (of corrosion
protection and asphaltic pavements, for example);
- exchangeability of bearings, anchors, individual cables, expansion joints and the like, that
might have a limited service life, with the minimum practicable interruption to use of the
structure.

In appropriate cases, serviceability limit states may be verified by numerical assessment.
Where more appropriate, serviceability aspects may be dealt with in the conceptual design of the
bridge, or by suitable detailing.
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1.1.2 Calculation models

Deflections should be determined by linear elastic analysis, using gross cross-section properties
reduced to take account of shear lag effects. Stress-resultants at serviceability limit states should
be determined from a linear elastic analysis, using gross cross-section properties as specified in
ENV 1993-1-5. The stresses should then be obtained using effective cross-section properties
determined taking account of shear lag. Simplified calculation models may be used for stress
calculations provided that the effects of the simplification are conservative.

I.1.3 Limitation for reversible behaviour

The nominal stresses in all elements of the bridge resulting from characteristic (rare) load
combinations Ogdser and Tedser, calculated making due allowance where relevant for the effects of
shear lag in wide flanges and the secondary effects implied by deflections (for instance secondary
moments in trusses), should be limited as follows:

fy

O Ed,ser < y
M, ser
f
Y , 1.1/

TEd,ser <
\/g : YM,ser
f

\/(GEd,ser )2 +3- (T Ed,ser )2 = L
YM,ser

The partial factor for serviceability limit states may be taken as: ymgr = 1,0. The nominal
stress range Acg. due to the representative values of variable loads specified for the frequent load
combination should be limited to 1,5 fy/ ymgser. For non-preloaded bolted connections loaded in
shear, the bolt forces due to the characteristic (rare) load combination should be limited to:

Fyrdser < 0,7 Fora 1.2/

in which Fprq is the bearing resistance for ultimate limit states verifications. For slip-resistant
preloaded bolted connections category B, the assessment for serviceability shall be carried out
using the characteristic (rare) load combination.

1.1.4 Limitation of web breathing

The slenderness of unstiffened or stiffened web plates should be limited to avoid excessive
breathing that might result in fatigue at or adjacent to the web-to-flange connections. Unless a
more accurate calculation method is used, the following simplified procedure may be applied.
The stresses Oxrdser and Teaser in @ web panel, see Fig. 1.1, should be calculated using the frequent
load combination.
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Figure I.1 Stress state for a panel [Fig. 4.1].

If either of these stresses is not constant along the length of the panel, the design value should
be taken as the maximum of:

— the greater of the values at a distance equal to the lesser of a/2 or b/2 from a transverse
edge, in which a is the longitudinal dimension of the panel and b is the transverse
dimension;

— half of the maximum value within the length of the panel.

For a sub-panel, its dimensions a;x and b;x should be used in place of a and b.
The following criterion should be satisfied:

2 2
o T
( Ed’serj J{ Ed’serJ <115 L3/
kG . GE k‘C . GE

with:

5 2
n2E [ t J 189800
(e} _— ~

“12l-v?)lo, (b/t)?

in which k. and ke are given by the following:

— for unstiffened plates:
— ko is given in table 5.3.2 of ENV 1993-1-1;
— keis given in 5.6.3(3) of ENV 1993-1-1;

— for stiffened plates: see ENV 1993-1-5;

and by, is the smaller of a and b.

I.1.5 Limits for clearance gauges

Specified clearance gauges shall be maintained without encroachment by any part of the structure
under the effects of the characteristic (rare) load combination.
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I.1.6 Limits for visual impression

If it is necessary to avoid the visual impression of sagging, consideration should be given to
precambering. In calculating the precambering, the effects of shear deformation and of slip in
riveted or bolted connections should be considered. For connections with rivets or fitted bolts a
fastener slip of 0,2 mm should be assumed. For preloaded bolts no slip need be considered. In
modelling the distribution of permanent weight and stiffness in a bridge, the non-uniform
distribution resulting from changes in plate thickness, reinforcement and the like should be taken
into account.

1.1.7 Performance criteria for railway bridges

Specific performance criteria for deformations and vibrations for railway bridges may be
obtained from annex G of ENV 1991-3. Requirements for the limitation of possible noise
emission should be given in the project specification.

1.1.8 Performance criteria for road bridges

1.1.8.1 General
Excessive deformations should be avoided if they might:

— endanger traffic when the surface is iced;

— affect the dynamic load on the bridge;

— affect the dynamic behaviour to an extent that might cause discomfort to users;
— lead to cracks in asphaltic surfacings;

— adversely affect the drainage of water from the bridge deck.

Calculations of deformations should be carried out using the frequent load combination. To
ensure the durability of asphaltic pavements on road bridges, the difference between the
deflections of two adjacent stringers or stiffeners should be limited. Unless otherwise specified
the minimum stiffness of stringers should be as indicated in Fig. 1.2. The natural frequencies and
deflections of the bridge structure should be limited to avoid discomfort of users.

1.1.8.2 Deflection limits to avoid excessive impact from traffic

The roadway should be designed such that it exhibits uniform deflection behaviour along the
length with no abrupt changes in stiffness or smoothness of surface giving rise to impact. Sudden
changes in slope of the surface deck and changes of level at expansion joints should be
eliminated. Transverse girders at the end of the bridge should be designed such that the deflection
does not exceed:

— the deflection limit specified for the proper functioning of the expansion joint;
- 5mm.

Where the deck structure is irregularly supported (for instance by additional bracings at
intermediate bridge piers) the deck area adjacent to these additional deck supports should be
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designed for the enhanced impact factors given in ENV 1991-3 for the area close to expansion
joints.

1.1.8.3 Resonance effects

Mechanical resonance of the main girders of bridges should be taken into account when relevant.
Where light bracing members, cable stays or similar items have natural frequencies that are close
to the frequency of any mechanical excitation (for instance regular passage of vehicles over deck
joints) consideration should be given to artificial damping of the members (by means of
oscillation dampers, for example).
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NOTES: 1) Curve 1 applies to stringers or stiffeners that are located under the most heavily
loaded traffic lane and within 1,2 m of a web of the main girder.
2) Curve 2 applies to all other stringers or stiffeners.
3) The figure applies to any type of stiffeners.

Figure 1.2 Minimum stiffness of stringers [Fig. 4.2].
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I.1.9 Performance criteria for pedestrian bridges

For footbridges and cycle track bridges vibration that might produce discomfort may be
eliminated either through the structural design or by providing suitable damping devices.

1.1.10 Performance criteria for effects of wind

Vibrations of slender members induced by vortex excitation should be limited to values below
those that generate stresses of sufficient magnitude to cause fatigue. For the determination of
fatigue loads from vortex excitation reference should be made to annex F. Aerodynamic effects
caused by flutter or galloping or by divergency should be treated as ultimate limit state
conditions. Appropriate checks should be carried out according to the procedures given in ENV
1991-2-4.

L.1.11 Accessibility of joint details and surfaces

All steelwork shall be designed and detailed to minimise the risk of corrosion and to permit
inspection and maintenance. All parts should satisfy at least one of the following alternatives:

accessible for inspection, cleaning and painting;

— effectively sealed against corrosion (for instance the interior of boxes or hollow portions);
made of steel with adequate corrosion-resistant properties;

be thicker than required structurally, to allow for future corrosion.

None of the above provisions need be applied to temporary bridges or to those with an
appropriately short design life.

L.1.12 Drainage

The surfaces of carriageways and footpaths shall be sealed to prevent the ingress of surface water.
Bridge decks shall be drained in such a way that surface water cannot damage structural
elements. Arrangements for drainage should take into account the slope of the bridge deck, the
position, diameter and slope of the waste pipes, the drainage of expansion joints and the discharge
of waste water. Free fall drains should carry waste water to a point clear of the underside of the
structure so that no structural element and no supporting structure is hit by water under any
conditions of wind and weather.

Waste pipes should be designed so that they can be easily cleaned out. The distance between
centres of cleaning openings should be stated in the project specification. Where waste pipes are
used in box girder bridges, provisions shall be made to avoid accumulation of water in the event
of a leak in a pipe. For road bridges, drains should be provided outside each expansion joint, on
both sides where necessary. For railway bridges up to 40 m long carrying ballasted tracks, the
deck may be assumed to be self-draining and no further drainage provisions need be provided.
Provision should be made for drainage of all closed cross-sections.
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1.2 Ultimate Limit States

1.2.1 Structural elements [prENV 1993-2:1997]

1.2.1.1 Structural system: Orthotropic plates [prENV 1993-2:1997, Section 5.2.3.1]

In verifying the stresses in the orthotropic plate as the load distributing deck the following effects
should be taken into account:

a) membrane stresses in the stringers and in the deckplate from bending moments caused
by local loads and from axial forces from cooperation as flange of the main girder
(longitudinal stringers) or cross girder (transverse stringers).

b) membrane stresses in the cross girders with cut-outs at the intersections with the
stringers. This might imply the consideration of a Vierendeel-behaviour.

Bending stresses in the deckplate and the walls of the stringers need not be considered,
provided that minimum distances of stiffeners are observed. The cross girders together with the
vertical stiffeners of the webs, may be part of transverse frames, for which the frame behaviour
and its consequences for restraining moments at the interconnection at the frame knees and for U-
frame behaviour in case of open bridge-sections should be considered.

I.3 Special considerations for structural detailing of orthotropic decks
[prENV 1993-2:1997, Annex GJ

A) Road bridges

Deckplate

In the view of both fatigue cracking in the deckplate and cracking of the asphalt layer, the
thickness of the deckplate should be limited to

tmin = 12 mm for asphalt layer > 70 mm
tmin = 14 mm for asphalt layer > 40 mm

The spacing of the support of the deckplate by webs of stringers should be:

¢ <300 mm for t =12 mm and e/t <25, Fig. 1.3.

For temporary bridges the plate thickness t may be smaller than indicated previously however
the ratio e/t < 25 should be fulfilled.

For permanent bridges the stringers should only be provided transversally to the traffic lanes
if agreed by the competent authority. When the recommendations mentioned before are satisfied,
the bending moments in the deckplate need not be verified.

Transverse splices with weld running in crosslane direction are on Fig. 1.4. Double-V weld or
single V-weld with root jointing and additional weld or single V-weld with ceramic backing strip.
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- 100 % inspection required.
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Figure 1.3 [Fig. G.1].
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Figure 1.4 [Fig. G.2].

Longitudinal splices with welds running in in-lane direction are on Fig. 1.5. Methods as for
transverse splices or single V-weld with steel backing strip with the following requirements:

— Tack weld in the final butt weld
— Special attention to be given to corrosion protection
— Standard inspection requirements

=

iz

Figure 1.5 [Fig. G.3].
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Stiffeners

Stiffeners made of hollow sections type V, trapezoidal or round should have a minimum plate
thickness t > 6 mm. The radius for cold forming should be R/t > 4. For open section stiffeners
the plate thickness should be t > 10 mm. Stiffeners should satisfy the minimum stiffness
requirements in [prENV 1993-2:1997, Section 4.8].

Gap between stiffener and deckplate before welding < 1 mm. Weld throat: 1.25 x thickness of
the stiffener. The weld penetration: see Fig. 1.6.

| a»t <2mm
<2 mm
W' W'
General requirements Manual requirements Automatic welding

(if proved by procedure test)

Figure 1.6 [Fig. G.4].

Welding process/inspection:

— For automatic welding:
— Standard inspection requirements

— For manual welding:
— 100 % inspection to confirm weld penetration and throat thickness

— For manual welding in overhead position:
— Edge preparation must be provided for the total length of the weld and 50 % inspection
is required.
— Special attention must be payed to starts and stops (grinding).
— No undercuts permitted.

Length of the stiffener - stiffener connection: > 200 mm, see Fig. 1.7. Weld length connecting
stiffener: 100 - 200 mm. Root gap between splice plate and connecting stiffener: 6 mm, see Fig.
1.8. Backing strip: thickness 3 mm, width > 30 mm; fit-up gap < 1 mm; misaliOgnment between
stiffener and splice < 1 mm. Tack weld is located within the butt weld, over the full length of the
butt weld and has the same quality as the butt weld. The welding process/inspection:

— M.M.A.W. is allowed with 100 % inspection
— MIG/MAG is preferred with 50 % inspection
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Welding procedure:
- 1. First weld between stiffener and splice plate
2. Second weld between stiffener and splice plate
3. Deckplate weld
- Special requirements must be made for several straight passes, not using weaving
techniques
- Special attention must be paid to starts and stops (grinding)
General requirements are tolerances for fit up 1 mm and side welds 50 % inspection

200..
L. 200 ;. .300 4 | £ 30x3
[ T T —|
rﬂm ZITY i 7///////////////////’4
& I ' fort=6,7 or 8 mm

||

@ z ] O | wi-smm

15] I
@ 26 mm

Figure 1.7 [Fig. G.5]. Figure 1.8 [Fig. G.6].

Stiffener-crossbeam connections with cope holes connection

Stiffener should be continuous, passing through cut outs in the webs of the crossbeams. A cope
hole should be provided around the soffit of the stiffener, but cope holes close to the deck plate
are not permitted. The cope holes should have the following recommended dimensions:

— V-stiffener: continuous radius (75 mm) on the same centre as the soffit of the stiffener.

— Trapezoidal stiffener: for the minimum size of the cope hole see figure 1.9.

— Round stiffener (bottom radius 100 mm): radius of 35 mm at each side centred on the
lower end of the straight part of the stiffener web. Connecting radius of 140 mm on the
same centre as the soffit of the stiffener.

The following requirements apply:

— Special attention to be given to providing a smooth edge to cope holes. Any notches to be
ground smooth.

— Welds to be returned around the edges of cope holes in the web.

— Weld throat thickness to be > 50 % of diaphragm plate thickness.

No undercut permitted.
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By the above mentioned recommendations and the ULS-assessment of the welds the
formation of fatigue cracks in the welds due to shear from shear forces and torsion and from
restraints from deflections of the stringers prevented. By the above mentioned recommendations
and the ULS and SLS-assessments of the stringers the formation of fatigue cracks in the stringer

web (vertical before the weld toe) is prevented.

|

b=25+17 web

Figure 1.9 [Fig. G.7].
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Figure 1.10 [Fig. G.8].

Provisions for the crossbeam in case of cope holes

The stiffness of crossbeams and in particular of the web should be sufficient to prevent the
formation of horizontal fatigue cracks in the web of the stringers at the returns of the welds, due
to variable imposed deformations from the crossbeam web, Figure I.11. By applying the ULS-
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assessment rules for the web of the cross beam taking account of the Vierendeel action, the
formation of such cracks will be prevented.

possible horizontal
cracks

in the springer web by
imposed deformations
of the crossbeam web

Figure I.11 [Fig. G.9].

Connections without cope holes

Stringers should be continuous, passing through cutouts in the webs of the crossbeams. Best
fatigue behaviour is achieved, when trapezoidal stiffeners or round stiffeners are used without
cutouts at the bottom of the stiffeners (welded all around). For this solution the maximum gap
between the webplate and the stiffener is 3 mm and the minimum throat thickness is 50 % of the
thickness of the cross-beam web. Standard inspection requirements apply.

Short stiffeners fitted between cross-beams

In exceptional cases, for instance shallow decks for light traffic, short stiffeners fitted between
cross-beams may be used when following requirements are satisfied:

— - crossbeam spacing <2,75 m

- stiffener to cross-beam welds to be full-penetration welds with a prepared end on the

stiffener, see Fig. 1.12.

— - the sequence of assembly and welding should be decided with advice from the
fabricator to prevent excessive shrinkage effects.

— - 100 % inspection required for stiffener to cross-beam welds.

crossbeam

/
o |
2>

//

7

Figure 1.12 [Fig. G.10].
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Crossbeams

In case of continuous stringers with cutouts the crossbeams should be designed for the
Vierendeel-action resulting from the cutouts, Fig. I.13. The design stresses are the result from the
Vierendeel- actions multiplied with the stress concentration factors (SCF). The values of the
SCF's are depending on the form and the location of the cope hole.

(VAAVARVARVARVARVARVERYI

—l 1

Figure .13 [Fig. G.11].

To avoid fatigue cracks at the cutouts the following recommendations have to be satisfied:

— - the requirement for limiting the stresses to yielding in the ultimate limit state in the
critical sections A-A and B-B, Fig. 1.14;

— - the determination of an optimum for the web thickness by the combination of the in-
plane and out-of-plane behaviour;

— - the above mentioned recommendations for structural detailing of the cutouts.

In case of continuous stringers without cope holes the strength of critical sections A-A and B-
B may be determined using an effective breadths of the stringer web begr= 5 t.
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Figure .14 [Fig. G.12].
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Crossbeam to deckplate connection: the gap before welding < 1 mm. Continuous double fillet
weld: a= 0.5 x crossbeam thickness.

The connection between the crossbeam and the vertical stiffeners of the web, that from a
transverse frame shall be designed for the restraining moments. Fatigue restraint design as
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indicated in Fig. I.15 has to be applied. If the lower flanges of the crossbeam and main girder are
at the same level the radius for the edges should be R = 8 mm, see Fig. I.16.

| deckplate l main girder
AVERVIRVIRVE e
| LJ =8 mm

| )
l E crossbeam | l\ |]
| |
: N r—

web stiffener of the web
Figure I.15 [Fig. G.13]. Figure .16 [Fig. G.14].

B) Railway bridges

All clauses for road bridges apply apart from more conservative rules to follow. In the following
also additional rules for railway bridges are presented.

Deckplate

The thickness of the deckplate should be limited to tmin > 14 mm and tmin > €/40, where ¢ is the
maximum distance between the stiffeners.

Stiffeners

Non-continuous stringers are allowed; however they have a low fatigue classification. In
connections with cope holes circular or apple forms of cutouts are recommended for railway
bridges (Fig. I.17a to d). Their radii should be 40 to 50mm. Connections without cope holes in the
web of the cross girder (Fig. I.17¢ and f) are allowed if welding is carried out in such a way that
residual welding stresses are limited. Unsymmetrical cutouts (Fig. 1.17g) are not recommended for
railway bridges.

In case of trapezoidal stiffeners with cutouts in the web of crossbeams these cutouts shall
meet the requirements of Fig. 1.18. In case the weld is not prepared as indicated in Fig. 1.18
sufficient weld penetration should be ensured otherwise.

The geometry of trapezoidal stiffeners should fulfill the requirements of Fig. 1.19.

