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Preface 
Orthotropic steel bridges are commonly used in long-span steel bridges in many parts of the world, especially in 

Central Europe. Their popularity is based on the fact, that very light structures with high rigidity and small amount 
of material can be constructed. The analysis and construction work of orthotropic steel bridges, however, are 
complicated and require special skills, which make such structures very suitable to be discussed at final year bridge 
engineering courses. 

 
The first main Chapter of the book gives an overview on the theory of orthotropic plates. In the second Chapter, 

methods of analysis are discussed. The third Chapter deals with limit states and modelling of the different parts of 
an orthotropic structure. The fourth Chapter discusses the construction of such structures. The fifth Chapter deals 
with the refurbishment problems of orthotropic steel bridges. The sixth Chapter discusses the design of steel bridges 
according to Eurocode 3, and during three examples shows the application of these design rules. The extracts in the 
Appendixes help the understanding of the application of design rules. 

 
The primary audience for this book is the post-graduate students, and research and design professionals 

working in the field of structural engineering. It is assumed that the reader has background knowledge of steel 
design. 
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1 Introduction 

1.1 Characteristics of Materials and Structures 
We assume in discussing the structural behaviour of engineering materials they hold certain 
idealized natural physical properties. It is assumed that the material is a perfectly elastic solid 
which will proceed its initial form completely after unloading. Mathematically, this elastic 
property is described by Hooke's law. Further, we assume that it is homogeneous 
[Troitsky, 1987]. 

A solid, which shows identical elastic behaviour in all directions, is called isotropic. Actually, 
this is an idealization of physical properties, because very seldom do such material bodies or 
structural materials exist. 

Physically, most structural materials, such as, for example, steel, are composed of crystals of 
various kinds, as well as orientations and elastic properties in all directions. However, in 
considering relatively small sizes of crystals and their random distribution, it may be assumed 
that the elastic behaviour of one piece of material is expressed by the average of elastic properties 
of all crystals. On the basis of this approximation, the material is considered to be isotropic. 

Apart from homogeneous and isotropic materials, modern construction also uses materials 
with definitely expressed differences in elastic properties in different directions. Such materials 
are called anisotropic. 

Sometimes the fabrication methods make it necessary to consider anisotropic conditions for 
structural materials. Some sheets of metal show a marked anisotropy, depending on the direction 
of rolling. Consequently, such sheets show different elastic properties in different directions. 

In such case, where a body possesses different elastic properties in only two perpendicular or 
orthogonal directions, it is called orthogonal-anisotropic, or in short, orthotropic. Therefore, 
orthotropy is only a particular case of anisotropy. Orthotropy, due to the physical structure of the 
material itself, is called "natural orthotropy" [Troitsky, 1987]. 

For the structural design of orthotropic elements, which are in a state of elastic deformation, it 
is necessary to determine theoretically those stresses and deformations in the orthotropic solids, 
or to solve the problem of the theory of elasticity of such orthotropic solids. 

1.2 Historical Development of Orthotropic Plate 

1.2.1 First stiffened steel plates as bridge decks 
Stiffened steel plates have been used for many years in steel construction, for instance in ship 
building, hydraulic structures such as gates, locks, etc. The term 'orthotropic plate' used in 
association with bridge decks originates from the invention of a particular type of stiffened steel 
plate for the deck of steel road bridges which led to a patent in 1948 [Patentschrift, 1948]. The 
'orthotropic plate' according to this patent was more than just a stiffened light weight steel deck, 
because various such decks were already built before the patent [MAN, 1957]. A 'bridge with an 
orthotropic plate' according to the patent meant a new approach to bridge design by which steel 
weights of pre-war bridge designs, Fig. 1.1, could be reduced by up to 50% [Sedlacek, 1992]. 
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Figure 1.1 Traditional prewar bridge design with independent main girders, transverse beams, longitudinal 
girders and bridge deck and steel bridge with an orthotropic deck. 

The main features of this breakthrough for steel bridges were: 

– the deck plate forms an integral part of the main girders and cross girders and of the 
continuous longitudinal stringers by acting as part of their top flanges; 

– the distance between the cross girders is smaller than 1/3 of the distance between the 
main girders allowing considerable advantage to be taken of the application of the theory 
of the orthogonal–anisotropic (orthotropic) plates to the design of the transverse and 
longitudinal girders, Fig. 1.2. 
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Figure 1.2 Bridge with an orthotropic plate according to the patent [Patentschrift, 1948]. 

The application rules associated with this patent were based on a minimum weight 
optimisation study. The original application rules in principle are still valid today with only small 
modifications caused by the change in the ratio of fabrication costs to material costs. 