Stiffener-to-stiffener connections shall be made at a location 0.15%eqr to 0,25%eqr away from
a crossbeam.
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without cope hole with cope hole
| | | |
deckplate bevelling I~ |
! 2 50°
Ry 2 30mm
R2 2 20mm i
~__Stiffener R4
126 tz6
detail A1 detail A2
Figure .18 [Fig. G.16].
Crossbeams
The geometry of crossbeams should fulfil the requirements of Fig. 1.19.
\ L . ey ’ eq | €n
| ] |
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Requirements for geometry of crossbeams and stiffeners:

600 <er <900 mm; €r = er 2500 < eqr <3500 mm

hT/hQT<0,4 6 <tr<10 mm 16§tQT§20mm

Figure 1.19 [Fig. G.17].
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1.4 Design of diaphragms in box girders at supports [prENV 1993-2:1997,
Annex H]

H.1 General

Diaphragms should be provided at supports of box girders to transfer applied loads to the
bearings. Subject to the limitations and provisions of H.2, unstiffened and stiffened diaphragms
should be designed in accordance with H.5 and H.6, respectively, on the basis of the loadings and
effective sections given in H.3 and H.4, respectively. The diaphragm/web junctions should meet
the provisions of H.7. Deck cross beams and/or cantilevers supporting the deck and located in the
plane of a diaphragm should meet the provisions of H.8. The geometric notation used is shown in
Fig. 1.20.

H.2 Limitations

H.2.1 Box girders

Box girders should be of nominally rectangular cross section or of nominally trapezoidal cross-
section with webs in single planes inclined at less than 45° from the vertical, and when
unstiffened, should be nominally symmetrical about a vertical axis (i.e. ignoring cross fall or
superelevation). Box girders should be of a single cell form with or without interconnecting cross
members and cantilevers and should not be subject to internal pressure effects due to sealing.

H.2.2 Diaphragms and bearings

The plane of the diaphragm should be within +5° to the normal to the axis of the girder in
elevation, within £10° in plan, and within +5° of a vertical plane. The diaphragm should be in a
single plane, except as permitted in H.2.4 for starter plates.

Each diaphragm should be supported on a single or twin bearings under each box. Bearings
under unstiffened diaphragms should be symmetrically placed about the vertical axis of the
diaphragm. The contact width j of a stiffened diaphragm above a bearing, as defined in Fig. 1.20,
should not exceed half the depth of the diaphragm with a single bearing nor one-quarter of the
depth of the diaphragm with twin bearings. A bearing below a stiffened diaphragm should not
extend across the width of the diaphragm beyond the line of attachment of a bearing stiffener by
more than 15tpgp, where:

— tp is the thickness of the diaphragm plate
— gp = (235/fyp)3
— fyp is the nominal yield strength of the diaphragm plate,

H.2.3 Cross beams and cantilevers

Where the deck projects beyond the box web and is supported on cross beams and/or cantilevers
which are in the plane of a diaphragm, the flanges of such members should provide a continuous
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load path through each box web and across the diaphragm for the forces they are required to
carry. These members should be assumed to be supported by the diaphragm/box web junctions
(see H.7 and H.8).
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Figure 1.20. Geometric notation for diaphragms [Fig. H.1]
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H.2.4 Starter plates

Where starter plates are to be used to connect a diaphragm to the box walls, they should either be:

— a) positioned in the plane of the diaphragm and be butt-welded or connected by double
cover plates to the diaphragm; or

— D) lap jointed to the diaphragm, provided that a suitable system of stiffening is designed
to withstand, in addition to any other load effects, all the moments resulting from the
eccentricity of connection.

H.2.5 Stiffeners to diaphragms

All stiffeners to plate diaphragms should be in accordance with 5.3.6.2 of ENV 1993-2. Bearing
stiffeners should be symmetrically placed about the diaphragm plate, unless a special analysis is
made of the effects of any eccentricity with respect to that plate.

H.2.6 Plating in diaphragms

The thickness of plating in an unstiffened diaphragm should be uniform throughout.

H.2.7 Openings in unstiffened diaphragms

Openings in unstiffened diaphragms should be in accordance with the following:

— a) only one circular opening may be provided on each side of the vertical centreline of the
diaphragm within the upper-third of the height of the diaphragm;
— b) the diameter of any such opening should not exceed the least of: 6t,; D/20; B/20.
where
— tp is the diaphragm plate thickness
— D is the depth of the diaphragm (see Fig. 1.20)
— B is the width of the diaphragm taken as the average of the widths at the top and
bottom flange levels for boxes with sloping webs;
— ¢) cut-outs for longitudinal stiffeners on the box walls should have the stiffeners
connected to the diaphragm plate by one of he following methods:
— welding, along at least one-third of the perimeter of the cut-out;
— cleating to the longitudinal stiffener with at least two bolts or rivets per side of the
connection, or by full perimeter welding of the cleat.
In addition, the length of the free edge of any cut-out should not exceed 10t,gp, when any part
of this free edge is within a distance 12tygp, from any part of a bearing plate,
where t, is the diaphragm plate thickness.

238



H.2.8 Openings in stiffened diaphragms

Openings in stiffened diaphragms should be in accordance with the following.
a) With the exception of openings permitted in item (d), openings should not be positioned
within the areas shown shaded in Fig. 1.21.
b) Unstiffened openings should be circular and of diameter not exceeding the least of: 6ty;
a/20; b/20.
except when

for which the limiting diameter is twice the limits given above, where
a and b are the panel dimensions

= |52 2 2
G, = \/Gpl +0p2 =00 +31,

Opl, Op2, and T, are the stresses in the diaphragm plate derived in accordance with H.6.2 fy; is
the nominal yield strength of the diaphragm plate.

Not more than one such opening should be positioned in a single plate panel.

¢) Stiffened openings should:

- be framed on all sides by stiffeners;

- have circular corners of radius at least one-quarter of the least dimension of the hole,
with no re-entrant corners;

- be positioned such that the distance of any edge from an adjacent wall of the box is at
least 0.7 times the maximum dimension of the hole parallel to the wall, plus the distance
from the wall to the tips of any cut-outs in the diaphragm for longitudinal stiffeners (see
Fig. 1.21), unless the adjacent plate is designed for secondary in-plane stresses.

d) Cut-outs for longitudinal stiffeners should be in accordance with H.2.7(c).

H.3 Loading on diaphragms
H.3.1 Derivation

The load effects in diaphragms and associated parts of box girders should be derived from
global analysis undertaken in accordance with 5.2 of ENV 1993-2. The design methods of H.5
and H.6 use strength provisions that are compatible only with the assumed methods of stress

derivation contained therein. Stresses derived by finite element analyses should not be substituted
directly for these derived stresses.
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Figure 1.21. Openings in stiffened diaphragms [Fig. H.2]



H.3.2 Effects to be considered

Diaphragms should be designed to resist, with due account being taken of any lack of symmetry
in the cross section or in the bearing arrangement, the combined effects of the following.

a) All externally applied loads and the associated bearing reactions.

b) Changes in bearing reactions and web shears due to:

— creep, shrinkage and differential temperature;
— settlement and other movement of supports.
¢) Errors in installation of bearings, comprising:
— bearing misalignment in plan;
— errors in level of a single bearing, or in the mean levels of more than one bearing at
any support;
— bearing inclination;
— departures from common planarity of twin or multiple bearings.

d) Changes in longitudinal slope of box flanges at the diaphragm.

e) Errors of longitudinal camber in continuous construction. Allowance for this may be made
by assuming, at the bearings, a vertical displacement of a support relative to two adjacent
supports of 1/5000 times the sum of the adjacent spans.

f) Out-of-plane moments due to any or all of the following, as appropriate:

— longitudinal movements of the bridge;
— changes in slope of the bridge;
— eccentricity due to bearing misalignment along the span or due to the shape of the
bearing; the combined eccentricity for these may be taken as:
- half the width of the flat bearing surface plus 10 mm for flat topped rocker bearing
in contact with flat bearing surface; or
- 3 mm for radiused upper bearing resting on flat or radiused lower part;
- 10 mm for flat upper bearing resting on radiused lower part.
— interconnection between deck and diaphragm stiffeners;
— any intended eccentricity of the centroidal axes of the effective section of the bearing
stiffeners with respect to the diaphragm plate.

H.4 Effective sections
H.4.1 General

For determining the stresses in a diaphragm, the effective elastic section modulus and effective
area of a vertical cross-section, and the effective vertical and horizontal shear areas, should be
derived in accordance with H.4.2 and H.4.3. For determining the stresses in stiffeners, their
effective sections shall be derived in accordance with H.4.4 or H.4.5, as appropriate. In H.4.2 and
H.4.3 the references to transverse tension and compression apply to directions normal to the
longitudinal axis of the girder.

241



H.4.2 Vertical sections

The determination of the effective area 4. and the effective section modulus Z, of a vertical cross-
section of a diaphragm, should be based on effective areas of box flanges and diaphragm plate as
given in H.4.2.2 to H.4.2.5.

In calculating an effective area of a box flange, an effective width we should be determined
separately for each side of the diaphragm and should not exceed any of the following:

a) one-quarter of the distance of the section under consideration from the nearest web/flange
junction;

b) half the distance to an adjacent diaphragm or cross beam for any flange in transverse
tension, or for a composite flange in transverse compression;

¢) outside an end diaphragm, the actual width of plate provided;

d) 15tser for a non-composite flange in transverse compression. This limit may be increased to
one-quarter of the distance to an adjacent diaphragm or cross beam provided that the
transverse compressive stress (using the increased width) does not exceed the lesser of:

- one-quarter of the longitudinal compressive strength of the flange;

2
- o.s(t—fj E
b

where

tr is the thickness of the flange plate; & = (235/f,)°>; fy is the nominal yield strength
of the flange plate; b is the spacing of the longitudinal flange stiffeners or the
distance between box webs for an unstiffened flange.

The effective area of a box flange should be determined as follows
a) The effective area of steel plate on each side of the diaphragm should be taken as: Kctiw.
where
- tris the flange thickness
- W, is the effective width on the appropriate side of the diaphragm derived from H.4.2.2
- K. is a coefficient taken as 1.0, except in the case of a non-composite flange in
transverse compression with an effective width greater than 15ter when the value of
K should be obtained from Fig. 1.22 with the dimension a taken as the spacing of
longitudinal flange stiffeners and dimension b taken as the distance from the
diaphragm to an adjacent cross beam or diaphragm. In using Fig. 1.22, the restrained
curve should be used for diaphragms at internal supports of continuous beams and the
unrestrained curve for diaphragms at end supports
b) Any transverse flange stiffeners within the effective width should be ignored.
¢) In composite construction, the effective flange area may include the area of steel
reinforcement within the total effective width, and, if subjected to transverse compression,
may also include the transformed area of concrete within the total effective width.
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NOTE: The value of K. to be used is the higher of the values obtained using either:
(a) curve 1 or 2 as relevant, with A = b/(tier) or
(b) curve 3, with A = a/(ter), where a is the panel dimension in the direction of stress
considered; b is the panel dimension normal to the direction of stress.
(a) will always give the higher value for K. when a/b > 0.5. For a/b < 0.5, (a) or (b) may
give a higher value.

Figure 1.22. Coefficient K. for panels under direct compression [Fig. H.3]

243



Holes within the vertical section of a diaphragm should be deducted. When a stiffened opening is
provided, diaphragm plating extending within the framing stiffeners by more than 15t:er should
be ignored.

In the case of box girders with inclined webs, no part of the webs should be included in the
vertical section of a diaphragm.

H.4.3 Shear area
The effective vertical and horizontal shear areas Ay. and Ay should be taken as the net areas of a
vertical and horizontal cross section, respectively, of diaphragm plating only.

H.4.4 Diaphragm stiffeners
The effective section of a stiffener on a diaphragm should be taken to comprise the stiffener with

widths of diaphragm plate on each side of the stiffener where available, not exceeding the lesser
of:

a) half the distance from the stiffener to an adjacent stiffener or to the wall of the box; or
b) 15¢, times the thickness of the diaphragm plate.
Additionally, for a bearing stiffener, the effective width of plate assumed on the side towards
the web should not exceed half the distance from the stiffener to the web/bottom flange junction.
The sectional area of discontinuous diaphragm stiffeners should be ignored.

H.4.5 Diaphragm/web junction
The effective section of this part should be taken to comprise both of the following:

a) a width of web plating each side of the diaphragm (where available) of up to 16 times the
web thickness;

b) the area of a stiffener, together with a width of diaphragm plate equal to 25t,, when there
is a stiffener on the diaphragm parallel to the web within 25t, of the web, or a width of
diaphragm plate equal to 15t,e, when there is no stiffener parallel to and within 25t, of the
web, where t, is are the thickness of the diaphragm plate.

H.5 Unstiffened diaphragms

H.5.2 Reference values of in-plane stresses

The stresses in an unstiffened diaphragm, resulting from the load effects given in H.3, should be
determined at the reference point indicated in Fig. 1.23, in accordance with H.5.2.2 to H.5.2.4, for
each of the appropriate reference stresses required.
The reference value of the in-plane vertical stress ori should be taken as follows:

a) for a diaphragm with a single central bearing:

Rv(1+4e/tp) Tpj
= +0.77
ORI (-2 wn 2Ly,

b) for a diaphragm with a pair of twin symmetrical bearings:
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OR1

where
Ry

R, (1+4e/t,)

) (J'—th jEp

is the total vertical load transmitted by the diaphragm to one bearing (including the
effects of torque on twin bearings)
is the torsional reaction at a single central bearing
is the width of contact of the bearing pad plus 1.5 times the thickness of the bottom
flange at each end if available (see Fig. 1.20)
is the sum of the widths of any cut-outs for stiffeners within the width j at the level
immediately above the flange.
is the thickness of the diaphragm plate
is the second moment of area of the diaphragm plate of width ; excluding cut-outs,
about the Y-axis (see Fig. 1.20)
is the eccentricity of bearing reaction along the span, which should include the effects
of:

- movements of the beam relative to the bearing due to changes in temperature;

- changes in the point or line of contact at the spherical or cylindrical surface of a

bearing due to slope of the beam when deflected by load;
- uneven seating which may occur on a flat bearing surface;
- inaccuracy which may occur in positioning of the beam relative to the bearing.
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Figure 1.23. Reference point and notation for unstiffened diaphragms [Fig. H.4]
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The reference value of the in-plane horizontal stress or, should be taken as:

OR2 =

where
KI’

>Ry
Qrn

XR

K R R, tan
L_{_I XR"'Qﬁ/(_f L_FM
2 B 2 |z, 2A,

is a factor to allow for the effects of boundary shears and should be taken as 2.0 in the
absence of any special analysis;

is the total vertical force transmitted by the diaphragm to the bearings;

is the vertical force transmitted to the diaphragm by the portion of the bottom flange
over a width /; when there is a change of flange slope;

is the horizontal distance from the reference point to the nearest edge of the bottom
flange;

is as defined in H.2.7;

is the torque transmitted to the diaphragm in shear through the box walls and from
cross beam and/or cantilever loading;

is the distance parallel to the bottom flange from the reference point to the web mid-
point (see Fig. [.23);

Z. and A. are the effective section modulus and the effective area respectively of the

B

diaphragm and flanges at the vertical cross section through the reference point, derived
in accordance with H.4.2;
is the inclination of the box web to the vertical.

a) Except as required by (b), the reference value of the in-plane shear stress tr should be taken as

follows:

rR:(ZR"JrQﬁ,JrlJ ! +Qh

where

2 2B JAyen  Ape

>Ry, Qw and T are as defined above;

B
Qn

AVC&

J
Ahe

is as defined in H.2.7;

is the shear force due to transverse horizontal loads on the bridge transmitted from the
top flange to the diaphragm;

is the minimum value of the effective vertical shear area, as given in H.4.3, for any
section of diaphragm plating taken between the web and a point j/4 inside the outer
edge of the bearing (see Fig. 1.23);

is as defined above;

is the effective horizontal shear area, as given in H.4.3 for the section of diaphragm
plating through the reference point.

b) In addition, in the case of diaphragms on twin symmetrical bearings where there is a
change in slope of the bottom flange, an alternative value trr should be derived from:
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(I+ﬁ_lj;+‘3_h
A

2 2B veb Ahe

where

T is as defined above;

Qv s the total vertical force transmitted to the diaphragm by the portion of the bottom
flange between the inner edges of the bearings when there is a change in flange slope;

c is the distance between centres of bearings;

Aveb 1is the minimum value of the effective vertical shear area, as given in H.4.3, for any
section of diaphragm plating taken within a distance ¢y from the inner edge of a
bearing (i.e. towards the diaphragm centreline) and a distance j/4 inside the same inner
edge of the bearing (see Fig. 1.23);

¢y isas defined in Fig. 1.23.

This value trs should be adopted if it exceeds the value of tr determined in (a).

H.5.3 Buckling coefficient

In checking the adequacy of an unstiffened plate diaphragm, a coefficient K is required which is
given by:

K =KiK2K3K4
where
K, =34:220,
BP
K, =04+ for single central bearings;
2Bp
K, =04+ c—i3 for twin bearings;
BP
K;=1.0- iy
100 °
P
K, =1.0 —p 2B\
z R + T/f b
D, By, B and (3 (in degrees) are as defined in Fig. 1.23;
i is as defined above;
f =0.55 when D/B<0.7;
=0.86 when D/B > 1.5 with intermediate values found by linear interpolation
ly,  =j/2 for single central bearings, or

= ¢ for twin bearings

2Ry and T are as defined above

C

is the distance between centres of bearings
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P

Pp = Wp + Z(K—Sj

W,  is the total uniformly distributed load applied to the top of the diaphragm

P is any local load applied to the top of a diaphragm

v

2B-B,

w is the actual width of the load P plus an allowance for the dispersal through a concrete
flange ac an angle of 45° to the vertical, and through a steel flange at an angle of 60° to
the vertical.

K5 = O4+

H.5.4 Yielding of diaphragm plate

The value of or and /o R22 +31 R2 should not exceed the lesser of:

fyp fyp (R, +T/¢,)D
1 or P\ pte v b
Y Ym 1.25KEt)

where

oRrl, Or2 and 7Tr are the reference values of stress and T are as defined above

¥R, andK are as derived in H.5.3

D is as defined in Fig. .23

tp, and fy,, are, respectively, the thickness and nominal yield strength of the diaphragm plate.

H.5.5 Buckling of diaphragm plate

3
0.7KEt,

The value of » R, +T/¢}, should not exceed: 5
Tm

where
¢y, and K are as derived in H.5.3

tpis the thickness of the diaphragm plate
D is as defined in Fig. 1.23
YRyand T are as defined above.

H.6 Stiffened diaphragms

H.6.1 General

Diaphragms in accordance with H.2.1 to H.2.6 and H.2.8 and stiffened by an orthogonal system
of stiffeners, generally as indicated in Fig 1.20, should be designed such that the diaphragm plate

meets the yield criterion of H.6.4 and the buckling criterion of H.6.5, using the appropriate
stresses determined from H.6.2.

248



In addition, all types of stiffeners, as defined in (a), (b) and (c) below, should be designed
such that they meet the yield criterion of H.6.6 and the buckling criterion of H.6.7, using the
appropriate stresses determined from H.6.3. Web/flange junctions should, additionally, be in
accordance with H.7.3 and H.7.4.

Stiffening may consist of (see Fig. 1.23):

a) bearing stiffeners, which span from a box flange immediately above a bearing, to the flange

at deck level;

b) stub stiffeners, which are short vertical stiffeners above bearings;

c¢) intermediate stiffeners, which may be either primary or secondary. Stiffeners spanning

between box walls or, if horizontal, between a box web and a bearing stiffener, or between
bearing stiffeners should be treated as primary. All other stiffeners should be treated as
secondary.

H.6.2 Stresses in diaphragm plates

Vertical stresses 6,1 may be neglected with the exception of those due to:
a) a change in slope of the main girder flange; and
b) local wheel loads applied above the diaphragm, which should be calculated in accordance
with 4.4 of ENV 1993-1-5.

Horizontal stresses Gy, should be calculated under the action of the following.
a) The in-plane primary moment M on the diaphragm which should be taken as:

M = (Kva+2QT)XW +KpQexc +Zi:1n(PiXi)_RVXb +(Qﬁ[2ff]

where (as shown in Fig. 1.24)

Qv is the total vertical component of symmetric shear transmitted into the diaphragm from
one web

Qr s the vertical component of torsional shear transmitted into the diaphragm from one
web, given by T/(2B)

Xw is the horizontal distance, from the section under consideration to the mid point of the
web

Qc is the vertical component of any cross beam or cantilever shear

Xc is the horizontal distance from the section under consideration to the root of the cross
beam or cantilever

P; is a locally applied deck load between the section under consideration and the web

Xi is the horizontal distance from the section under consideration to the locally applied
deck load P;;

Ry is the total vertical load transmitted to one bearing by the diaphragm

Xb is the distance from the section under consideration to the inner edge of the nearest

bearing plus j/4 for sections between"uwin bearings, or is zero for all other sections,
and for diaphragms with a single bearing
Kp, Qw, and /¢ are as defined above

j is as defined above
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The horizontal bending stress o2, should be taken as:
S M
2b Z.
where
Z. is the effective section modulus of a vertical cross-section of the diaphragm and flanges, at

the point under consideration, derived in accordance with H.4.2.

b) The horizontal component of girder shear when the webs are inclined. The horizontal stress
G»q from this component should be taken as:
_Qy tanf}

qu A

€

where

Qv is as defined in (a)

A. is the effective area of a vertical cross section of the diaphragm and flanges, at the point
under consideration, derived in accordance with H.4.2

(5 is the inclination of the box web to the vertical.

The total horizontal stress G, at the point under consideration should be taken as:
Op2 = O2p + Oq

Pi
Wi
(LYW | I::-j
] X; |
X
. X X
Section under 1 . =]1 7 Q.
consideration \\J : _
. 3
. a.+Q
0_1 v T
g, et by
p2 ‘li | G'PZ 2
0;11 TP \

Figure 1.24. Load effects and notation for stiffened diaphragms [Fig. H.5]
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Shear stresses should be calculated under the action of the shear flow ¢ at the section of the
diaphragm under consideration. This shear flow ¢ should be taken as constant over the net depth

or width of the diaphragm, and as follows:
a) In sections between a box web and an outer bearing stiffener:

_Q+Qr+Qu +Qu+ YR Qy

De BC
b) In sections between inner bearing stiffeners where there are twin bearings:

q= &-FQi-FI—QT L_FQ_h
4 2 o D, B,

¢) In sections between pairs of bearing stiffeners above one of a pair of bearings, up to the
height of longitudinal flange stiffener cut-outs:
5 T) 1
:( Q, +_j_ L

8 2)D, j-> wy
d) In sections between pairs of bearing stiffeners above a single bearing, up to the height of

longitudinal flange stiffener cut-outs:
Q, T 1 Q
R
4 s D, j—> wy

where
Qv, Qr, Qc, Pi, Qn, T, Qn, Qv and ¢ are defined above
D, and B. are the net depth and width of the diaphragm at the point under consideration

j and Zwy, are defined above
ss 1S the distance between stiffener centroids.

The shear stress 1, in the sections referred to in above mentioned (a), (b), (c) or (d) should be

taken as:
9

T =
p

tP

where t, is the thickness of the diaphragm plate in the panel under consideration.

In sections other than those referred to in above mentioned (a), (b), (c), or (d) t, may be

neglected.

H.6.3 Stresses in diaphragm stiffeners

Vertical stresses in bearing stiffeners G, in a bearing stiffener should be taken as:

PS
ASG

G5 =

where
P is the total vertical force in the group of bearing stiffeners
is the effective cross-sectional area of the group of bearing stiffeners, derived in

ASC
accordance with H.4.4.
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In the absence of openings in the diaphragm between the group of bearing stiffeners and the
adjacent web, the vertical force Ps may be assumed to vary linearly from the value of the reaction
at the bearing to the value of any reaction transmitted from the deck to the top of the bearing
stiffener.

If there are any openings in the diaphragm between the group of bearing stiffeners and the
adjacent web, no variation of load over the depth of such openings should be assumed. The
variation over the remaining parts of the diaphragm should be assumed to be linear of constant
slope. In the case of a diaphragm above a single bearing, an additional vertical stress oysr in a
bearing stiffener should be taken as:

Tyx
OisT = 1
yse
where
Ts is the value of the moment in the plane of the diaphragm on the group of bearing
stiffeners
X is the horizontal distance of the stiffener under consideration from the centroidal axis,

normal to the plane of the diaphragm, of the stiffener group (see Fig. 1.20)
Iye  is the effective second moment of area of the stiffener group about the same centroidal
axis, derived in accordance with H.4.4.
Where stub stiffeners are used, the stress calculated as above may be reduced locally by
including the area of such stiffeners, provided their connections to the diaphragm plate are
adequate to transfer their share of the bearing reaction.

The bending stresses in bearing stiffeners o in a bearing stiffener due to an out-of-plane moment
should be taken as:

_ M,y
Opbs =
IXSS
where
M;  is the proportion of the out-of-plane moment carried by the group of bearing stiffeners
y is the distance of the extreme fibre of the stiffener under consideration from the
centroidal axis, parallel to the plane of the diaphragm, of the stiffener group (see Fig.
1.20)

Iwe  is the effective second moment of area of the stiffener group about the same centroidal
axis, derived in accordance with H.4.4.

A proportion of the out-of-plane moment may be assumed to be carried by the flange
longitudinal stiffeners, provided due account is taken of this in their design. Stub stiffeners should
not be considered to carry any part of the out-of-plane moment carried by a bearing stiffener
group unless they have an adequate out-of-plane shear connection to the bearing stiffeners and/or
the box walls.
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The equivalent axial stress for buckling check o to be used in the buckling check of all

stiffeners, should be taken as the maximum value within the middle-third of the length 7, of the

stiffener, calculated from:

Gge =0,y +

2
o lst k A
1 qSPS{HZs

s a max

+ Tht hh
p
stp J

where, for all stiffeners,

ZA

Op2

GO2s

is the effective cross-sectional area of the stiffener derived in accordance with H.4.4
is the length of the stiffener between points of effective restraint

is the thickness of the diaphragm plate

is obtained from Fig. 1.25 using the slenderness parameter A = /¢ /rs&s,

is the radius of gyration of the effective section of the stiffener about its centroidal axis
parallel to the plane of the diaphragm, derived in accordance with H.4.4

= (235/fy5)%3

is the nominal yield strength of the stiffener.

is the sum of the areas of all stiffeners which intersect the stiffeners being designed,
within the length 7 not including any adjacent diaphragm plate

is derived above, for the level being considered, and taken as positive when
compressive

is the average value of op; within the middle-third of the length 7

Ga, Og, Olmax, Th and /i, are defined as follows for the appropriate type of stiffener.

(a) For bearing stiffeners:

Ca =015 T OusT, 015 and oyst are as derive above
Oq = O
omax 1 the maximum spacing of vertical stiffeners which would ensure the adequacy

of the diaphragm plate and any horizontal stiffeners, and may conservatively be
taken as the actual spacing of vertical stiffeners

th and Ay, are taken as zero.

(b) For all intermediate stiffeners:

Oomax 18 one-half of the sum of the panel widths on each side of the stiffener. Where the

widths vary over the length 7, the average value of the middle-third should be

used
is the average shear stress in the panels on either side of the stiffener

Th is zero except in the case of the stiffeners framing openings where 1y, is the shear

stress which would occur in the plating adjacent to the stiffener if the opening
had been fully plated

hn is zero except in the case of the stiffeners framing openings where /%y is the

dimension of the opening parallel to the stiffener.
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Figure 1.25. Parameters for the design of diaphragm stiffeners [Fig. H.6]




(c) For horizontal intermediate stiffeners only:
Ga = Op2
Oq =1

(d) For vertical intermediate stiffeners only:
Ca =0
O2b.max * O2b.min
12
O2b max and ©2b min are the maximum and minimum values of oy, derived above, within
the length 7 and taken as positive when compressive.

Gq =T+ Gy +

H.6.4 Yielding of diaphragm plate

Plate panels between stiffeners, or between stiffeners and the box walls, should be designed such
that at all points in every panel:

f
612)1 + Gﬁz — Gp10p2 +32<| 2
Tm
where
Opi = Oys T oqist for parts of plate panels forming part of the effective section of any

bearing stiffener, or is the vertical in-plane stress due to local deck loads and change in
flange slope, if relevant, for all remaining parts of plate panels

o1s  is defined above

oist 1S as derived above, but with the value of x in that clause taken as the dimension from
the centroidal axis to the extreme fibre of the effective section of the stiffener group

G2 is defined above

T is defined above

fip is the nominal yield strength of the diaphragm plate.

H.6.5 Buckling of diaphragm plate

Plate panels need not be checked for buckling provided that:

a) the cross section of the girder is nominally rectangular;

b) the ratio of the depth of the diaphragm D to the minimum plate thickness t; is less than 100
€p

c) the overhang L (see Fig. 1.23 or 1.24) from the outer edge of the bearing to the box web is
less than D/2;

d) stiffening is limited to the bearing stiffeners themselves, and any member providing
continuity of cross beam or cantilever flanges through the diaphragm;

e) there is no change in flange slope at the diaphragm.

255



H.6.6 Yielding of diaphragm stiffeners

A bearing stiffener section should be designed such that, at any point along its length:
£
Ols T OIsT T Ops = ——
m
where
o1s and o, are as defined above
ops  1s as defined above
fys is the nominal yield strength of the stiffener.

The bearing stress at the point of contact with a flange should be verified in accordance with
4.4.6(6) of ENV 1993-1-5.

H.6.7 Buckling of diaphragm stiffeners

The stiffener section should be such that, at any point within the middle-third of the length of the
stiffener:

Ose  Obs o 1
f(s fys Ym
where

Os  1s as defined above

ovs 1s as defined above for a bearing stiffener, or is taken as zero for an intermediate
stiffener

f)s  is obtained from Fig. 1.25 using the slenderness parameter A = £ /1s€s,

ty s the length of the stiffener between points of effective restraint

Tse is the radius of gyration of the effective section of the stiffener about its centroidal axis
parallel to the plane of the diaphragm, derived in accordance with H.4.4.

H.7 Diaphragm/web junctions
The diaphragm/web junction should be designed as a stiffener to the box web, spanning between
box flanges, unsupported in the plane of the diaphragm, and with effective section derived as in

H.4.5.

H.7.2 Loading effects to be considered

The junction should withstand the effects of the following.

a) All loads transmitted to the diaphragm from the cross beams and/or cantilevers in the plane
of the diaphragm. Such loads should be assumed to be applied at the centroidal axis of the
effective section, and to vary linearly from a maximum at the top of the junction, to zero at
the bottom.
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b) Any forces resulting from tension field action in the adjacent web panels. Such forces
should be assumed to be applied in the plane of the box web, and to be constant over the
height of the junction.

¢) An equivalent axial force representing the destabilizing influence of the web. This force
should be assumed to be applied at the centroidal axis of the effective section, and to be
constant over the height of the junction.

H.7.3 Strength of diaphragm/web junction

The maximum stress at any point on the cross section of the junction, at any section in its length,
should not exceed fys/ym, where fy, is the nominal yield strength of the junction section.
The effective junction section should be such that:

P M 1
+ <
Agefys Zsefys Tm
where

Pand M are, respectively, the maximum force on the effective junction section and the
maximum moment about the centroidal axis parallel to the web due to all the effects
specified in H.7.2, within the middle-third of the length of the junction

As s the effective area of the junction section (see H.4.5)

Zs. s the lowest section modulus of the effective junction section about the centroidal axis
parallel to the web (see H.4.5)

fy)s  is obtained from Fig. 1.25 using the slenderness parameter A = £ /rs€s,

Ly is the total length of the junction section

Tse is the radius of gyration of the effective junction section about its centroidal axis
parallel to the web, derived in accordance with H.4.5
fy, is the nominal yield strength of the junction section.

H.7.4 Junction restraint provided by diaphragm stiffeners

Diaphragm/web junctions should be designed in accordance with H.7.1 to H.7.3, except that full
width horizontal stiffeners in the diaphragm may be assumed to offer restraint to the junction in
the plane of the diaphragm, provided that the equivalent axial stress o in such stiffeners is
increased by an amount equal to:

0.025P

nAg,
where
P is as defined in H.7.3

n is the number of full width horizontal stiffeners
Ase  1s the effective area of the horizontal stiffeners, derived in accordance with H.4.4.

In this case /¢ in H.7.3 may be taken as the distance between such stiffeners.
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H.8 Continuity of cross beams and cantilevers

When continuity of cross beams and cantilevers is provided in the plane of a diaphragm, in
accordance with H.2.3, that portion within the box walls should be in accordance with the
following.

a) The force in the member providing continuity to the bottom flange of the transverse
member should be taken as the moment in the transverse member at the box wall divided by
the distance between the mid-plane of the top and bottom flanges of the member. If the
force is different at the two box walls a linear variation along the length may be assumed.

b) If the member providing the continuity in (a) is also required as a horizontal stiffener for a
diaphragm designed in accordance with H.6, it should be designed to withstand, in addition
to the load given in (a), an axial force equal to AsOse.
where

As is the effective cross-sectional area of the continuity member derived in accordance
with H.4.4
os. 1s as specified above.

¢) The member providing the continuity in (a) should be designed as a compression member
in accordance with 5.5.1 of ENV1993-1-1, and should be assumed to be unrestrained out of
the plane of the diaphragm unless provided with effective intermediate restraint. If these
restraints are provided by bearing or primary vertical diaphragm stiffeners, such stiffeners
should each be designed to resist, in addition to all other forces given in H.1.3, a force equal
to 2.5% of the maximum axial load in the continuity member including that given in (b), if
appropriate. This force should be applied, out of the plane of the diaphragm, at the point of
intersection of the continuity member and the stiffener providing the restraint. The stiffener
should be designed to satisfy the criterion:

Ose . Obs+Ob2 _ 1
fés fys Ym
where
ow is the bending stress induced in the stiffener by the above force, taken as the
maximum value within the middle-third of the lengths of the stiffener
Obs, f/g, Ose, and fys are as defined in H.I.7.
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Extract for Educational Purpose

Appendix II.

Eurocode 3: Design of steel structures — Part 1.5 (EC3-1-5)
Planar plated structures without transverse loading
[prENYV 1993-1-5:1997]

Extract

I1.1 General

I1.2 Basis of design

11.3 Effects of shear lag on stress distribution and resistance
I1.4 Resistance to plate buckling
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II.1 General
Definitions

For the purpose of this standard, the following definitions apply:
elastic critical stress: Stress at which an elastic structure without imperfections becomes
unstable according to small deformation theory.
gross cross-section: The total cross-sectional area of a member but excluding longitudinal
stiffeners that are not continuous, battens and splice material.
effective cross-section: The gross cross-section reduced for the effects of plate buckling and
shear lag.
membrane stress: Stress at mid-depth of the plate.
plated structure: A structure that is built up from nominally flat plates which are welded
together. The plates may be stiffened or unstiffened.
stiffener: A plate or rolled section attached to a plate with the purpose of delaying or
preventing buckling of the plate or reinforcing it against local loads. A stiffener is
denoted:
- longitudinal if its direction is parallel to that of the member;
- transverse if its axis is perpendicular to that of the member.
stiffened plate: Plate with transverse and/or longitudinal stiffeners.
subpanel: Unstiffened plate surrounded by flanges or stiffeners.

Symbols

Complementary to those given in ENV 1993-1-1, the following symbols are used:

Aq1 s the total area of all the longitudinal stiffeners within the flange width bo;

Aq  is the gross cross sectional area of one transverse stiffener;

Aerr  is the effective cross-section area;

b is the width of the plate;

bw is the clear width between welds;

ber  effective width for elastic shear lag;

Fsa s the design transverse force;

fya is the design value of the yield strength fy/ymi. Further index f'and w indicate flange
and web, respectively;

hy is the clear web depth between flanges;

Ler  is the effective length for resistance to transverse forces;

M;rg is the design plastic moment resistance of a cross-section consisting of the flanges
only;

M;ira is the plastic resistance of the cross-section (irrespective of cross-section class);

Msq  is the design bending moment;

Nsq  is the design axial force;

t is the thickness of the plate;

tefr is the effective thickness for shear buckling;

Vsa  is the design shear force;
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Wese  is the effective section modulus;

5 is the effective width factor for elastic shear lag;

n is the relation between resistance in shear and yield strength in tension;
Mser 18 the partial factor for resistance at serviceability states.