Stiffened steel deck plates used for road bridges are normally welded structures. The first 
deck was constructed in 1936, Fig. 1.3 [Schaechterle and Leonhardt, 1936]. The plate thickness 
was 10 mm, the distance between the longitudinal stringers made of I 457/152 was 51 cm and the 
distance between transverse beams was 1.09 m. All welds were hand welded fillet welds and took 
a lot of fabrication time. The main costs arose from the after-weld straightening procedure, which 
was needed because the weld shrinkage was not well controlled in those days. 

As a result of this experience it was felt that larger spacings of the longitudinal stringers with 
the consequent reduction of weld-volume would improve the economy. This however led to 
damage to the asphalt layer [Roloff, 1942]. Hence it was necessary to return to smaller stringer 
spacings, which are now considered to be sufficient if the ratio of the distance, d, to the plate 
thickness, t, is such that d/t < 25, where the minimum thickness t is 12 mm. 

In spite of this apparently regressive step the stiffened deck plates became more economical 
due to the introduction of automatic welding and a better understanding and control of shrinkage 
effects by the use of appropriate welding sequences, Fig. 1.4 [Pelikan, W. and Esslinger, M., 
1957]. 

The first profiles for the stringers of orthotropic plates were open profiles such as angles, flat 
bars, or bulb fiats such as those used in ship building, Fig 1.5. For effective operation of these 
open sections the cross girders were spaced in the range of 0.9-1.9 m centres. The stringers 
normally ran continuously through the webs of the cross girders, Fig. 1.6, and the welded joints 
of the stringers were located at the points of contraflexure and detailed as illustrated in Fig. 1.7. 
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Due to the heavy costs of fabricating a deck with ship building profiles used as stringers, 
which were welded on both sides at the cross girder web intersections and other detailing 
solutions had to be found as indicated in Fig. 1.8, which made better allowance for the tolerances 
in the assembly and reduced the weld lengths. 
 
 
 
 
 
 
 
 

Figure 1.3 Stiffened steel deck of the highway bridge at Kircheim/Teck (Germany) built in 
[Schaechterle and Leonhardt, 1936]. 

 
 
 
 
 
 
 
 
 
 

Figure 1.4 Stiffened steel deck with ship building profiles (Hasenhub Brodge in Meppen, Germany), 1947, 
[MAN, 1957]. 

 
 
 
 
 
 
 
 

 
 
 

Figure 1.5 Open profiles for longitudinal stiffeners   Figure 1.6 Stringers running through the webs of the 
cross girders [MAN, 1957]. 
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Figure 1.7 Detailing of the welded joints, [MAN, 1957]. 

 
 
 
 
 
 
 
 

 
 

Figure 1.8 Development of the detailing of the connection between stringers and webs of cross girders, 
[Kunert, 1967]. 

1.2.2 First closed section stringers 
In 1954 the first orthotropic decks with closed section stringers were constructed, Fig. 1.9. 

The advantages of this system were: 

– - the span lengths of the stringers were increased to 2.40 m and hence the number of 
costly hand welded intersections in the cross girders was reduced; 

– - the volume of the welds could be reduced by 50% by using one side welding only to the 
thin hollow closed stringers; 

– - advantage could be taken of the torsional rigidity in improving the local distribution of 
the deck. 
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Figure 1.9 Orthotropic plate deck with closed section stringers (Weser-bridge Porta, Germany), 
[Dörnen, 1955]. 

The disadvantage however appeared to be the lack of an economical welded joint solution for 
the stringers. The joints were either bolted, or the stringers were welded to each side of the web of 
the transverse beams, with large shrinkage effects being induced and thus a tendency to weld 
cracking. For some bridges this procedure later led to damage by crack propagation due to heat 
induced strains when the hot asphalt surfacing was put into place or due to traffic Ioads 
[Wolchuk, 1990] [Günther, 1985]. 

Further attempts were therefore undertaken to improve the detailing of orthotropic plate decks 
with closed stringers such as providing stringers running continuously through the webs of the 
cross girders and developing economic full welded joints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10 Champagne-glass profiles for longitudinal stringers, [Sedlacek, 1972]. 
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The first step in this direction was represented by the development of 'champagne-glass-ribs' 
in the early 1960s, Fig. 1.10, built up of plates and rolled or other profiles. By increasing the 
bending resistance it was possible to extend the span lengths of the longitudinal stringers to up to 
3.60 m and to adjust the chord profile to the local needs. At the crossings with the webs of the 
cross girders the flange sections ran continuously through whereas the plates were welded to the 
web plates, Fig. 1.11. The welded joint nominally was detailed as shown in Fig. 1.12, where 
tolerance problems and shrinkage effects accounted for by the 'window-joint-technique'. 