I1.2 Basis of design
Modelling for elastic global analysis

The effects of shear lag and of local buckling on the stiffness shall be taken into account if this
significantly influences the global analysis. The effects of shear lag of flanges in elastic global
analysis may be taken into account by the use of an effective width. For simplicity this effective
width may be assumed to be uniform over the length of the beam.

For each span of a beam the effective width of flanges should be taken as the lesser of the full
width and L/8 per side of the web, where L is the span or twice the distance from the support to
the end, for a cantilever. For the global analysis the effect of plate buckling on the stiffness may
be ignored in normal plated structures. If the effective cross-sectional area according to 4.2 of an
element in compression is less than 0,5 times the gross cross-sectional area, the reduction of the
stiffness due to plate buckling should be considered.

Verification of cross-sectional resistance
General
At ultimate limit states the verification of cross-sectional resistance shall take the following

effects into account:

a) longitudinal stresses oy g4 considering shear lag and plate buckling

b) transverse stresses o,,gq considering their distribution and plate buckling

c) shear stresses Teq considering plate buckling

d) combined effects of a), b) and ¢) acting in the same cross-section where relevant.

The verification should in general be performed as follows

Oxkd _ Nsq  Msq+Nseen _

ny = M1/
fog  fyaAe fqWeg
o F
N, = —=E4 = S <10 /11.2/
fde fvwd L eff 1t
v
Ny = B4 - & <10 /IL3/
fywd fywd ‘bt eff
where:
Acr 18 the effective cross-section area;
b is the width of the plate (for a web the clear distance between flanges);

en is the shift in the position of neutral axis;
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Fsa s the design transverse force;

fya is the design yield strength fy/ymi;

Lo is the effective length for resistance to transverse forces;
Msq  is the design bending moment;

Ns¢  is the design axial force;

t is the thickness of the plate;

tefr is the effective thickness for shear buckling;

Vsq s the design shear force including shear from torque;
Wetr  is the effective section modulus.

Longitudinal stresses at ultimate limit states

In calculating longitudinal stresses, account should be taken of the effects of shear lag and plate
buckling by the use of an effective width. The effective area Acg should normally be determined
assuming a cross-section subject only to stresses due to axial compression Ng4. For non-
symmetrical cross-sections, the possible shift ex of the centroid of the effective area Acsr relative
to the centre of gravity of the gross section, see Fig. II.1. The resulting additional moment should
be taken into account in the cross-section verification using expression /II.1/. The effective
section modulus Weg should normally be determined assuming a cross-section subject only to
bending stresses due to Msq, see Fig. 11.2.

As an alternative the effective cross-section may be determined for the resulting state of stress
from Nsq and Mgq acting simultaneously. The effects of ex should be taken into account.

The stress in a flange should be calculated using the elastic section modulus with reference to
midline of the flange. Hybrid girders may have flange material with yield strength fyr up to 2 fy.
provided that:

a) the increase of flange stresses caused by yielding of the web is taken into account
b) fyr (rather than fyy) is used in determining the effective area of the web.

In hybrid girders, the increase of deformations due to yielding of the web may be ignored.

3 —— =
Non-effective
b~ zone
Centroidal axis of ,Centmidal axis
gross cross-section +of cfoctive
1 | cross-section Centroidalaxis |} ¢
. N - Gentroidal axis
'_.—__ﬁ T T [oretecte
I ey section
! | S—— | ST— )
——— = d - ——— . ]
_I Non-effective \ 4 Non-effective zone
. zone - .
| | :
. ] [ N
—_— .CLnimldal e o I Centroidal
! . axis. axis of
' N _t_ — T | |
Gross cross-section Effective cross-section ¥ LM 4 section
! |
g
Gross cross-section Effective cross-section
Figure II.1. Class 4 cross-sections [Fig. 2.1] Figure I1.2. Class 4 cross-sections [Fig. 2.2]
— axial force — bending moment
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Verification methods for interaction

Provided that 13 does not exceed 0,5 the design resistance to bending moment and axial force
need not be reduced to allow for the shear force. If 13 is more than 0,5 the combined effect of
bending and shear in a web of an I or box girder should satisfy:

M
ny+|1-—RdHhns—1]2<1,0 /11L.4/
MpIRd
where:
M;rg is the design plastic moment resistance of a cross-section consisting only of the
flanges;

M;ira 1s the plastic resistance of the cross-section (irrespective of cross-section class).

The above criterion should be fulfilled in every cross-section, but it need not be checked
closer to an interior support than h,/2. The plastic resistance M¢rq of the cross-section consisting
of the flanges only should be taken as the design yield strength times the effective area of the
smaller flange times the distance between the centroids of the flanges.

If an axial force Nsq is applied, then Myirq should be replaced by the reduced plastic
resistance moment Mnrg according to 5.4.8.1 (2) of ENV 1993-1-1:1992 and Mg should be
reduced according to 4.3.4(2). If the axial force is so large that the whole web is in compression
the above mentioned plastic resistance Mrrq should be applied.

A flange in a box girder should be verified using (2.4) taking Mg = 0 and Tgq as the average
shear stress in the flange but not less than half the maximum shear stress in the flange. In addition
the subpanels should be checked using the average shear stress within the subpanel calculated
using terw determined for shear buckling of the subpanel, assuming the longitudinal stiffeners to
be rigid according to 4.3.3.

If the girder is subjected to a concentrated transverse force in combination with bending and
axial force, the resistance should be verified using the following interaction expression:

Ny +0.8n; <14 /I.5/

Stress verification for serviceability and fatigue limit states

The verification of the section for stresses at serviceability and fatigue limit states should be
based on the effective cross-section taking elastic shear lag into account.

For biaxial states of stress the effective stress c. for verification of yielding should be
determined using the following expression:

2 2 0,5
Ge,Ed = Gx,Ed + Gy,Ed — Gx,Ed~Gy,Ed + 3TEd /11.6/

Stresses should be entered with signs, tension is positive.
The effective stress o¢ g should satisfy:

Gerd < Ty /YMser /M.7/

where:
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YMm,ser 18 the partial factor for resistance at serviceability limit states.
I1.3 Effects of shear lag on stress distribution and resistance

Effective width for shear lag at serviceability and fatigue limit states
The effective width besr for elastic shear lag should be determined from:

The effective width factor 5 should be obtained from table II.1 using values of k determined
using:

K = oobo/Le /11.8/
with:
o0 = (1 + Asi/bot)®?

in which Ay is the area of all longitudinal stiffeners within the width b and all other symbols
are as defined in Fig. 11.4.

Provided that no span is longer than 1,5 times an adjacent span and no cantilever is longer
than half the adjacent span the effective lengths Le may be determined from Fig. 11.3. In other
cases L. should be an estimate of the distance between adjacent points of zero bending moment.

L. =0.25(L, +L,) for B; L, =2L; for B,
D ——>
L. =0.85L, for 3, L, = 0.70L, for 3,

,/ \ //

R A A

| L /4 | L4/2 IL]M L,/4 | L2 Ly/4 |‘l;3/4

S T |-

Figure I1.3. Effective length L. for continuous beam and distribution of effective width. [Fig. 3.1]
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Degr

CL

Figure I1.4. Definitions of notations for shear lag. [Fig. 3.2]

Table I1.1 Effective width factor 5.

ag-bg location for B value
L =K verification
€
<0,02 B=10
(0,02) - 0,70 sagging bending BB, = 1
=B, =
1+ 6,42
hogging bending 3 1
B=PB = 1 5
1+6,0 x— +1,6x
0k
>0,70 sagging bending B=p 1
! 5,9
hogging bending PO
B=PB, = 8.6
all end support Bo = (0,55 + 0,25/1()[31 but by <f3;
all x cantilever B =B atsupport f =10 atthe end

Stress distribution in case of shear lag

The transverse distribution of stresses due to shear lag should be obtained from Fig. IL.5.
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bege= Pb

begr = Bb
o)
$<0.20
& E)
=]
o [
1
I y
by = SB b,

y 1 0
p—mee—————— by bg
B>0.20
0y =1,25 (b-0.20) 0, 02=0
O (y) = 63 + (0; - G3) (1 -y/b)*

o (y) =0, (1 -y/bp)*

Figure I1.30 Transverse distribution of stresses due to shear lag. [Fig. 3.3]
In-plane load introduction

The elastic stress distribution in a stiffened or unstiffened plate due to local introduction of in-
plane forces, see Fig. 11.6, should be determined from:

OzEd = Fsd/(beff “t+ Ast,O) /11.9/
with:
beg =se (l"'(Z/Sen )2)0’5

n=0636(1+0878- Ay, /t )

Se = lf + 2tf
where:
Aq)  is the gross cross-sectional area of stiffeners per unit width;
Ast,O

is the gross cross sectional area of the stiffeners directly loaded taking into account a
load spread 1:1 through the thickness of the flange.

Shear lag effects at ultimate limit state

At ultimate limit states the effect of shear lag and plate buckling should be taken into account by
using an effective area A given by:
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Aeﬁ :Ac,eif 'BK but Aeﬁ‘ ZBAC,eﬁ /11.10/

where:

Acerr 15 the effective area for a compression flange with respect to plate buckling from 4.2
B is the effective width factor for elastic shear lag from 3.2
K is the ratio defined in 3.2(2)

Expression (II.10) is also applicable for flanges in tension in which case Acerr should be
replaced by the gross area of the tension flange.

AN S
lrF
T

/| ' \
beff I\

L

stiffener

0,54 simplified stress distribution
Z,
actual stress distribution

Figure I1.6 Transverse distribution of stresses due to shear lag. [Fig. 3.4]

I1.4 Resistance to plate buckling

Buckling of plates in compression

Effective cross-section of Class 4 cross-sections without longitudinal stiffeners

The effective cross-section properties of Class 4 cross-sections without longitudinal stiffeners
should be based on the effective areas of the compression elements and their locations within the
effective cross-section.

The effective areas and locations of flat compression elements should be obtained using Table
11.2 for internal elements and Table 1.3 for outstand elements. The effective area of a plate or part
of it in compression with area A. should be obtained from:
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Ac,eff:pAc /Illl/

where:
p is the reduction factor for plate buckling.
As an approximation, the reduction factor p may be obtained as follows:

when Ap 0,673 p=1 ML12/
- — =2
when Ap > 0,673 p= (7\.p - 0,22)/7»1) /M1.13/
with:
0,5
_ f, |7 b, /t
Ap=| 2| = LA /11.14/
O¢r 28,481’ k o
by, is the appropriate width as follows (for definitions, see table 5.3.1 of ENV 1993-1-
1:1992)
bw for webs;
b for internal flange elements (except RHS);
b-3t for flanges of RHS;
c for outstand flanges;
(b+h)2 for equal-leg angles;
hor(b+h)/2 forunequal-leg angles;
ks is the buckling factor corresponding to the stress ratio y from table 1.2 or
table I1.3 as appropriate;
t is the thickness;
Cer is the elastic critical plate buckling stress.

For flange elements, the stress ratio v used in table I1.2 or table II.3 should be based on the
properties of the gross cross-section, reduced for shear lag according to 3.5 if relevant.

For web elements the stress ratio y used in table I1.2 should be obtained using the effective
area of the compression flange and the gross area of the web.

The plate slenderness Ap of an element may be replaced by:

hopred = p[Ocom,Ed /Tyd /.15/

where:

GeomEd 18 the maximum design compressive stress in the element determined using effective
areas of all the compression elements.

This procedure generally requires an iterative calculation in which y is determined again at
each step from the stresses calculated on the effective cross-section defined at the end of the
previous step.
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However, when verifying the design buckling resistance of a member using 5.5 of ENV 1993-
1-1, the plate slenderness A should always be used.

Table I1.2 Internal compression elements.

Stress distribution Effective width bes
(compression positive)
a, o2 v=l
be1 De2 beg =pb
B bey = 0,5bg
bey = 0,5beg
a, 0<y<l
a3
be{ff = pb

be De2
boy =2bygy 1 (5 )

beZ = be/f _bel

[og]

- Be y<0

’, W“\F[Th\ beg =pb. =pb/(1-y)
<] o, by =04b,y
_bf_“ Bez by = 0,6b€ff
il

-

y=0,/0p |1 I>y>0 0 0>y>-1 -1 —1>y>-2

Buckling 4,0 | 82/(L05+w) |7.81 | 781 _629y+978y2 [239 | 508(1—y)2
factor k ’ ’ ’ ’

16

Alternatively for 1>y > -1, kg, == 03
A+y)? +0,112(1-y)? | +(1+y)
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Table I1.3 Outstand compression elements.

Stress distribution Effective width bes
(compression positive)
*“*b:’—’l I1>y=>0
"
% beg =pc
| [*] |
1 1
|
b, bc—~'1 y<0
U‘
beg =pbe =pe/(1-y)
% Doy
WZGZ/GI 1 0 -1 1>W>—1
Buckling factor k 0,43 0,57 0,85 0,57 - 0,21y + 0,07\|/2
]
off
s Wﬂm\] 1>y 20
o
1 & - beg =pc
Dett
oA~ veo
e,
| B¢ | bf_l ber =pbe =pc/(1-y)
I I 1
y=0,/0y 1 1>y>0 0 0>wy>-1 -1
Buckling factor kg 0,43 0,578 /(0,34 + ) 1,70 1,70 — 5y + 17,1\4/2 23,8
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Effective cross-section of Class 4 cross-sections with longitudinal stiffeners

The effective cross-section properties of class 4 cross-sections with longitudinal stiffeners should
be based on the effective areas of the compression elements. As a first step the effective cross-
sectional areas Acsr should be determined by a reduction factor ppan for each subpanel to account
for plate buckling between the stiffeners. In a second step the plate should be considered as an
equivalent orthotropic plate and a reduction factor p. for overall plate buckling of the equivalent
plate should be determined.

The area of each subpanel between the stiffeners or panels forming the stiffener should be
reduced by a reduction factor pyan to account for possible plate buckling where ppa, is taken as
equal to the value of p determined in accordance with 4.2.1 (3)

Plates with multiple longitudinal stiffeners
The elastic critical plate buckling stress of the equivalent plate is:

Ou,p =Ko pOE /M1.16/
where:

ksp is the buckling coefficient ignoring buckling between stiffeners obtained from
appropriate charts for buckling coefficients, by relevant computer simulations or
according to annex ALl

b,t  are defined in Fig. 11.32

subpanel

stiffener 1 = centoid of stiffener
A 2 = centroid of stiffened plate

_.>1 1 ____},\._el
2 —
€
5 - <
\ e=max (e, e
N Y ) (e;,ep)

Figure I1.7 Notations for longitudinally stiffened plates. [Fig. 4.1]

The relative plate slenderness Xp of the equivalent plate is defined as:

_ f
oo Paly B, = el Mm.17/
p A

Serp A
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where:

A is the gross area of the compressed part of the stiffened plate;
Acr  is the effective area of the same part of the plate taking plate buckling of subpanels
into account.

The elastic critical column buckling stress o of the equivalent plate should be taken as the
buckling stress of the same plate with the supports along the longitudinal edges removed. For
uniform compression G may be obtained using:

2
El
O =3 /IL18/
’ Aa
where:
Ik is the second moment of gross area for bending in the longitudinal direction of the
stiffened plate

A stress gradient along the plate may be taken into account by the use of an effective length.
The relative column slenderness A of the equivalent plate is defined as:

Ae = |—— /1.19/

The reduction factor y. should be obtained from 5.5.1.2(1) of ENV 1993-1-1 where a is
replaced by:

I
o, =049 + w with i=,= /11.20/
i/e A
where:
e is the largest distance from the respective centroids of the plating and the one-sided

stiffener (or of the centroids of either set of stiffeners when on both sides) to the
neutral axis of the stiffened plate, see Fig. II.7. The factor o. accounts for an initial
bow imperfection of a/500.

The final reduction factor p. should be obtained by interpolation between . and p according

to:
pe =(P—xc JE2-8)+xc Mmal/
where:
(e}
g=—2 1 1122/
GCr.C

The parameter & should not be taken as less than 0 nor larger than 1.
Effective cross-sectional area
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The effective cross-sectional area of the compression zone of the stiffened plate should be taken
as:

Acefr =PeAc /1.23/

in which A. is composed of the effective cross-sectional areas of all the stiffeners and
subpanels that are fully or partially in the compression zone.
The area A. should be obtained from:

Acefr =PeAc /11.24/

where:

Aqerr 1s the effective cross-section of all longitudinal stiffeners
bepan  1s the width of the compressed part of each subpanel
Ppan 18 the reduction factor for each subpanel.

The reduction of the area of the compressed part through p. may be taken as a uniform
reduction retaining the overall geometry. The effective cross-sectional area of the tension zone of
the stiffened plate element should be taken as the gross area of the tension zone. The effective
section modulus Wi may be taken as the second moment of area of the effective cross section
divided by the distance from its centroid to the mid depth of the flange.

Plates with one or two stiffeners in the compression zone

If the plate has only one or two longitudinal stiffeners the procedure in 4.2.2.3 may be simplified
by replacing the elastic critical plate buckling stress in 4.2.2.3(2) with the elastic critical stress for
a fictitious column elastically restrained by the plate. The cross-section of the fictitious column
should be obtained from 4.2.2.5(2)-(3). The critical stress may be obtained from annex A2.

The gross cross-section of the fictitious column (for calculation of 4 and /y) should be taken
as the gross area of the stiffener As; and adjacent parts of the plate. If the subpanel is fully in
compression, half the width is taken as part of the fictitious column. If the stresses change from
compression to tension within the subpanel, one third of the compressed part should be taken as
part of the fictitious column, see Fig. IL.8.

The effective area of the fictitious column should be taken as the effective cross-section of the
stiffener Ag e and the adjacent effective parts of the plate, see Fig. I1.8. The slenderness of the
plate elements in the fictitious column may be determined according to 4.2.1 (6) with GeomEd
calculated for the gross cross-section of the plate.

If pcfya with p. according to 4.2.2.3(6) is greater than the average stress in the fictitious
column G¢rq no further reduction of the effective area of the fictitious column should be made.
Otherwise the reduction according to expression /I11.23/ is replaced by:

Acefr =PcfyaAc/0cEd /11.25/

The reduction mentioned in above should be applied only to the area of the fictitious column.
No reduction need be applied to other compressed part of the plate, other than that for buckling of
subpanels.
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Figure I1.8 Notations for plate with single stiffener. [Fig. 4.2]

Requirements for transverse stiffeners
In order to form rigid supports for longitudinal stiffeners, transverse stiffeners should satisfy the
stiffness and strength requirements as given below. The cross-section of the transverse stiffener
should be taken as including an associated part of plate besr =30¢t, see Fig. I1.15.

Cut-outs of the stiffeners should be taken into account. The transverse stiffener should be
treated as a simply supported beam with an initial sinusoidal imperfection wo equal to s/300,
where s is the smallest of a1, a or b, see Fig. 11.9

transverse stiffener

Wi

: N | b

Figure I1.9 Transverse stiffener. [Fig. 4.3]

The transverse stiffener should carry the deviation forces from the adjacent compressed
panels under the assumption that both adjacent transverse stiffeners are rigid and straight. The
compressed panels and the longitudinal stiffeners are considered to be simply supported at the
transverse stiffeners. It should be verified that both the following criteria are satisfied:

— - that the maximum stress in the stiffener should not exceed fyq
— - that the additional deflection should not exceed 5/300

Both criteria may be assumed to be satisfied provided that the second moment of area I of
the transverse stiffeners is not less than:

274



4
R, =m (o), g, 3%, /I1.26/
E \=n b

with: Om

>

:G“’C&{l 1} %>

— t— u= 2
Gcr,p b a a) fyd 300b

where:

emax 18 the distance of the extreme fibre of the stiffener to the centroid of the stiffener.

Ns¢ is the largest design compressive force of the adjacent panels but not less than the
largest compressive stress times half the effective area of the panel including
stiffeners;

Ocre, Ocrpare defined above.

Requirements for longitudinal stiffeners
In order to avoid torsional buckling of stiffeners with open class 4 cross-sections the following
criterion should be satisfied:

end)
—211,0| — 127/
I b

where:

b is the width of plate between stiffeners;

I, is the polar second moment of area of the stiffener (excluding the plate) around the

edge fixed to the plate;
It is the torsional constant (St. Venant) for the stiffener without plate;
t is the thickness of plate between stiffeners.

Webs may have discontinuous longitudinal stiffeners, provided that those are not included in
the cross section carrying longitudinal stresses. A large trapezoidal stiffener may be considered as
two separate stiffeners or as one stiffener located at the middle of the stiffener.

Stiffeners at support

Stiffeners at support should be designed to carry the reaction force together with the possible
bending moment arising from bearing eccentricity. If the stiffeners are assumed to provide lateral
restraint to the top flange they should be designed for stiffness and strength in conformity with
the assumptions in the beam design.

Buckling of plates in shear
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Design method

Plates with by/t greater than 41e/n for an unstiffened web, or 18g,/k. / n for a stiffened web,

shall be checked for resistance to shear buckling and shall be provided with transverse stiffeners
at the supports. For notation n, see 4.3.3( 1 ) and k- see 4.3.3(3).

For webs with or without stiffeners shear buckling should be taken into account by reducing
the web thickness to an effective web thickness te for shear obtained using:

teff = teffw T tefff /11.28/

in which tey is a contribution from the web and tesr is a contribution from the flanges,
determined according to 4.3.3 and 4.3.4, respectively. For simplicity the contribution from the
flanges t.rr may be neglected.

bf g ) R — |
= 1 |
A € | |
€.
2 “ | |
>l | |
;
. ]
a) Cross-section notations b) Rigid end post c) Non-rigid end post

Figure I1.10 Criteria for end-stiffener. [Fig. 4.4]

Contribution of the web to the effective thickness

For webs with transverse stiffeners at supports only and for webs with intermediate transverse
and/or longitudinal stiffeners, the contribution of the web to the effective thickness for shear tefrw
Should be obtained from

teff . w = Avl /1.29/

in which yy is the effective thickness factor for shear buckling according to Table I1.4 or Fig.
IL11.

A distinction should be made between:

a) rigid end posts. This case is also applicable for panels not at the end of the girder and at
an intermediate support of a continuous girder;
b) non rigid end posts.

Table I1.4 Effective thickness factor yv for shear buckling.
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Aw Rigid end post Non-rigid end post
<0,48/n n n
0,48/1 < Lw < 1,08 0,48/ hw 0,48/ hw
21,08 0.79/(0.7+ 7w ) 0,48/ A
n=0,70 for S235, S275 and S355
1n=0,60 for S420 and S460
Aw
0.7 ==
0.6 R- .d d
1£21d end post
~
N
™~
N L
iy
\ﬂ\
‘-_'_'—h
. . \q\
on rigid end post ‘—;%
0 1.0 20 X,

Figure I1.11 Effective thickness factor for shear buckling. [Fig. 4.5]

The slenderness parameter Lw in Table IL.4 and Fig. I1.11 should be determined from:

how = 0,76(Fyy /7er )

in which 7 is the critical shear buckling stress obtained from:

Tor = krGE

in which og should be taken from 4.2.2.3(2) and k- from (5) or (6).




For webs with transverse stiffeners at supports only the slenderness parameter Aw may be
taken as:
- b

Ay = —% M1.32/
86.4te

For webs with transverse stiffeners at the supports and intermediate transverse and/or
longitudinal stiffeners the slenderness parameter A w may be taken as:

A /11.33/

— bW
" 3740k,

in which k- is the smallest buckling coefficient for the web panel surrounded by rigid supports
(flange or transverse stiffeners).

If k- is governed by a buckling mode that include stiffener buckling the difference between k.
for the stiffened panel and that for the same panel without longitudinal stiffeners should be
multiplied by 1/3. Formulae for k- taking this reduction into account in annex A3 may be used.

For webs with longitudinal stiffeners the slenderness parameter Aw should not be taken as
less than

Aw = _bm /11.34/

37.4efk

where the shear buckling coefficient ki refers to the largest subpanel with depth by and
length a, see Fig. I1.12. Annex A3 may be used with k.4 =0.

Transverse , ,
stiffener
— 3 K T
< < > _
[7%)
T “_B l 2 |_| Q
y
I
Longitu- A I'E o I z z
dinal e
stiffener ' 8-8
ol — a Bl 4 .

Figure I1.12 Web with transverse and longitudinal stiffeners. [Fig. 4.6]

Contribution of flange to the effective web thickness
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If the flanges are not completely utilized by bending moment (Msq < Mtrq) there is a contribution
terer of the flanges to the effective thickness obtained from:

teﬁ.f = vat /1135/
with:
bet3f Me: 1P
Lo = —— 1—{ 5d } /I1.36/
cthynfy,, Mg rq
1,6bt?f
¢= o,zs+# a M.37/
cthi, fyy

in which brand tr are taken for the smaller flange.
If an axial force Nsq is also applied, the value of Mgrg should be reduced by a factor:

1 Nsa /11.38/
[Ag +Ap ]fyﬂ

where: Ag and Ap, are the areas of the flanges.

Stiffeners

Rigid end post
The rigid end post should act as a bearing stiffener resisting the reaction at the girder support, and

as a short beam resisting the longitudinal membrane stresses in the plane of the web.

A rigid end post may comprise of two double-sided transverse stiffeners that form the flanges
of a short beam of length h,, see Fig. 11.10 (b). The strip of web plate between the stiffeners
forms the web of the short beam. Alternatively, an end post may be in the form of an inserted
section, connected to the end of the web plate. Each stiffener should have a cross sectional area of
at least 4 hyt*/e where e is the distance between the stiffeners and e > 0.1 hy, see Fig. 11.10 (b).

Non-rigid end post
A non-rigid end posts may be a single stiffener as shown in Fig. I1.10 (c). It may be assumed to
act as a bearing stiffener resisting the reaction at the girder support.

Intermediate transverse stiffeners
Intermediate stiffeners acting as rigid supports of interior panels of the web should be checked for
resistance and stiffness.
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Other intermediate transverse stiffeners may be considered flexible, their stiffness being
considered in the calculation of k: in 4.3.3 (4). Intermediate stiffeners acting as rigid supports for
the web panel should have a second moment of area fulfilling the following:

if a/hy, <2 I, >1,5h3t% /a® /11.39/

if a/hy, =2 I >0,75h,,t3 /11.40/

The resistance of intermediate rigid stiffeners should be checked for an axial force equal to
Vsq minus fywdhwterw calculated assuming the stiffener under consideration removed.

Longitudinal stiffeners

Longitudinal stiffeners may be either rigid or flexible. In both cases their stiffness should be taken
into account when determining the slenderness Aw in 4.3.3. If the value of Aw is governed by
the subpanel then the stiffener may be considered as rigid. The strength should be checked for
direct stresses if the stiffeners are taken into account for resisting direct stress

Welds

The welds may be designed for the nominal shear flow Vs/hy if Vs does not exceed fywdhwtefrw-
For larger values the weld between flanges and webs should be designed for the shear flow nfywt
unless the state of stress is investigated in detail.

Resistance of webs to transverse forces

The resistance of an unstiffened or stiffened web to transverse forces applied through a flange, is
given by 2.2.1 (2) with L determined from the following rules, which are applicable for rolled
beams and welded girders provided that the flanges are held in position in the lateral direction
either by their own stiffness or by bracings.

A distinction should be made between three types of load application, as follows:

a) Forces applied through one flange and resisted by shear forces in the web, see Fig.
II.13(a);

b) Forces applied to one flange and transferred through the web directly to the other
flange, see Fig. I1.13(b).

¢) Forces applied through one flange close to an unstiffened end, see Fig. I1.13(c)

For box girders with inclined webs the resistance of both the web and flange should be
checked. The internal forces to be taken into account are the components of the external load in
the plane of the web and flange respectively. In addition the effect of the transverse force on the
moment resistance of the member should be considered.
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Figure I1.13 Buckling coefficients for types of load applications. [Fig. 4.7]

Length of stiff bearing

The length of stiff bearing, ss, on the flange is the distance over which the applied force is
effectively distributed and it may be determined by dispersion of load through solid steel material
at a slope of 1:1, see Fig. I1.14. However, ss should not be taken as larger than hy,.

If several concentrated loads are closely spaced, the resistance should be checked for each
individual load as well as for the total load. In the latter case ss should be taken as the centre-to-
centre distance between the outer loads.

% XK L B =

£
s s s 5s=0

Figure I1.14 Length of stiff bearing. [Fig. 4.8]

Effective length for resistance

The effective length for resistance should be obtained from:

Ler =xrly /IL.41/
with:
AF = 05 /1L.42/
Ap
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Ap = y;”—yw /11.43/
cr
t3
F, = 09kpE—%“ /11.44/
hW

The factor kr should be obtained from Fig. I1.13.

Effective loaded length

The effective loaded length 1y should be calculated using two dimensionless parameters m; and
m; obtained from:

fyeb
m =20 /ILA45/
Pt
yw*w
2
h
m, = 0,02{'(—“'} if Ar> 0,5 else my =0 /11.46/
f

For box girders, br in equation /11.45/ should be limited to 25t on each side of the web. For
cases a) and b) in Fig. II1.13 1y should be obtained using:

ly =sg +2tf[1+‘\/m1 +m, ] 147/

For case c) Iy should be obtained by the smaller of equations /11.47/, /11.49/ and /I1.50/.
However s; in /11.48/ should be taken as zero if the loading device does not follow the change in
slope of the girder end, see Fig. 11.14.

Kk t2
leg _ke B G S +C /11.48/
2 fyy hy
m 1 2
ly =l +tp|—L+| <L | +m /11.49/
y ef f b |:tf:| 2

ly = lef +tfﬂm1 +m, /11.50/

Transverse stiffeners

If the design resistance of an unstiffened web is insufficient transverse stiffeners should be
provided. At a plastic hinge location in the beam, stiffeners should be provided if the relative
local load 2 in 2.2 is larger than 0,5.
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When checking the buckling resistance, the effective cross-section of a stiffener may be taken
as including a width of web plate equal to 30st,, arranged with 15¢t,, each side of the stiffener,
see Fig. I1.15. At the ends of the member (or openings in the web) the dimension of 15¢t,, should
be limited to the actual dimension available. If the stiffener itself is class 4, the effective section
of 4.2.1 (3) should be used.

15¢et,, 15¢t,, . . 15et, . 15et, \

YA A o o o A A ]

Figure I1.15 Effective cross-section of transverse stiffener. [Fig. 4.9]

The out-of-plane buckling resistance should be determined from 5.5.1 of ENV 1993-1-1
:1992, using buckling curve ¢ and a buckling length / of not less than 0,75 hy, or more if
appropriate for the conditions of restraint. Where single sided or other asymmetric stiffeners are
used, the resulting eccentricity should be allowed for using 5.5.4 of ENV 1993-1-1:1992.

In addition to checking the buckling resistance, the cross-section resistance of a load bearing
stiffener should also be checked adjacent to the loaded flange. The width of web plate included in
the effective cross-section should be limited to I, and allowance should be made for any openings
cut in the stiffener to clear the web-to-flange welds.

Flange induced buckling

To prevent the possibility of the compression flange buckling in the plane of the web, the ratio
hy/tw of the web should satisfy the following criterion:

}t‘—w <K(E/fyr NAW /A% /L51/

w

where:

Ay s the area of the web
Ag  is the area of the compression flange

The value of the factor k should be taken as follows:

— - Plastic rotation utilized 0,3
— - Plastic moment resistance utilized 0,4
— - Elastic moment resistance utilized 0,55
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When the girder is curved in elevation, with the compression flange on the concave face, the
following criterion should be checked in addition to 4.4.7( 1).

h,  k(E/f)JA, /A

W < /11.52/
tw  Jl+h E/PBri]

in which r is the radius of curvature of the compression flange.
If the girder has transverse or longitudinal web stiffeners, the limiting value of hy/ty may be
increased.

Annex A Buckling coefficients

Al Buckling coefficient for plates with multiple stiffener loaded by direct stresses

For stiffened plates with equidistant multiple longitudinal stiffeners the plate buckling coefficient
ks, may be approximated by

2[(1+(12)2+y}

= if o< (1+7)"% /11.53/
P o (y+1)1+38)
41+ 1+
op = u if o> (1+7)%% /1.54/
P (g +1)1+9)
with:
I A
\V:G—2>O; y=-2>50; §=—sL. a=a/b>1.
(e3] Ip Ap
where:
Ik is the second moment of area for bending in the longitudinal direction for the whole
panel;
I, is the second moment of area for bending of the plate =

Aq1 is the gross area of all longitudinal stiffeners (without plate);
Ap is the gross area of the plate = bt;

o is the larger edge stress;

(o)) is the smaller edge stress;

a, b and ¢ are as defined in Fig. I1.7.

A2 Critical stress for stiffener regarded as a fictitious column restrained by the plate

In the case of one longitudinal stiffener only located in the compression zone and ignoring
stiffeners in the tension zone, the elastic critical plate buckling stress is:

284



_ L0SE yIgt’b

c if a>a /11.55/
TPA by, ¢
2 31.,2
EI Ei
Corp =+ — ! 2% — if a>a, /IL.56/
Aa 47 [I—V JAb1b2
2,2 /(31 )72
a, =433[Igb7b3 /|*b 1157/
where:
| is the second moment of area of the gross cross-section of the fictitious column
defined in 4.2.2.5(2) about an axis through its centroid and parallel to the plane of the
plate;

by, by are the distances from longitudinal edges to the stiffener (b; + b, =Db).

In the case of two longitudinal stiffeners, both in compression, each stiffener is first
considered assuming the other one to be rigid and the procedure for one stiffener is used. In a
further step both stiffeners are considered as lumped together, with an area and a second moment
of area equal to the sum of those of the individual stiffeners. The location of the lumped stiffener
is the position of the resultant of the axial forces in the stiffeners. The elastic critical plate
buckling stress is the lowest of the ones computed for the three cases. If one of the stiffeners is in
tension the procedure will be conservative.

A3 Shear buckling coefficient for stiffened panels

For plates with rigid transverse stiffeners with or without longitudinal stiffeners in between, the
shear buckling coefficient k- is:

Kk, =534+4,00(hy, /a)* +Kk when a/hy, >1 /11.58/

k, =4,00+534(h,, /a) +k when a/hy, <1 /I1.59/
with:

2 3/4 1/3
h I 2,1 1
kot = 9{—“’} 3;1 but not less than —~| —L /1.60/
a t"hy, t | hy

where
a is the distance between transverse stiffeners (see Fig. 11.12);
I is the second moment of area of the longitudinal stiffener with regard to the z-axis, see

Fig. 11.12(b). For webs with two or more equal stiffeners, not necessarily equally
spaced, I is the sum of the stiffness of the individual stiffeners.
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Appendix III.

Extract for Educational Purpose

Eurocode 3: Design of steel structures — Part 1.7 (EC3-1-7)
Planar plated structural elements with transverse loading
[prENYV 1993-1-7: April 1998]

Extract

1.1 General
I11.2 Basis of design
I11.3 Modelling of structural analysis
I11.4 Serviceability limit states
II1.5 Ultimate limit state
III. Annex A
III. Annex B
III. Annex C
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II1.1 General
Scope

Part 1-7 of ENV 1993 provides principles and application rules for the structural design of thin
unstiffened and stiffened plates which are loaded by out of plane actions. It is to be used in
conjunction with EC3 - Part 1.1 and the relevant application standards. Any action consideration,
such as:

— definition of an action
— combination of actions
— partial safety factors on actions

are to be taken from EC 1 as far as general rules are concerned, and the relevant parts of EC 3
as far as specific application rules are concerned.

This Part 1.7 is concerned with the requirements of an appropriate design against the ultimate
limit state taking account of the following failure modes:

— plastic collapse or tensile rupture
cyclic plasticity / low cycle fatigue
buckling

— fatigue.

The rules in this Part 1.7 refer to thin plate segments in plated structures which may be
stiffened or unstiffened. These plate segments may be individual plates or parts of a plated
structure. They are loaded by out of plane actions. The verification of unstiffened and stiffened
plated structures loaded only by in-plane effects shall be carried out with the design rules given in
ENV 1993-1-5. In ENV 1993-1-7 rules for the interaction between the effects of inplane and
transverse loading are given. The temperature range within which the rules of this Part 1.7 are
allowed to be applied are defined in the relevant EC 3 application parts.