The disadvantage of these built up stringers were the high welding costs as well as the 
tendency to cracking at the stringer-cross girder intersections caused by  restraints to shrinkage 
resulting from the accumulation of welds in that zone. 
 
 
 
 
 
 
 
 
 
 

Figure 1.11 Detailing of the intersection between 'champagne-glass profiles' and the webs of cross girders. 

 
 
 
 
 
 
 
 
 
 

Figure 1.12 Welded joint of champagne-glass profiles with 'widow-joint-technique'. 

1.2.3 Present standard of construction 
In the late 1960s a breakthrough was achieved by the development of cold forming plants for 
sheet piling profiles in the steel industry. In these plants it was possible to produce long 
trapezoidal or vee shaped stringers from coils with acceptable geometries at acceptable prices. 
These profiles allowed cross girder spacings of up to 5 m to be achieved. By running the stringers 
through cross girder webs significant savings in the assembly and fabrication of deck panels were 
made possible, Fig. 1.13 [Sedlacek, 1972]. 
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Figure 1.13 Detailing of the crossing of the hollow section stringers with the webs of the cross girders, 
[Sedlacek, 1972]. 

The cut outs in the cross girders' webs at the intersections were shaped such that the 
tolerances on the shapes of the hollow sections could be accounted for and sufficient fatigue 
resistance at the welds achieved. Using this technique a great amount of assembly and welding 
could be done automatically, Fig. 1.14. An economical solution for the welded joints the stringers 
was obtained using the 'window-joint-technique' as indicated in Fig. 1.15 [Kahmann, 1973]. 

 
 
 
 
 
 
 
 
 

Figure 1.14 Assembly of the orthotropic plate. 

These technical developments of the 'orthotropic plate' deck now provide the standard 
solution for road bridges and by slight modification of the cut outs, Fig. 1.16, also enable 
stiffened decks with closed ribs to be used for railway bridges. Fabrication costs could be further 
reduced by using similar construction also for the stiffened bottom flanges of box girders or for 
the webs of such girders with modifications only to the shape and spacing of the ribs. 

Even in the case of bridges curved in plan orthogonal rib stiffening can be maintained by 
polygonal approximation using the 'window joint-technique' and where access of the window 
joints is restricted site welding can be carried out by separating the window-intersection-piece 
into two halves. 
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Figure 1.15 Welding sequence for the welded joint of the hollow section stringers with 'window-joint-
technique', [Kahmann, 1973]. 

 
 
 
 
 
 
 
 
 

Figure 1.16 Improved cut out for orthotropic decks for railway bridges. 

The trend to greater span lengths of closed section stringers however has been limited by the 
following factors: 

– The production of deep trapezoidal ribs gives rise to tolerance problems and hence 
increases the assembly costs. 

– Deep ribs lead to larger cut outs in the webs of the cross girders, Fig. 1.17, and produce a 
significant reduction of the shear resistance that cannot easily be compensated by the 
bending stiffness of the deck plate. 

– Last but not least, the traffic loads on 1ong span stiffeners may cause deflections, Fig. 18 
[Günther et al., 1987], associated with large local transverse curvatures in the deck plate 
which may cause cracking of the asphalt surfacing. Experience of such surfacing cracks 
on orthotropic decks with large stringer spans has been used to formulate a requirement 
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for a minimum rib stiffness to prevent cracking of the surfacing. This can control the 
stringer design in many cases. 

Using the above design criteria span lengths of stringers are normally limited to 3.50 – 4.50 
m. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.17 Critical sections for the shear and local bonding in the web of the cross girders. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.18 Potential positions of cracks in the asphalt layer, [Günther et al., 1987]. 

1.3 Introduction to Behaviour of Plated Structures 
Plates are very important elements in steel structures. They can be assembled into complete 
members by the basic rolling process (as hot rolled sections), by folding (as cold formed sections) 
and by welding. The efficiency of such sections is due to their use of the high in-plane stiffness of 
one plate element to support the edge of its neighbour, thus controlling the out-of-plane behaviour 
of the latter [ESDEP, 1994]. 

The size of plates in steel structures varies from about 0.6 mm thickness and 70 mm width in 
a corrugated steel sheet, to about 100 mm thick and 3 m width in a large industrial or offshore 
structure. Whatever, the scale of construction the plate panel will have a thickness t that is much 
smaller than the width b, or length a. As will be seen later, the most important geometric 
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parameter for plates is b/t and this will vary, in an efficient plate structure, within the range 30 to 
250. 