Wind loading and bulk solids flow may, in general, be treated as quasi-static actions. For
fatigue, the dynamic effects must be taken into account according to the relevant application parts
of EC3. The stress resultants arising from the dynamic behaviour are then treated in this part as
quasi-static.

Definitions

Stress components

Membrane stresses in rectangular plate
omxis the membrane stress in the x-direction due to membrane forces ny.
Omyis the membrane stress in the y-direction due to membrane forces n,.
Tmxy 1S the membrane shear stress due to membrane forces nyy.
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Gy

Figure II1.1 Definition of membrane stresses. [Fig. 1.1]

Normal and shear stresses in rectangular plates due to bending
Obx 18 the stress in the x-direction due to bending moment my.
Oy 18 the stress in the y-direction due to bending moment m,.
Toxyls the shear stress due to the bending moment myy.

Thx 18 the shear stress due to shear forces qx.
Thy 1S the shear stress due to shear forces qy.

dy Lo
al /;t:, HE&Qx

Figure I11.2 Definition of normal and shear stresses due to bending. [Fig. 1.2]

Structural forms

— Plated structure: A structure that is built up from nominally flat plates which are welded
together. The plates may be stiffened or unstiffened, see Fig. I11.3.

— Plate segment: A plate segment is a flat plate, which may be unstiffened or stiffened. A
plate segment may be regarded as an individual part of a plated structure.
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— Stiffener: A plate or section attached to a plate with the purpose of preventing buckling
of the plate or reinforcing it against local loads. A stiffener is denoted:
— longitudinal if its direction is parallel to that of the member
— transverse if its axis is perpendicular to that of the member.

— Stiffened plate: Plate with transverse and/or longitudinal stiffeners.

— Subpanel: Unstiffened plate surrounded by flanges or stiffeners.

Plated structure

Subpanels

Figure I11.3 Components of a plated structures. [Fig. 1.3]

Terminology

— Plastic collapse: a failure mode in the ultimate limit state where the structure looses its
ability to resist increased loading due to yielding of the material.

— Tensile rupture: a failure mode in the ultimate limit state where the plate experiences
failure due to tension.

— Cyclic plasticity: Where repeated yielding is caused by cycles of loading and unloading.

— Buckling: Where the structure suddenly looses its stability under compression and/or
shear.

— Fatigue: Where cyclic loading causes cracking or failure of the plate.

Actions

— Transverse loading: The load applies normal to the middle surface of a plate segment.

— In-plane forces: Forces, which apply parallel to the middle surface of the plate segment.
They are induced by in-plane effects (for example temperature and friction effects) or by
global loads applied at the plated structure.
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Symbols

Creek lower case letter

aspect ratio of a plate segment (a/b);
strain
Ar load amplification factor
p  reduction factor for plate buckling;
oi  Normal stress in the direction i;
T Shear stress;
yv  safety factor for resistance;

Latin upper case letter
E  Modulus of elasticity
Latin lower case Letter

a  length of a plate segment, see Fig.111.4 and IIL.5;

b  width of a plate segment, see Fig. 1.4 and IIL.5;

fy  yield stress;

ni membrane force in the direction i [kN/m];

m  bending moment [kKNm/m];

gi  shear force in direction i [kN/m];

t thickness of a plate segment, see Fig. I11.4 and IIL.5;

~

/’ =N
=

A
Figure I11.4 Dimensions and axes Figure II1.5 Dimensions and axes of stiffened
of unstiffened plate segments. [Fig. 1.4] plate segments; stiffeners may

be trough or closed stiffeners [Fig. 1.5]
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I11.2 Basis of Design

Ultimate limit state

Plastic collapse or tensile rupture

Plastic collapse is defined as the condition in which part of the structure develops excessive
plastic deformations, associated with development of a plastic mechanism. The plastic collapse
load is usually derived from a mechanism based on small deflection theory. Tensile rupture is
defined as the condition in which the plated structure fails through tensile rupture, leading to
separation of the two parts of the structure. Both failure modes involve loss of equilibrium
between the imposed loadings and the maximum attainable internal resultants in the plate, and
only equilibrium considerations are concerned.

Cyclic plasticity /low cycle fatigue

Cyclic plasticity / low cycle fatigue is defined as the limit condition for repeated cycles of
loading and unloading produce yielding in tension or in compression or both at the same point,
thus causing plastic work to be repeatedly done on the structure. This alternative yielding may
lead to local cracking by exhaustion of the material's energy absorption capacity, and is thus a
low cycle fatigue restriction. The stresses which are associated with this limit state develop under
a combination of all actions and the compatibility conditions for the structure.

Buckling
Buckling is defined as the condition in which all or parts of the structure develop large

displacements, caused by instability under compressive or shear stresses in the plate. It leads
eventually to incapacity to sustain an increase in the stress resultants.

Fatigue

Fatigue is defined as the limit condition caused by the development and / or growth of cracks by
repeated cycles of increasing and decreasing stresses.

Serviceability limit states

Out of plane deflection

The limit value of the out of plane deflection w is defined as the condition in which the effective
use of a plate segment is governed on its out of plane detlection w. It depends usually on the field
of application and shall be given in the relevant standard.
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Excessive vibrations (Resonance)

Excessive vibrations is defined as the limit condition in which either the failure of a plated
structure occurs by fatigue at adjacent connections caused by excessive vibrations of the plate or
serviceability limits apply. The slenderness of a plate segment should be limited to avoid
excessive vibrations.

I11.3 Modelling of structural analysis

Calculations shall be carried out using appropriate design models involving all relevant variables.
The models used shall be appropriate for predicting the structural behaviour and the limit states
considered. If the boundary conditions can be conservatively defined a plated structure may be
subdivided into individual plate segments that may be assumed independently. The overall
stability of the complete structure shall be checked as defined in the relevant parts of Eurocode 3.

Calculation of internal stresses or stress resultants

The internal stresses or stress resultants of a plated structure shall be calculated for the
relevant combination of actions. The calculation model and basic assumptions for determining
internal stresses or stress resultants should represent the expected structural response in the
ultimate limit state loading.

The models shall be sufficiently precise to predict the plate behaviour, commensurate with the
standard of workmanship likely to be achieved, and with the reliability of the information on
which the design is based. Structural models may be simplified to the extent that it can be shown
that the simplifications used will give conservative estimates of the effects of actions.

If necessary, the calculation model shall be supplemented by tests involving all relevant
variables. Elastic global analysis may generally be used for plated structures. Plastic global
analysis should not be used where fatigue resistance is important. Possible deviations from the
assumed directions or positions of actions shall be considered.

Plate boundary conditions

The plated structure shall be designed in such a way as to ensure that boundary conditions
assumed in the design calculations are achieved in the construction. If a plated structure is
subdivided into individual plate segments the boundary conditions e.g for stiffeners assumed for
the individual plate segments in the design calculations shall be achieved in the drawings and
execution.

Design models for plated structures

The internal stresses of a plate segment in a plated structure should be determined with one of
the following design models:

— standard formulas for plates,
— global analysis,
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— simplified models.

The design models given above shall take into account a linear or non linear bending theory
for plates. A linear bending theory is based on small-deflection assumptions and relates loads to
deformations in a proportional manner. A non-linear bending theory is based on large-deflection
assumptions and the effects of deformation on equilibrium are taken into account.

The design models given above may be based on the types of analysis given in Table III.1.

Table III.1 Types of analysis

Type of analysis Bending theory | Material law | Plate geometry
Linear elastic plate analysis (LA) linear linear perfect
Geometrically non-linear elastic analysis non-linear linear perfect
(GNA)

Materially non-linear analysis (MNA) linear non-linear perfect
Geometrically and materially non-linear non-linear non-linear perfect
analysis (GMNA)

Geometrically non-linear elastic analysis with non-linear linear imperfect
imperfections (GNIA)

Geometrically and materially non-linear non-linear non-linear imperfect
analysis with imperfections (GMNIA)

Design by standard formulas

For an individual plate segment of a plated structure the internal stresses may be calculated for
the relevant combination of design actions with appropriated design formulae based on the types
of analysis given in Table III.1.

In case of a two dimensional stress field resulting from a membrane theory analysis the
equivalent v. Mises stress Geq,s¢ may be determined by

1[5 2 2
Ceqsd = z\/nx’Sd +Nygq —N, gy gy +3nxy’Sd /I.1/

In case of a two dimensional stress field resulting from an elastic plate theory the equivalent
v. Mises stress Geq,s¢ may be determined, as follows:

_ 2 2 2
Ceqsd = \/Gx’Sd +0ysd ~Oxs40ysd T 3rxy,5d /1.2/
where
Nysq |, Mysq
Oxsd = T—
t t2/4
Nysqd , Mysd
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T _ 1llxy,Sd + Inxy,Sd
xy,Sd — t - t2/4

and ny sd, Ny,sd, Nxy,sds My,sd, My,sq and Myy sa are defined above.

Design by global analysis: numerical analysis

If the internal stresses of a plated structure are determined by a numerical analysis which is based
on a materially linear analysis, the highest equivalent v. Mises stress c.qsq of the plated structure
shall be calculated for the relevant combination of design actions.

The equivalent v. Mises stress Geqsq defined by the stress components which occurred at one
point in the plated structure.

_ 2 2 2
Ceqsd = \/GX’Sd +0y 54 ~Ox540y.sd +3Tsd M3/

where G sq and Gy,sq are positive in case of tension.

If a numerical analysis is used for the verification of buckling, the effects of practically
unavoidable imperfections shall be taken into account. These imperfection may be:

(a) geometrical imperfections:

— deviations from the nominal geometric shape of the plate (predeformation, out of
plane deflections)

— irregularities of welds (minor excentricities)

— deviations from nominal thickness

(b) material imperfections:

— residual stresses because of rolling, pressing , welding, straightening
— inhomogenities and anisotropies

If no better method is known, the geometrical and material imperfections shall be taken into
account by an initial equivalent geometric imperfection of the perfect plate. The shape of the
initial equivalent geometric imperfection shall be derived from the relevant buckling mode.

€ b

| L
I

! a
Figure II1.6 Initial equivalent geometric bow imperfection eo of a plate segment [Fig. 3.1]

The amplitude of the initial equivalent geometric imperfection ey of a rectangular plate
segment may be derived by numerical calibrations with test results from test pieces that may be
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considered as representative for fabricative from the plate buckling curve of Eurocode 3 - Part
1.5, as follows:

(1975 Ji-p)

eg=—"TT"T7""— /M11.4/
pC
where
2(1.2 2
¢ = M and w<d2
t(a2 +b? )2
and:
p is the reduction factor for plate buckling,
a,b  are geometric properties of the plate, see Fig. 111.4,
t is the thickness of the plate,

o is the aspect ratio a/b < V2.

As a conservative assumption the amplitude may be taken as eo = a/250 where a < b. The
pattern of the equivalent geometric imperfections shall, if relevant, be adapted to the
constructional detailing and to imperfections expected from fabricating or manufacturing. In all
cases the reliability of a finite element analysis shall be checked with known results from tests or
compared analysis.

Design by simplified design models

The internal forces or stresses of a plated structure loaded by transverse loads and inplane loads
may be calculated with a simplified design model, that gives conservative estimates.

Therefore the plated structure may be subdivided into individual plate segments, which may
be stiffened or unstiffened. The individual plate segments may be designed with the following
design models:

a) Unstiffened plate segments
An unstiffened rectangular plate under transverse loads may be modelled as an equivalent
beam in the direction of the dominate load distribution, if the following conditions are fulfilled:

— the aspect ratio a/b of the plate is greater than 2;

— the plate is loaded by a uniform distributed transverse load, which may be linear or
constant;

— the strength, stability and stiffness of the frame or beam on which the plate segment is
supported fulfils the assumed boundary conditions of the equivalent beam.

The internal forces and moments of the equivalent beam shall be determined with an elastic
analysis as defined in ENV 1993-1-1. If the direction of the dominant load distribution is
transverse to the direction of the inplane compression forces, the interaction between the effects
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of inplane loads and out of plane loads may be neglected. If the direction of the dominant load
distribution is parallel to the direction of the inplane compression forces, the interaction formula
specified in Part 1-1 clause 5.5.4 may be applied to the equivalent beam.
b) Stiffened plate segments

A stiffened plate or a stiffened plate segment of a plated structure may be modelled as a
grillage if it is regularly stiffened in the transverse and longitudinal direction. In determining the
cross-sectional value A; of the cooperating plate of an individual member i of the grillage the
effects of shear lag shall taken into account by the reduction factor 3 according to ENV 1993-1.5.
For a member i of the grillage which is arranged in parallel to the direction of inplane
compression forces, the cross-sectional value A; shall also be determined taking account of the
effective width of the adjacent subpanels due to plate buckling according to ENV 1993-1.5.

The interaction of shear lag effects and plate buckling effects, see Fig. III.7, should be
considered by the effective area A; from equation /I11.5/.

A; :[pc(AL,eﬁ’ "'zppan,ibpan,itpan,i)]BK /IL.5/
where
A is the effective area of the stiffener due to local plate buckling of the stiffener;
pc is the reduction factor due to global plate buckling of the stiffened plate segment;
Ppani 18 the reduction factor due to local plate buckling of the subpanel i;
bypani is the width of the subpanel i;
tpan,i 18 the thickness of the subpanel i;
B is the effective width factor for the effect of shear lag.
Kk is the ratio defined in 3.2(2) of ENV 1993 — 1.5.

Transverse stiffener

0.V(.Sd O;‘Sd
.0 1f
N
lSd NSd I I
C;:qu
[
N N ,I |
d |
= = . =
VAN
A;
+ 4
a

Figure IIL.7 Definition of the cross-section A; [Fig. 3.2]

The verification of a member i of the grillage may be performed using the interaction formula
in clause 5.5.4 of ENV 1993-1.1 taking into account the following loading conditions:

— effects of transverse loadings
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— equivalent axial force in the cross-section A; due to normal stresses in the plate:
NSd = IG XdAi . . .
— eccentricity e of the equivalent axial force Nsq according to ENV 1993-1.5.

If the stiffeners of a plate or a plate segment are only arranged in parallel to the direction of
inplane compression forces, the stiffened plate may be modelled as an equivalent beam on elastic
springs, see ENV 1993-2. If the stiffeners of a stiffened plate segment are positioned in the
transverse direction to the compression forces, the interaction between the compression forces
and bending moments in the unstiffened plate segments between the stiffeners should be verified.

I11.4 Serviceability limit states

Plated steel structures should meet the serviceability limit state criteria in 4.1 of ENV 1993-1-1.

The requirements for the out of plane deflection w of a plate segment in a plated structure
shall be defined by the relevant application standard or by the competent authority, the designer
or the client. The limit state of excessive vibrations shall be verified with the requirements given
by the competent authority, the designer or the client.

II1.5 Ultimate limit state

All parts of a plated structure shall be so proportioned that the basic design requirements for
ultimate limit states are satisfied. The partial factor ym for resistance of plated structures shall be
taken from the relevant parts of EC 3 - Part 1. For connections of plated structures the partial
factor ym shall be obtained from section 6 of ENV 1993-1-1. Members and connections subject to
fatigue shall also satisfy the requirements given in section III.

Plastic collapse or tensile rupture
General
In an elastic design the resistance of a plate segment in a plated structure against plastic collapse

or tensile rupture under combined axial forces and bending is defined by the v. Mises equivalent
Stress GeqRrd as:

Geq,Rd = 1,0 fy /'YMO /MIL.6/
At every point in a plated structure the design stress Geq,sq shall satisfy the condition:

Geq,5d < OeqRd /1.7/

where Geqsq 1S the largest value of v. Mises equivalent stress.
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Supplementary rules for the design by global analysis

If a numerical analysis is based on materially linear analysis the resistance against plastic collapse
or tensile rupture shall be checked for the requirement given in /I11.7/.

If a materially nonlinear analysis is based on a design stress-strain relationship with fy4, the
plated structure shall be subject to a load arrangement F that may be taken from the design values
of actions Fsq, and the load may be incrementally increased to determine the load amplification
factor AR of the plastic limit state Frq.

The result of the numerical analysis shall satisfy the condition:

Fsa < Fra /1.8/

where Fsq =ArXF and Ar is the load amplification factor.

Supplementary rules for the design by simplified design models

If an unstiffened plate is designed as an equivalent beam, the cross-section resistance of the
equivalent beam shall be checked for the combination of inplane loading and out of plane loading
effects with the design rules given in ENV 1993-1-1.

If a stiffened plate segment is modelled as a grillage as described above the cross-section
resistance and the buckling resistance of the individual members i of the grillage shall be checked
for the combination of inplane and out of plane loading effects using the interaction formula in
clause 5.5.4 of ENV 1993-1.1.

If a stiffened plate segment is designed as a an equivalent beam as described above the cross-
section resistance and the buckling resistance of the equivalent beam shall be checked for the
combination of inplane and out of plane loading effects using the interaction formula in clause
5.5.4 of ENV 1993-1.1.

Cyclic plasticity / low cycle fatigue

In a materially linear design the resistance of a plate segment in a plated structure against cyclic
plasticity / low cycle fatigue may be verified by the v. Mises stress range limitation A Grg.

AGRd = 2,0 . fy /'\{MO /L.9/

At every point in a plated structure the design stress range A crq shall satisfy the condition:
A osqd < AGrg /IIL.10/

where A ogq is the largest value of the v. Mises equivalent stress range at the relevant point of
the plate segment due to the relevant combination of design actions.

Where a materially nonlinear computer analysis is performed, the plate shall be subject to the
design values of the varying and fixed actions. The largest change in the v. Mises plastic strain
during one load cycle at any point in the structure shall be used as design value of the plastic
strain range A €sq.

298



Unless a more sophisticated low cycle fatigue assessment is performed, the design value of
the plastic strain range shall satisfy the condition:

ASSd ZZ,O'fy/E'yMO AIL11/
Buckling resistance

If a plate segment of a plated structure is loaded by in-plane effects, its resistance to plate
buckling shall be verified with the design rules given in ENV 1993-1-5. The shear buckling
resistance of a plate segment shall be verified with the design rules given in ENV 1993-1-5. For
the interaction between the effects of inplane and out of plane loading, see section Modelling of
structural analysis.

If the plate buckling resistance for combined in plane and out of plane loading is checked by a
numerical analysis, the design actions Fsq shall satisfy the condition:

Fsa < Fra /ML12/
The plate buckling resistance Fri of a plated structure is defined as:
Fra =k Fre/ymi /MI.13/

where

Fre s the characteristic buckling resistance of the plated structure
k is the calibration factor.