1.3.1 Basic behaviour of a plate panel 
Understanding of plate structures has to begin with an understanding of the modes of behaviour 
of a single plate panel. 

1.3.1.1 Geometric and boundary conditions with different actions 

The important geometric parameters are thickness t, width b (usually measured transverse to the 
direction of the greater direct stress) and length a, see Fig. 1.19.a. The ratio b/t, often called the 
plate slenderness, influences the local buckling of the plate panel; the aspect ratio a/b may also 
influence buckling patterns and may have a significant influence on strength. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.19 Significant boundary conditions for plate panels. 



 12 

In addition to the geometric proportions of the plate, its strength is governed by its boundary 
conditions. Fig. 1.19 shows how response to different types of actions is influenced by different 
boundary conditions. Response to in-plane actions that do not cause buckling of the plate is only 
influenced by in-plane, plane stress, boundary conditions, Fig. l.19.b. Initially, response to out-of-
plane action is only influenced by the boundary conditions for transverse movement and edge 
moments, Fig. l.19.c. However, at higher actions, responses to both types of action conditions are 
influenced by all four boundary conditions. Out-of plane conditions influence the local buckling, 
see Fig. l.19.d; in-plane conditions influence the membrane action effects that develop at large 
displacements (> t) under lateral actions, see Fig. l.19.e. 

(a) In-plane actions 

As shown in Fig. 1.20.a, the basic types of in-plane actions to the edge of a plate panel are the 
distributed action that can be applied to a full side, the patch action or point action that can be 
applied locally. 

When the plate buckles, it is particularly important to differentiate between applied 
displacements, see Fig. 1.20.b and applied stresses, see Fig. 1.20.c. The former permits a 
redistribution of stress within the panel; the more flexible central region sheds stresses to the 
edges giving a valuable post buckling resistance. The latter, rarer case leads to an earlier collapse 
of the central region of the plate with in-plane deformation of the loaded edges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.20 Types of in-plane actions. 
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(b) Out-of-plane actions 

Out-of-plane loading may be: 

– uniform over the entire panel, see for example Fig. 1.21.a, the base of a water tank, 
– varying over the entire panel, see for example Fig. 1.21.b, the side of a water tank, 
– a local patch over part of the panel, see for example Fig. 1.21.c, a wheel toad on a bridge 

deck. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.21 Types of out-of-plane actions. 

1.3.1.2 Determination of plate panel actions 

In some cases, for example in Fig. 1.22.a, the distribution of edge actions on the panels of a 
plated structure is self-evident. In other cases the in-plane flexibilities of the panels lead to 
distributions of stresses that cannot be predicted from simple theory. In the box girder shown in 
Fig. 1.22.b, the in-plane shear flexibility of the flanges leads to in-plane deformation of the top 
flange. Where these are interrupted, for example at the change in direction of the shear at the 
central diaphragm, the resulting change in shear deformation leads to a non-linear distribution of 
direct stress across the top flange; this is called shear lag. 

In members made up of plate elements, such as the box girder shown in Fig. 1.23, many of the 
plate components are subjected to more than one component of in-plane action effect. Only panel 
A does not have shear coincident with the longitudinal compression. 

If the cross-girder system EFG, was a means of introducing additional actions into the box, 
there would also be transverse direct stresses arising from the interaction between the plate and 
the stiffeners. 

1.3.1.3 Variations in buckled mode 

I. Aspect ratio a/b 
 

In a long plate panel, as shown in Fig. 24, the greatest initial inhibition to buckling is 
the transverse flexural stiffness of the plate between unloaded edges. (As the plate 
moves more into the post-buckled regime, transverse membrane action effects become 
significant as the plate deforms into a non-developable shape, i.e. a shape that cannot 
be formed just by bending). 
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Figure 1.22 Effect of shear lag on distribution of stresses in plated structures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23 Examples of components of action on plate panels in a box girder. 
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Figure 1.24 Variations in buckled mode with aspect ratio for a plate panel in longitudinal compression. 

As with any instability of a continuous medium, more than one buckled mode is 
possible, in this instance, with one half wave transversely and in half waves 
longitudinally. As the aspect ratio increases the critical mode changes, tending towards 
the situation where the half wave length a/m = b. The behaviour of a long plate panel 
can therefore be modelled accurately by considering a simply-supported, square panel. 

 
II. Bending conditions 

 
As shown in Fig. 1.25, boundary conditions influence both the buckled shapes and the 
critical stresses of elastic plates. The greatest influence is the presence or absence of 
simple supports, for example the removal of simple support to one edge between case 
1 and case 4 reduces the buckling stress by a factor of 4.0/0.425 or 9.4. By contrast 
introducing rotational restraint to one edge between case 1 and case 2 increases the 
buckling stress by 1.35.  
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 ( ) 22

22

cr b 1 12
Etk
−


=   

 
Case Description of support at the unloaded edges k 

1 Both edges simply 
supported 

 4.00 

2 One edges simply 
supported, the other 
fixed 

 5.42 

3 Both edges fixed 
supported 

 6.97 

4 One edges simply 
supported, the other free 

 0.425 

5 One edge fixed, the other 
free 

 1.277 

Figure 1.25 Coefficients for plate buckling in compression for various boundary conditions. 

III. Interaction of modes 
 
Where there is more than one action component, there will be more than one mode and 
therefore there may be interaction between the modes. Thus in Fig. 1.26.b(i) the 
presence of low transverse compression does not change the mode of buckling. 
However, as shown in Fig. 1.26.b(ii), high transverse compression will cause the panel 
to deform into a single half wave. (In some circumstances this forcing into a higher 
mode may increase strength; for example, in case 26.b(ii), predeformation/transverse 
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compression may increase strength in longitudinal compression.) Shear buckling as 
shown in Fig. 1.26.c is basically an interaction between the diagonal, destabilising 
compression and the stabilising tension on the other diagonal.  
Where buckled modes under the different action effects are similar, the buckling 
stresses under the combined actions are less than the addition of individual action 
effects. Fig. 1.27 shows the buckling interactions under combined compression, and 
uniaxial compression and shear.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.26 Buckling modes for plate panels. 
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Figure 1.27 Interaction of buckling modes for square plate panel. 

1.3.1.4 Post buckling behaviour 

Figs. 1.28.a, 1.28.b and 1.28.c describe in more detail the changing distribution of stresses as a 
plate buckles following the equilibrium path shown in Fig. 1.28.d. As the plate initially buckles 
the stresses redistribute to the stiffer edges. As the buckling continues this redistribution becomes 
more extreme (the middle strip of slender plates may go into tension before the plate fails). Also 
transverse membrane stresses build up. These are self-equilibrating unless the plate has clamped 
in-plane edges; tension at the mid panel, which restrains the buckling is resisted by compression 
at the edges, which are restrained from out-of plane movement. 

An examination of the non-linear longitudinal stresses in Fig. 1.28.a and 28.c shows that it is 
possible to replace these stresses by rectangular stress blocks that have the same peak stress and 
same action effect. This effective width of plate (comprising beff/2 on each side) proves to be a 
very effective design concept. Fig. l.28.e shows how effective width varies with slenderness (p, 
is a measure of plate slenderness that is independent of yield stress,  = 1,0 corresponds to values 
of b/t of 57, 53 and 46 for fy of 235N/mm2, 275 N/mm2 and 355 N/mm2 respectively). 
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Figure 1.28 

Buckling behaviour of 
square plate in compression 

with simply supported 
edges free to pull in but 

held straight. 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Effective widths 

 
Fig. 1.29 shows how effective widths of plate elements may be combined to give an effective 

cross-section of a member. 
 
 
 
 
 
 
 

Figure 1.29 (a) Effective section (shaded) for typical members in axial compression. 
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 (b) Effective section (shaded) for typical plate girder under sagging moment.  

 
 

Figure 1.29 The application of effective widths of plate panels to determine effective cross-sections. 

(b) Grillage analogy for plate buckling 

One helpful way to consider the buckling behaviour of a plate is as the grillage shown in 
Fig. 1.30. A series of longitudinal columns carry the longitudinal actions. When they buckle, 
those nearer the edge have greater restraint than those near the centre from the transverse flexural 
members. They therefore have greater post buckling stiffness and carry a greater proportion of the 
action. As the grillage moves more into the post-buckling regime, the transverse buckling 
restraint is augmented by transverse membrane action. 

 
 
 
 
 
 
 

 Figure 1.30 Grid model of plate in 
compression. 