The characteristic buckling resistance Fri shall be derived from a load-deformation curve
which is calculated for the relevant point of the structure taking into account the relevant
combination of design actions Fsq. In addition, the analysis shall taken into account the
imperfections. The characteristic buckling resistance Frix is defined by either of the three
following criterion:

— maximum load of the load-deformation-curve (limit load);

— Dbifurcation load if occurring during the loading path before reaching the limit point of the
load-deformation-curve;

— largest tolerable deformation if occurring the loading path before reaching the bifurcation
load or the limit load.

The reliability of the numerically determined critical buckling resistance shall be checked:

(a) either by calculating other plate buckling cases, for which characteristic buckling
resistance values Fiinown are known, with the same program basically similar
imperfection assumptions. The check cases should be similar in their buckling
controlling parameters (e.g non-dimensional plate slenderness, post buckling
behaviour, imperfection-sensitivity, material behaviour)

(b) or by comparison of calculated values with test results Fiimown. Regarding the
similarity of the check cases, the same statements as made above are valid.
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Depending on the results of the reliability checks a calibration factor k shall be evaluated
from:

k= Fk,known,check / FRk,check /111.14/

where Fiknowncheck are results from prior knowledge and Fricheck are the results of the
numerical calculations.

If a stiffened plate segment is subdivided into subpanels and equivalent effective stiffeners the
buckling resistance of the stiffened plate segment shall be checked with the design rules given in
ENV 1993-1-5, neglecting the bending effects due to the transverse loads which applied at the
plate segments. Further, the buckling resistance of the equivalent effective stiffener of the plate
shall be checked with the design rules given in ENV 1993-1-1.

Fatigue

For plated structures the requirements for fatigue shall be obtained from the relevant application
parts of Eurocode 3. If no other requirements are given by the application parts of Eurocode 3 or
by the competent authority, the client or the designer no fatigue assessment is required for up to
10000 cycles.

I11. Annex A: Types of analysis for the design of plated structures

The internal stresses of stiffened and unstiffened plates may be determined with the following

types of analysis:
-LA: Linear elastic analysis;
- GNA: Geometrically nonlinear analysis;
- MNA: Materially nonlinear analysis;
- GMNA: Geometrically and materially nonlinear analysis;
- GNIA: Geometrically nonlinear analysis elastic with imperfections included;
- GMNIA: Geometrically and materially nonlinear analysis with imperfections

included.
Linear elastic plate analysis (LA)

The linear elastic analysis models the behaviour of thin plate structures on the basis of the plate
bending theory, related to the perfect geometry of the plate. The linearity of the theory results
from the assumptions of the linear elastic material law and the linear small deflection theory.

The LA analysis satisfies the equilibrium as well as the compatibility of the deflections. The
stresses and deformations varies linear with the transverse loading. As an example for the LA
analysis the following fourth-order partial differential equation is given for an isotropic thin plate
that subject only to a transverse load p(x,y):

otw  otw  otw _ p(x,y)

N + /IL15/
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3
where D = Et 51
12‘1—\/ '

Geometrically nonlinear analysis (GNA)

The geometrically nonlinear elastic analysis is based on the principles of the plate bending theory
of the perfect structure using the linear elastic material law and the nonlinear, large deflection
theory.

The GNA analysis satisfies the equilibrium as well as the compatibility of the deflections
under consideration of the deformation of the structure. The large deflection theory takes into
account the interaction between flexural and membrane actions. The deflections and stresses
varies in a non linear manner with the magnitude of the transverse pressure. As an example for
the GNA analysis the following fourth-order partial differential equation system is given for an
isotropic thin plate that subject only to a transverse load p(x,y).

4 4 4 2 2 2 2 2 2
0 L 62W2+a:v_i a_ga L L +8£6\;v _PY) 6
ox* ox“oy- oy" Doy ox Ox0y 00y | ox* Oy

2
4 4 4 2 2, A2
o' o' af_E{é WJ 0w ow /IIL16b/

e e S —
ot axtey? oyt |(xdy)  ax? oy’

where f is the Airy's stress function, and
3
Et

D= .
12il—v2i

Materially nonlinear analysis (MNA)

The materially nonlinear analysis is based on the plate bending theory of the perfect structure
with the assumption of small deflections — like in Linear elastic plate analysis (LA) — however, it
takes into account the nonlinear behaviour of the material.

Geometrically and materially nonlinear analysis (GMNA)

The geometrically and materially nonlinear analysis is based on the plate bending theory of the
perfect structure with the assumptions of the nonlinear, large deflection theory and the nonlinear,

elasto-plastic material law.

Geometrically nonlinear analysis elastic with imperfections included (GNIA)

301



The geometrically nonlinear analysis with imperfections included is equivalent to the GNA
analysis defined in Geometrically nonlinear analysis (GNA), however, the geometrical model
used the geometrically imperfect structure, for instance a pre-deformation applies at the plate
which is governed by the relevant buckling mode.

The GNIA analysis is used in cases of dominating compression or shear stresses in some of
the plated structures due to in-plane effects. It delivers the elastic buckling loads of the "real"
imperfect plated structure.

Geometrically and materially nonlinear analysis with imperfections included (GMNIA)

The geometrically and materially nonlinear analysis with imperfections included is equivalent to
the GMNA analysis defined in Geometrically and materially nonlinear analysis (GMNA),
however, the geometrical model used the geometrically imperfect structure, for instance a pre-
deformation applies at the plate which is governed by the relevant buckling mode.

The GMNIA analysis is used in cases of dominating compression or shear stresses in a plate
due to inplane effects. It delivers the elasto-plastic buckling loads of the "real" imperfect
structure.

III. Annex B: Internal stresses of unstiffened rectangular plates (Small
deflection theory)

This annex provides design formulas for the calculation of internal stresses of unstiffened
rectangular plates based on the small deflection theory for plates. Therefore the effects of
membrane forces are not taken into account in the design formulas given in this annex.

Design formulas are provided for the following load cases:

— uniformly distributed loading on the entire plate
— central patch loading distributed uniformly over a patch area

The deflection w of a plate segment and the bending stresses opx and oy in a plate segment
may be calculated with the coefficients given in the tables of following sections. The coefficients
take into account a poisson's ratio v of 0.3.

Definitions

Jsd is the design value of the distributed load

is the design value of the patch loading

is the smaller side of the plate

is the longer side of the plate

is the thickness of the plate

is the Elastic modulus

is the coefficient for the deflection of the plate given in dependence of the boundary
conditions of the plate in the data tables.

- o o T
Fu g
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kobx is the coefficient for the bending stress opx of the plate given in dependence of the
boundary conditions of the plate in the data tables.

koby 1is the coefficient for the bending stress oy of the plate given in dependence of the
boundary conditions of the plate in the data tables.

Uniformly distributed loading

Out of plane deflection

The deflection w of a plate segment which is loaded by uniformly distributed loading may be
calculated as follows:

4
w=k, 14 /ML17/
Et

In comparison to the thickness of the plate segment the deflection w shall be small, because
the design formulas base on small deflection theory.

Internal stresses

The bending stresses onx and opy in a plate segment may be determined with the following
equations:

2
Obxsd = Ko qst%a /IL18/

2
Gysa = Koby % /IIL19/

For a plate segment the equivalent stress may be calculated with the bending stresses given in
above as follows:

2 2
Ocq,8d = \/ Obx,Sd + Oby,Sd ~ Obx,8d by.Sd /L.20/

The points for which the state of stress are defined in the data tables are located either on the
centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions,
the bending shear stresses T, are zero.
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Coefficients k for uniformly distributed loadings

Table I11.2 Coefficients k

Loading: Uniformly distributed loading

Ya Boundary conditions:
b 1 |2 by - edges are rigidly supported and
4 rotationally free
+—+
b/ a kwl kcbxl kG byl
1.0 0.04434 0.286 0.286
1.5 0.08438 0.486 0.299
2.0 0.11070 0.609 0.278
3.0 0.13420 0.712 0.244
Table II1.3 Coefficients k
Loading: Uniformly distributed loading
Ya Boundary conditions:
b 12 ‘ b - All edges are rigidly supported and
‘ rotationally fixed.
+—+
b/a kw1 Kobxi Kobyt Kot
1.0 0.01375 0.1360 0.1360 -0.308
1.5 0.02393 0.2180 0.1210 -0.454
2.0 0.02763 0.2450 0.0945 -0.498
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3.0 0.02870 0.2480 0.0754 -0.505

Table I11.4 Coefficients k

Loading: Uniformly distributed loading

Y Boundary conditions:

o
~
=

- Three edges are rigidly supported
and rotationally free and one edge
is rigidly supported and rotationally

+—+t fixed.
b/a Kwi Kobxi Koyt Kotxa
1.5 0.04894 0.330 0.177 -0.639
2.0 0.05650 0.368 0.146 -0.705
Table IIL.5 Coefficients k
Loading: Uniformly distributed loading
Ya Boundary conditions:
bl (|4 U - Two edges are rigidly supported and
rotationally free and two edges are
rigidly supported and rotationally
+—+ fixed.
b/a Kwi Kobxi Kobyt Kotxa
1.0 0.02449 0.185 0.185 -0.375
1.5 0.04411 0.302 0.180 -0.588
2.0 0.05421 0.355 0.152 -0.683
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Table I11.6 Coefficients k

Loading: Uniformly distributed loading

Ya Boundary conditions:
—=
b 1 b - Two edges are rigidly supported and
rotationally free and two edges are
rigidly supported and rotationally
+—+t fixed.
b/a kw1 Kobxi Koyl Kobys

1.0 0.02089 0.145 0.197 -0.420

1.5 0.05803 0.348 0.274 -0.630

2.0 0.09222 0.519 0.284 -0.717

Table II1.7 Coefficients k
Loading: Uniformly distributed loading
Ya Boundary conditions:
b 12 ‘ bx - Two edges are rigidly supported and
‘ rotationally free and two edges are
rigidly supported and rotationally
et fixed.
b/a Kwi Kobxi Kobyt Kotxa
1.5 0.02706 0.240 0.106 -0.495
2.0 0.02852 0.250 0.0848 -0.507
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Central patch loading

Out of plane deflection

The deflection w of a plate segment which is loaded by a central patch loading may be calculated
as follows:

2
Psdd

21/
Et3

w=ky

Internal stresses

The bending stresses opx and ouy in a plate segment may be determined by the following
formulas:

Ox.sd = Koy pt% /L22/
Oby,sd = Koby p% /I1.23/

For a plate segment the equivalent stress may be calculated with the bending stresses given
above as follows:

2 2
Ocq,Sd = \/ Obx,Sd T Oby,Sd ~ Obx,8d%by,Sd /M1.24/
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Coefficients k for patch loading

Table I11.8 Coefficients k

Loading: Central patch loading

y4 Boundary conditions:
1 - All edges are rigidly supported and
b V]: Px rotationally free.
= Parameters:
+—F a=u/a,=v/a
b/a oxp Kkt Kobxl Kaby1
1 0.1x0.1 0.1254 1.72 1.72
0.2x0.2 0.1210 1.32 1.32
0.3x0.3 0.1126 1.04 1.04
0.2x0.3 0.1167 1.20 1.12
0.2x0.4 0.1117 1.10 0.978
1.5 0.1x0.1 0.1664 1.92 1.70
0.2x0.2 0.1616 1.51 1.29
0.3x0.3 0.1528 1.22 1.01
0.2x0.3 0.1577 1.39 1.09
0.2x0.4 0.1532 1.29 0.953
2.0 0.1x0.1 0.1795 1.97 1.67
0.2x0.2 0.1746 1.56 1.26
0.3x0.3 0.1657 1.28 0.985
0.2x0.3 0.1708 1.45 1.07
0.2x0.4 0.1665 1.35 0.929
3.0 0.1x0.1 0.184 1.99 1.66
0.2x0.2 0.1791 1.58 1.25
0.3x0.3 0.1701 1.30 0.975
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0.2x0.3 0.1753 1.47 1.06
0.2x0.4 0.1711 1.37 0918

III. Annex C: Internal stresses of unstiffened rectangular plates (Large
deflection theory)

This annex provides design formulas for the calculation of internal stresses of unstiffened
rectangular plates based on the large deflection theory for plates. The following loading
conditions are considered:

— uniformly distributed loading on the entire plate
— central patch loading distributed uniformly over the patch area

The bending and membrane stresses in a plate and the deflection w of a plate may be
calculated with the coefficients given in the tables of the following sections. The coefficients take
into account a poisson's ratio v of 0.3.

Definitions

gsa  the design value of the distributed load.

psa  the design value of the patch loading.

a the smaller side of the plate.

b the longer side of the plate.

t the thickness of the plate.

E the Elastic modulus.

kyw the coefficient for the deflection of the plate given in dependence of the boundary
conditions of the plate in the data tables.

kobx  the coefficient for the bending stress oux of the plate given in dependence of the
boundary conditions of the plate in the data tables.

kovy  the coefficient for the bending stress opy of the plate given in dependence of the
boundary conditions of the plate in the data tables.

komx  the coefficient for the membrane stress omx of the plate given in dependence of the
boundary conditions of the plate in the data tables.

komy the coefficient for the membrane stress omy of the plate given in dependence of the
boundary conditions of the plate in the data tables.

Uniformly distributed loading

Out of plane deflection

The deflection w of a plate segment which is loaded by uniformly distributed loading may be
calculated as follows:
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w=k, Jsd? /11.25/

Internal stresses

The bending stresses oux and opy in a plate segment may be determined with the following
equations:

2
Obx.Sd = Kobx qstdza /I1.26/
qsqa’
Oby,sd = Koby Sdz MIL27/
t
The membrane stresses omy and omy in a plate segment may be determined as follows:
2
Crmxsd = Koms qstdza /I128/
qsqa’
Omy.sd = Komy —s /I11.29/
t

At the loaded surface of a plate the total stresses are calculated with the above mentioned
bending and membrane stresses as follows:

Ox,Sd = ~Obx,Sd T Omx,Sd /I1.30/

OySd = Oby,sd + Omysd /M31/

At the no-loaded surface of a plate the total stresses are determined with the bending and
membrane stresses as follows:

Ox,Sd =Obx,Sd T Omx,Sd /MIL32/
GySd = Oby,Sd + Omy,sd /I1.33/

For a plate the equivalent stress ceqsq may be calculated with the stresses given above as
follows:

2 2
Geq,Sd = \/Gx,Sd + Gy,Sd - GX,Sde,Sd /T1.34/

The points for which the state of stress are defined in the data tables are located either on the
centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions,
membrane shearing stresses Tm as well as bending shear stresses 1 are zero. The algebraic sum of
the appropriate bending and membrane stresses at the points considered in the data tables gives
the values of maximum and minimum surface stresses at these points.
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Coefficients k for uniformly distributed loadings

Table II1.9 Coefficients k

Loading: Uniformly distributed loading

Boundary conditions:

Y
FBC: All edges are rigidly supported and
rotationally free.
b L 2
MBC: Zero direct stresses, zero shear stresses
+—+ Parameters:
Q= dsqa”
b/a Q kwi Kobxi Koby1 Komu Komy1 Komy2
1.0 20 0.0396 0.2431 0.2431 0.0302 0.0302 | -0.0589
40 0.0334 0.1893 0.1893 0.0403 0.0403 | -0.0841
120 0.0214 0.0961 0.0961 0.0411 0.0411 -0.1024
200 0.0166 0.0658 0.0658 0.0372 0.0372 | -0.1004
300 0.0135 0.0480 0.0480 0.0335 0.0335 | -0.0958
400 0.0116 0.0383 0.0383 0.0306 0.0306 | -0.0915
1.5 20 0.0685 0.3713 0.2156 0.0243 0.0694 -0.1244
40 0.0546 0.2770 0.1546 0.0238 0.0822 | -0.1492
120 0.0332 0.1448 0.0807 0.0170 0.0789 | -0.1468
200 0.0257 0.1001 0.0583 0.0141 0.0715 | -0.1363
300 0.0207 0.0724 0.0440 0.0126 0.0646 | -0.1271
400 0.0176 0.0569 0.0359 0.0117 0.0595 | -0.1205
2.0 20 0.0921 0.4909 0.2166 0.0085 0.0801 -0.1346
40 0.0746 0.3837 0.1687 0.0079 0.0984 | -0.1657
120 0.0462 0.2138 0.0959 0.0073 0.0992 | -0.1707
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200 0.0356 0.1516 0.0695 0.0067 0.0914 | -0.1610
300 0.0287 0.1121 0.0528 0.0061 0.0840 | -0.1510
400 0.0245 0.0883 0.0428 0.0061 0.0781 -0.1434
Table II1.10 Coefficients k
Loading: Uniformly distributed loading
Ya Boundary conditions:
_— FBC: All edges are rigidly supported and rotationally
free.
b 12 Px MBC: All edges remains straight. Zero average direct
stresses, zero shear stresses
? Parameters: Q = @
Et
b/a Q kw1 Kobxi kcby1 Komxi kcmyl Komx2 ko‘myZ
1 20 0.0369 | 0.2291 0.2291 0.0315 | 0.0315 | 0.0352 | -0.0343
40 0.0293 | 0.1727 0.1727 0.0383 | 0.0383 | 0.0455 | -0.0429
120 | 0.0170 | 0.0887 0.0887 0.0360 | 0.0360 | 0.0478 | -0.0423
200 | 0.0126 | 0.0621 0.0621 0.0317 | 0.0317 | 0.0443 | -0.0380
300 | 0.0099 | 0.0466 0.0466 0.0280 | 0.0280 | 0.0403 | -0.0337
400 | 0.0082 | 0.0383 0.0383 0.0255 | 0.0255 | 0.0372 | -0.0309
1.5 20 0.0554 | 0.3023 0.1612 0.0617 | 0.0287 | 0.0705 | -0.0296
40 0.0400 | 0.2114 0.1002 0.0583 | 0.0284 | 0.0710 | -0.0293
120 | 0.0214 | 0.1079 0.0428 0.0418 | 0.0224 | 0.0559 | -0.0224
200 | 0.0157 | 0.0778 0.0296 0.0345 | 0.0191 | 0.0471 | -0.0188
300 | 0.0122 | 0.0603 0.0224 0.0296 | 0.0167 | 0.0408 | -0.0161
400 | 0.0103 | 0.0505 0.0188 0.0267 | 0.0152 | 0.0369 | -0.0147
2 20 0.0621 | 0.3234 0.1109 0.0627 | 0.0142 | 0.0719 | -0.0142
40 0.0438 | 0.2229 0.0689 0.0530 | 0.0120 | 0.0639 | -0.0120
120 | 0.0234 | 0.1163 0.0336 0.0365 | 0.0086 | 0.0457 | -0.0083
200 | 0.0172 | 0.0847 0.0247 0.0305 | 0.0075 | 0.0384 | -0.0067
300 | 0.0135 | 0.0658 0.0195 0.0268 | 0.0067 | 0.0335 | -0.0058
400 | 0.0113 | 0.0548 0.0164 0.0244 | 0.0064 | 0.0305 | -0.0050
3 20 0.0686 | 0.3510 0.1022 0.0477 | 0.0020 | 0.0506 | -0.0007
40 0.0490 | 0.2471 0.0725 0.0420 | 0.0020 | 0.0441 0.0000
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120 0.0267 | 0.1317 0.0390 0.0320 | 0.0027 | 0.0335 0.0010
200 0.0196 | 0.0954 0.0283 0.0271 | 0.0044 | 0.0285 0.0027
300 0.0153 | 0.0733 0.0217 0.0242 | 0.0059 | 0.0256 0.0044
400 0.0127 | 0.0605 0.0178 0.0221 | 0.0066 | 0.0235 0.0051