 
 
 
 
 
 

1.3.1.5 The influences of imperfections on the behaviour of actual plates 

As with all steel structures, plate panels contain residual stresses from manufacture and 
subsequent welding into plate assemblies, and are not perfectly flat. The previous discussions 
about plate panel behaviour all relate to an ideal, perfect plate. As shown in Fig. 1.31 these 
imperfections modify the behaviour of actual plates. For a slender plate the behaviour is 
asymptotic to that of the perfect plate and there is little reduction in strength. For plates of 
intermediate slenderness (which frequently occur in practice), an actual imperfect plate will have 
a considerably lower strength than that predicted for the perfect plate. 
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Fig. 1.32 summarises the strength of actual plates of varying slenderness. It shows the 
reduction in strength due to imperfections and the post buckling strength of slender plates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.31 The influence of imperfections on the behaviour of plates of different slenderness in 
compression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.32 Relationship between plate slenderness and strength in compression. 
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1.3.1.6 Elastic behaviour of plates under lateral actions 

The elastic behaviour of laterally loaded plates is considerably influenced by its support 
conditions. If the plate is resting on simple supports as in Fig. 1.33.b, it will deflect into a shape 
approximating a saucer and the corner regions will lift off their supports. If it is attached to the 
supports, as in Fig. 1.33.c, for example by welding, this lift off is prevented and the plate stiffness 
and action capacity increases. If the edges are encastré as in Fig. 1.33.d, both stiffness and 
strength are increased by the boundary restraining moments. 

 
 
 
 
 (a) Plate under uniform lateral  

pressure p. 
 
 
 
 
 
 (b) Simply supported edges,    

corners free to lift. 
 
 
 
 (c) Simply supported edges,    

corners held down. 
 
 
 
 
 
 
 (d) Encastré edges 
 
 
 
 
 
 (e) Simply supported edges,    

corners held down, large 
displacements, edges held straught. 

 
 

Figure 1.33 Elastic behaviour of square plate under lateral actions with different boundary conditions. 
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Slender plates may well deflect elastically into a large displacement regime (typically where d 
> t). In such cases the flexural response is significantly enhanced by the membrane action of the 
plate. This membrane action is at its most effective if the edges are fully clamped. Even if they 
are only held partially straight by their own in-plane stiffness, the increase in stiffness and 
strength is most noticeable at large deflections. 

Fig. 1.33 contrasts the behaviour of a similar plate with different boundary conditions. 
Fig. 1.34 shows the modes of behaviour that occur if the plates are subject to sufficient load 

for full yield line patterns to develop. The greater number of yield lines as the boundary 
conditions improve is a qualitative measure of the increase in resistance. 

 
 
 
 (a) Plate under uniform lateral  

pressure p. 
 
 
 
 
 
 (b) Simply supported edges,    

corners free to lift. 
 
 
 
 (c) Simply supported edges,    

corners held down. 
 
 
 
 
 (d) Encastré edges 
 

Figure 1.34 Yield line patterns for square plates under lateral loading with various boundary conditions. 

1.3.2 Behaviour of stiffened plates 
Many aspects of stiffened plate behaviour can be deduced from a simple extension of the basic 
concepts of behaviour of unstiffened plate panels [ESDEP, 1994]. However, in making these 
extrapolations it should be recognised that: 

– "smearing" the stiffeners over the width of the plate can only model overall behaviour. 
– stiffeners are usually eccentric to the plate. Flexural behaviour of the equivalent tee 

section induces local direct stresses in the plate panels. 
– local effects on plate panels and individual stiffeners need to be considered separately. 
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– the discrete nature of the stiffening introduces the possibility of local modes of buckling. 
For example, the stiffened flange shown in Fig. 1.35.a shows several modes of buckling. 
Examples are: 
i. plate panel buckling under overall compression plus any local compression arising 

from the combined action of the plate panel with its attached stiffening, Fig. 1.35.b. 
ii. stiffened panel buckling between transverse stiffeners, Fig. 1.35.c. This occurs if the 

latter have sufficient rigidity to prevent overall buckling. Plate action is not very 
significant because the only transverse member is the plate itself. This form of 
buckling is best modelled by considering the stiffened panel as a series of tee 
sections buckling as columns. It should be noted that this section is monosymmetric 
and will exhibit different behaviour if the plate or the stiffener tip is in greater 
compression. 

iii. overall or orthotropic bucking, Fig. 1.35.d. This occurs when the cross girders are 
flexible. It is best modelled by considering the plate assembly as an orthotropic 
plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.35 Buckling modes for stiffened plates in compression. 
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1.3.3 Concluding summary 

– Plates and plate panels are widely used in steel structures to resist both in-plane and out-
of plane actions. 

– Plate panels under in-plane compression and/or shear are subject to buckling. 
– The elastic buckling stress of a perfect plate panel is influenced by: 

– plate slenderness (b/t). 
– aspect ratio (a/b). 
– boundary conditions. 
– interaction between actions, i.e. biaxial compression and compression and shear. 