Table II1.11 Coefficients k

Loading: Uniformly distributed loading

Ya Boundary conditions:
— FBC: All edges are rigidly supported and rotationally
‘ fixed.
b 12 Px MBC: Zero direct stresses, zero shear stresses
Parameters: Q = qua4
+—t ' B2
b/a Q kw1 Kobxi Koyl Komxi Komyl Kobx2 Komy2

1 20 0.0136 | 0.1336 | 0.1336 0.0061 0.0061 | -0.3062 | -0.0073
40 0.0131 | 0.1268 | 0.1268 0.0113 0.0113 | -0.3006 | -0.0137
120 0.0108 | 0.0933 | 0.0933 0.0212 0.0212 | -0.2720 | -0.0286
200 0.0092 | 0.0711 | 0.0711 0.0233 0.0233 | -0.2486 | -0.0347
300 0.0078 | 0.0547 | 0.0547 0.0233 0.0233 | -0.2273 | -0.0383
400 0.0069 | 0.0446 | 0.0446 0.0226 0.0226 | -0.2113 | -0.0399
1.5 20 0.0234 | 0.2117 | 0.1162 0.0061 0.0133 | -0.4472 | -0.0181
40 0.0222 | 0.1964 | 0.1050 0.0098 0.0234 | -0.4299 | -0.0322
120 0.0173 | 0.1406 | 0.0696 0.0124 0.0385 | -0.3591 | -0.0559
200 0.0144 | 0.1103 | 0.0537 0.0116 0.0415 | -0.3160 | -0.0620
300 0.0122 | 0.0879 | 0.0430 0.0105 0.0416 | -0.2815 | -0.0636
400 0.0107 | 0.0737 | 0.0364 0.0098 0.0409 | -0.2583 | -0.0635
2 20 0.0273 | 0.2418 | 0.0932 0.0010 0.0108 | -0.4935 | -0.0150
40 0.0265 | 0.2330 | 0.0897 0.0017 0.0198 | -0.4816 | -0.0277
120 0.0223 | 0.1901 | 0.0740 0.0032 0.0392 | -0.4223 | -0.0551
200 0.0192 | 0.1578 | 0.0621 0.0039 0.0456 | -0.3780 | -0.0647
300 0.0165 | 0.1306 | 0.0518 0.0042 0.0483 | -0.3396 | -0.0690
400 0.0147 | 0.1120 | 0.0446 0.0044 0.0487 | -0.3132 | -0.0702
3 20 0.0288 | 0.2492 | 0.0767 | -0.0015 | 0.0027 | -0.5065 | -0.0033
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40 0.0290 | 0.2517 | 0.0795 | -0.0022 | 0.0066 | -0.5095 | -0.0084
120 0.0281 | 0.2440 | 0.0812 | -0.0010 | 0.0247 | -0.4984 | -0.0331
200 0.0260 | 0.2230 | 0.0750 0.0000 0.0368 | -0.4702 | -0.0497
250 0.0247 | 0.2096 | 0.0707 0.0002 0.0415 | -0.4520 | -0.0564
Table II1.12 Coefficients k
Loading: Uniformly distributed loading
Va Boundary conditions:
N R FBC: All edges are rigidly supported and
’ rotationally fixed.
b 12 Px MBC: All edges remains straight. Zero average
‘ direct stresses, zero shear stresses
Tt Parameters: Q = %
Et
b/a Q kw1 Kobxi Kobyl Komxi Komyl Kobx2 Komx2 Komy2

| 20 [0.0136 |0.1333 |0.1333 | 0.0065 |0.0065 |-0.3058 |0.0031 |-0.0055
40 10.0130 |0.1258 |0.1258 |0.0118 |0.0118 |-0.3000 |0.0059 |-0.0103
120 |0.0105 |0.0908 |0.0908 |0.0216 |0.0216 |-0.2704 |0.0123 |-0.0202
200 | 0.0087 |0.0688 |0.0688 |0.0234 |0.0234 |-0.2473 |0.0151 |-0.0233
300 |0.0073 |0.0528 |0.0528 |0.0231 |0.0231 |-0.2267 |0.0169 [|-0.0244
400 |0.0063 |0.0430 |0.0430 |0.0223 |0.0223 |-0.2119 |0.0176 |- 0.0246
1.5 [ 20 ]0.0230 |0.2064 |0.1125 |0.0137 |0.0097 |-0.4431 |0.0118 |-0.0082
40 |0.0210 |0.1833 |0.0957 |0.0218 |0.0155 |-0.4195 |0.0200 [-0.0133
120 | 0.0149 |0.1175 ]0.0532 | 0.0275 |0.0202 |-0.3441 |0.0295 |-0.0185
200 |0.0118 |0.0876 |0.0369 |0.0259 |0.0195 |-0.3028 |0.0304 |-0.0182
300 |0.0096 |0.0678 |0.0275 |0.0238 |0.0180 |-0.2710 |0.0300 |-0.0173
400 |0.0083 |0.0562 |0.0221 |0.0220 |0.0168 |-0.2492 |0.0291 |[-0.0163
2 20 10.0262 |0.2288 |0.0853 |0.0140 |0.0060 |-0.4811 |0.0149 |-0.0052
40 10.0234 |0.1994 |0.0701 |0.0206 |0.0086 |-0.4492 |0.0234 |-0.0077
120 |0.0162 |0.1276 |0.0404 |0.0238 |0.0094 |-0.3611 |0.0299 |-0.0086
200 |0.0129 |0.0963 |0.0296 |0.0223 |0.0085 |-0.3162 |0.0289 |-0.0079
300 |0.0105 |0.0752 |0.0230 |0.0208 |0.0077 |-0.2824 |0.0274 |-0.0072
400 |0.0090 |0.0627 |0.0190 |0.0196 |0.0071 |-0.2600 |0.0259 |- 0.0066
3 20 |0.0272 |0.2331 |0.0700 | 0.0102 |0.0010 |-0.4878 |0.0111 |- 0.0008
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40 0.0247 |0.2071 |0.0615 |0.0149 |0.0011 |-0.4575 |0.0167 |-0.0009

120 |0.0177 ]0.1396 |0.0413 |0.0186 |0.0009 |-0.3727 |0.0202 |- 0.0005

200 |0.0143 |0.1074 |0.0319 |0.0184 |0.0009 |-0.3272 |0.0197 |-0.0003

300 |0.0117 |0.0848 |0.0251 |0.0176 |0.0008 |-0.2924 |0.0192 |-0.0002

400 |0.0101 |0.0709 |0.0210 |0.0169 |0.0008 |-0.2687 |0.0182 |0.0000

Central patch loading

Out of plane deflection

The deflection w and the stresses shall be determined with the formulas provided calculated of a
plate which is loaded by a central patch loading may be calculated as follows:

4
a
w =k, PS8 /II1L35/
Et
Internal stresses

The bending stresses onx and opy in a plate segment may be determined with the following
equations:
2

a
Obrsd = Kopx 2% /IL36/
t
Psq2’
cSby,sd = k(jby % /I1.37/
t
The membrane stresses omx and Gmy in a plate segment may be determined as follows:
2
Cinx5d = Komx o0 /I1138/
t
Psaa’
Cmy.sd = Komy —5— /I11.39/

t

At the loaded surface of a plate the total stresses are calculated with the above mentioned
bending and membrane stresses as follows:

GX,Sd = _GbX,Sd + Gmx,Sd /T1.43/

Oy.Sd = Oby,Sd + Omy,Sd /IL41/

At the no-loaded surface of a plate the total stresses are determined with the bending and
membrane stresses as follows:
Gx,Sd = Gbx,Sd + Gmx,Sd /111.42/

Gy.Sd = Oby,Sd T Omy,Sd /111.43/

For a plate the equivalent stress Geqsq may be calculated with the stresses given above as
follows:

2 2
Geq,Sd = \/Gx,Sd + Cysd— GX,Sde,Sd /111.44/
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The points for which the state of stress are defined in the data tables are located either on the
centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions,
membrane shearing stresses Tm as well as bending shear stresses 1 are zero. The algebraic sum of
the appropriate bending and membrane stresses at the points considered in the data tables gives
the values of maximum and minimum surface stresses at these points.

Coefficients k for uniformly distributed loadings
Table II1.13 Coefficients k

Loading: Central patch loading

a Boundary conditions:
FBC: All edges are rigidly supported and rotationally
b V]:E/Ll 2 ), free.
—+ MBC: Zero direct stresses, zero shear stresses
] Parameters: oo =u/a; p=v/a, b/a=1
oxp P K1 Ko Koby1 Komxi Komyl

0.1x0.1 10 0.1021 1.4586 1.4586 0.1548 0.1548
20 0.0808 1.2143 1.2143 0.1926 0.1926

60 0.0485 0.8273 0.8273 0.2047 0.2047

100 0.0372 0.6742 0.6742 0.1978 0.1978

150 0.0298 0.5693 0.5693 0.1892 0.1892

200 0.0255 0.5005 0.5005 0.1823 0.1823

0.2x0.2 10 0.0998 1.0850 1.0850 0.1399 0.1399
20 0.0795 0.8593 0.8593 0.1729 0.1729

60 0.0478 0.5108 0.5108 0.1756 0.1756

100 0.0364 0.3881 0.3881 0.1624 0.1624

150 0.0293 0.3089 0.3089 0.1505 0.1505

200 0.0249 0.2614 0.2614 0.1412 0.1412

0.3x0.3 10 0.0945 0.8507 0.8507 0.1144 0.1144
20 0.0759 0.6614 0.6614 0.1425 0.1425

60 0.0459 0.3702 0.3702 0.1425 0.1425

100 0.0351 0.2704 0.2704 0.1300 0.1300

150 0.0282 0.2101 0.2101 0.1186 0.1186

200 0.0240 0.1747 0.1747 0.1102 0.1102

0.2x0.3 10 0.0971 0.9888 0.9128 0.1224 0.1288
20 0.0776 0.7800 0.7101 0.1512 0.1602

60 0.0468 0.4596 0.4021 0.1488 0.1624

100 0.0358 0.3468 0.2957 0.1368 0.1512

150 0.0287 0.2760 0.2307 0.1248 0.1389

200 0.0245 0.2340 0.1926 0.1152 0.1310
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0.2x0.4 10 0.0939 0.9119 0.7961 0.1078 0.1183
20 0.0755 0.7216 0.6142 0.1320 0.1487

60 0.0457 0.4235 0.3355 0.1287 0.1516

100 0.0350 0.3201 0.2435 0.1166 0.1408

150 0.0280 0.2541 0.1868 0.1045 0.1301

200 0.0239 0.2156 0.1545 0.0968 0.1213

Table I11.14 Coefficients k
Loading: Central patch loading
Y Boundary conditions:
FBC: All edges are rigidly supported and rotationally
X "I 12 > free. .
4 MBC: Zero direct stresses, zero shear stresses
- Parameters: oo =u/a; B = v/a, b/a=1.5
+—+

oxf P Kwi Kobxi Koyl Komx Komy!
0.1x0.1 10 0.1303 1.5782 1.3855 0.1517 0.1921
20 0.1018 1.3056 1.1373 0.1786 0.2295

60 0.0612 0.8986 0.7701 0.1824 0.2380

100 0.0469 0.7411 0.6273 0.1747 0.2295

150 0.0378 0.6298 0.5287 0.1670 0.2193

200 0.0323 0.5568 0.4641 0.1594 0.2125

0.2x0.2 10 0.1281 1.1974 1.0049 0.1344 0.1780
20 0.1007 0.9453 0.7766 0.1555 0.2116

60 0.0605 0.5783 0.4554 0.1465 0.2103

100 0.0462 0.4485 0.3457 0.1329 0.1974

150 0.0372 0.3624 0.2748 0.1208 0.1845

200 0.0317 0.3111 0.2322 0.1133 0.1742

0.3x0.3 10 0.1229 0.9589 0.7737 0.1074 0.1525
20 0.0972 0.7405 0.5828 0.1232 0.1818

60 0.0585 0.4282 0.3161 0.1110 0.1788

100 0.0449 0.3221 0.2353 0.0988 0.1667

150 0.0361 0.2550 0.1828 0.0878 0.1535

200 0.0309 0.2147 0.1525 0.0805 0.1444

0.2x0.3 10 0.1260 1.1037 0.8360 0.1154 0.1657
20 0.0994 0.8688 0.6322 0.1321 0.1984

60 0.0598 0.5296 0.3553 0.1168 0.1973

100 0.0459 04114 0.2649 0.1043 0.1853

150 0.0369 0.3336 0.2082 0.0931 0.1722
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200 0.0314 0.2877 0.1755 0.0848 0.1624
0.2x0.4 10 0.1235 1.0294 0.7271 0.0993 0.1563
20 0.0977 0.8101 0.5432 0.1109 0.1877
60 0.0590 0.4954 0.2983 0.0955 0.1877
100 0.0453 0.3857 0.2220 0.0826 0.1754
150 0.0365 0.3148 0.1744 0.0722 0.1630
200 0.0311 0.2722 0.1468 0.0658 0.1544
Table II1.15 Coefficients k
Loading: Central patch loading
Y Boundary conditions:
FBC: All edges are rigidly supported and rotationally
X "I o o free. .
pa MBC: Zero direct stresses, zero shear stresses
_ Parameters: oo =u/a; f =v/a, b/a=2
oxp P K1 Kobxi Kobyl Komx Komyl
0.1x0.1 10 0.1438 1.6351 1.3560 0.1517 0.1904
20 0.1154 1.3692 1.1106 0.1773 0.2288
60 0.0725 0.9633 0.7498 0.1753 0.2438
100 0.0564 0.7979 0.6112 0.1675 0.2355
150 0.0456 0.6797 0.5127 0.1596 0.2271
200 0.0390 0.6028 0.4492 0.1517 0.2188
0.2x0.2 10 0.1414 1.2542 0.9752 0.1326 0.1751
20 0.1138 1.0078 0.7510 0.1513 0.2104
60 0.0716 0.6427 0.4410 0.1373 0.2167
100 0.0555 0.5054 0.3339 0.1232 0.2054
150 0.0449 0.4134 0.2646 0.1108 0.1928
200 0.0384 0.3572 0.2230 0.1030 0.1827
0.3x0.3 10 0.1362 1.0227 0.7506 0.1062 0.1517
20 0.1104 0.8090 0.5615 0.1190 0.1822
60 0.0698 0.4941 0.3093 0.1024 0.1862
100 0.0542 0.3789 0.2275 0.0883 0.1753
150 0.0421 0.3046 0.1783 0.0794 0.1645
200 0.0374 0.2586 0.1487 0.0717 0.1546
0.2x0.3 10 0.1395 1.1702 0.8164 0.1146 0.1231
20 0.1129 0.9396 0.6153 0.1262 0.1990
60 0.0712 0.6003 0.3488 0.1088 0.2044
100 0.0553 0.4742 0.2611 0.0943 0.1947
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150 0.0447 0.3901 0.2065 0.0841 0.1830

200 0.0383 0.3379 0.1744 0.0754 0.1733

0.2x0.4 10 0.1375 1.0976 0.7051 0.0959 0.1551
20 0.1117 0.8829 0.5267 0.1053 0.1886

60 0.0706 0.5670 0.2945 0.0851 0.1942

100 0.0549 0.4496 0.2220 0.0729 0.1849

150 0.0445 0.3713 0.1765 0.0635 0.1737

200 0.0381 0.3227 0.1496 0.0554 0.1644

Table III.16 Coefficients k
Loading: Central patch loading
Ya Boundary conditions:
FBC: All edges are rigidly supported and rotationally
b "IEZ 2 ), free.
ot MBC: Zero direct stresses, zero shear stresses
+—+ Parameters: oo =u/a; f =v/a, b/a=2.5

axp P kw1 Kobxi Koyl Komx Komy!
0.1x0.1 10 0.1496 1.6636 1.3463 0.1552 0.1826
20 0.1235 1.4109 1.1006 0.1811 0.2175

60 0.0861 1.0428 0.7453 0.1811 0.2374

0.2x0.2 10 0.1470 1.2814 0.9650 0.1359 0.1688
20 0.1218 1.0491 0.7400 0.1548 0.2000

60 0.0849 0.7205 0.4363 0.1390 0.2088

0.3x0.3 10 0.1419 1.0504 0.7410 0.1092 0.1443
20 0.1182 0.8489 0.5519 0.1222 0.1726

60 0.0827 0.5681 0.3052 0.1014 0.1775

0.2x0.3 10 0.1455 1.1981 0.8056 0.1161 0.1579
20 0.1210 0.9820 0.6053 0.1294 0.1876

60 0.0847 0.6806 0.3487 0.1088 0.1982

0.2x0.4 10 0.1434 0.6949 0.0986 0.1469
20 0.1199 0.9261 0.5168 0.1069 0.1763

60 0.0844 0.6480 0.2993 0.0849 0.1873
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