– The effective width concept is a useful means of defining the post-buckling behaviour of 
a plate panel in compression. 

– The behaviour of actual plates is influenced by both residual stresses and geometric 
imperfections. 

– The response of a plate panel to out-of-plane actions is influenced by its boundary 
conditions. 

– An assembly of plate panels into a stiffened plate structure may exhibit both local and 
overall modes of instability. 

1.4 Modelling of Bridges with Orthotropic Plates 
Modern decks consist of concrete slabs or orthotropic steel decks. Despite the different materials, 
it is possible to identify common themes in their development. 

1.4.1 From separation to integration of functions 
Partly because of limited understanding of behaviour and methods of analysis, and partly because 
it suited historical methods of construction, early decks were separated from the remainder of the 
superstructure. The steel "battledeck" comprised plate panels welded to rolled beams as stiffeners 
that were supported by and spanned simply between cross-girders which, in turn, spanned 
between the principal girders. The deck construction was relatively deep but could still fit within 
the overall depth of the truss. A similar approach can be seen in a concrete deck slab. The slab 
acts compositely with the stringers but does not contribute to overall bending. 

Although this separation reduced the overall efficiency of the design, it is noteworthy that it 
does assist bridge repairs. For example, the entire deck of the Golden Gate Bridge in San 
Francisco was replaced during night time possessions, permitting the bridge to continue to be 
used during the day. 

Modern decks in both materials are fully integrated into the overall superstructure. These 
integrated decks improve the economy of the primary structure considerably. In all - steel 
construction the cross girders and main girders do not need separate top flanges. With a concrete 
deck, rolled sections (used for cross girders and main girders for short spans) will be considerably 
lighter. The top flanges of plate girders will typically be half the cross-section that would have 
been needed for non-composite construction. 

The disadvantage of integrated construction is that repair or replacement of the deck is 
difficult and usually requires prolonged closure of the bridge. 
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1.4.2 Greater simplicity 
The increasing ratio of labour to material costs has encouraged the development of simpler forms 
of construction. Simplification has been considerably assisted by the development of modern 
welding techniques. 

For example, early attempts to arrange stringers and cross-girders at the same level required 
the bolted or riveted connection shown in Fig. 1.36.a. Its modern equivalent in Fig. 1.36.b is 
readily accomplished with reliable welding. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.36 Stringer / Cross girder intersections. 
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1.4.3 Evolution of the stringer in steel plates 
A very important aspect of the historical development of steel plates is the evolution in form of 
longitudinal stiffeners or stringers. Initially, only open stiffeners shown in Fig. 1.37.a were 
utilised. Flats (i) and (ii) are simple to work with but are relatively inefficient in bending; bulb 
flats (iii) are more efficient in bending but are prone to lateral instability; tees (iv) and angles (v) 
offer a good combination of longitudinal bending strength and resistance to lateral buckling. All 
these open stiffeners have the basic disadvantage that they are flexible in torsion. Their use leads 
to a panel that is strongly orthotropic with little torsion stiffness (Dx >> Dy or Dxy). Such panels 
are inefficient as transverse distribution of local loads leading to a narrow effective width in 
bending and high longitudinal stresses under patch loading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.37 Stiffeners (stringers) for orthotropic steel plates. 
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It would be possible but expensive to introduce local transverse stiffeners to increase Dy, but it 
is feasible to increase Dxy, and thereby improve transverse distribution, by using closed stiffeners. 
Fig. 1.37.b shows the closed stiffeners that have been developed. Initially, the "wineglass" 
stiffener (i) was developed for the early post war Rhine bridges in Germany. This stiffener gave a 
good combination of torsional and bending stiffness but was expensive to fabricate. 
Subsequently, the Vee and the trapezoidal stiffener were developed. The latter gives better 
bending resistance than the former, although it loses some torsional stiffness from cross-section 
distortion. 

The earliest welded battledecks were detailed with continuity to the web of the cross girder, 
for example (a)(i). This created a very poor fatigue detail for the stringers. Subsequently, it 
became common practice to slot the web and have continuous stringers, for example (a)(iv) + (v) 
and (b)(ii) and (iii). With suitably rounded openings in the web, no fatigue problem is created in 
that element. It is noteworthy that the extreme fibres of the stringers are also not welded, thereby 
improving their fatigue performance. 

1.4.4 Modelling of bridges with orthotropic plates 
A steel bridge with an orthotropic plate represents an integral structure, where the orthotropic 

plate serves as a load distributing deck plate as well as a tension or compression flange of the 
main girders. For modelling purposes the structure is often decomposed into sub-structures to 
facilitate its analysis [Sedlacek, 1992]. The modelling of the total structure by the finite element 
method would involve many iterations because of the influence of structural details that have not 
been settled at the outset and may, therefore, be too expensive to use as a preliminary design tool. 

The decomposition in general leads to four subsystems, Fig 1.38, each of which may be 
analysed separately and finally combined using the principle of linear superposition. 

S1 is the deck plate rigidly supported along its connections to the stringers. The composite 
action of the deckplate with the asphalt layer is disregarded  normally. 

S2 is the orthotropic plate composed of the deck plate and the longitudinal stringers with 
rigid supports along the lines of the webs of the cross girders, longitudinal girders (if 
there are any) and main girders. The bending stiffnesses of this orthotropic plate are 
represented by the stringers in the longitudinal direction and the deck plate only in the 
transverse direction. 

S3 represents a grid composed of the cross girders and the longitudinal girders and any 
other load distributing longitudinal girders, e.g. edge beams. This subsystem is 
assumed to be rigidly supported along the lines of the webs of the main girders. 

S4 is the main girder system with the longitudinal elements of the orthotropic deck being 
included in the effective breadths of flange acting with the main girders. 

The loadings to be taken into account in the analysis of the orthotropic decks are mainly 

– the local traffic loads for the subsystems S1, S2 and S3, 
– the global traffic loads and all other loading to be combined with the global traffic loads 

for the subsystem S4. 

In Fig. 1.39 [Eurocode 1, 1992] the proposal for the local and global traffic loads (1992) for 
Eurocode l, Actions on Structures, is given as an example. 
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Figure 1.38 Decomposition of a bridge with an orthotropic plate into four subsystems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.39 Proposed European bridge loading model including impact factors [Eurocode 1, 1992]. 
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2 Theory of the "Orthotropic Plate" 

2.1 Small Deflection Theory of Orthotropic Plate 
Small deflection theory of orthotropic plate is reviewed on the basis of Pelikan, Esslinger [1957] 
and Troitsky [1987]. 

2.1.1 Differential equation of an orthotropic plate 

2.1.1.1 Historical study 

The fact that the natural solids around us are generally anisotropic or possess different elastic 
properties in different directions was recalled long ago by the creators of the theory of elasticity. 
Historically, the first and basic theoretical investigation in this field was conducted by the famous 
French mathematician Cauchy [1828], who, in his paper published in 1828, gave generalized 
equations for the elasticity of anisotropic solids. 

Gehring [1860] a German physicist published his doctoral dissertation in 1860 on the 
investigations of a thin anisotropic plate. This work represents the first attempt to apply the theory 
of anisotropy to a structural element such as a plate. Boussinesq [1879] in his paper considered 
equilibrium equations for anisotropic plates and bars. 

Voigt [1910], in his famous book published in 1910, investigated the elastic properties of 
anisotropic crystals and found the values of elastic constants. 

Geckeler [1928] published his article, "Theory of Elasticity of Anisotropic Bodies," which 
contained a complete development in this field. 

It should be noted that all the above works were purely theoretical and were developed 
considering those elements possessing properties of natural anisotropy. A comprehensive up-to-
date account of the theory of elasticity of anisotropic media was conducted by Lechnitsky [1947] 
and [1963] in two books, "Anisotropic Plates" and "Theory of Elasticity of Anisotropic Bodies". 

2.1.1.2 Concepts and assumptions 

The theory of naturally orthotropic plates is based on certain idealizing assumptions and 
limitations, as follows: 

1. Dimensions, deflections, loadings 
In the following analysis, we shall consider a thin orthotropic plate with small deflections 
compared to one of uniform thickness. These small deflections should be smaller than 
one-fifth of the plate thickness. 
The coordinate plane XOY coincides with the middle plane of the plate and we use the 
positive directions of the Z-axis downward. Thus, the downward deflections are 
considered positive. 
A vertical loading P is distributed over the upper surface of a plate acting parallel to the Z-
axis. 

2. Material 
We assume that the plate material is perfectly elastic, continuous, homogeneous, obeys 
Hooke's law, and possess different elastic properties in two orthogonal directions, X and 
Y. No body forces exist.  
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3. The behaviour of the plate under the influence of applied loadings 
a. There is no deformation in the middle plane of the plate. This plane remains neutral 
during bending. 

According to Kirchoff’s theory: 
b. Linear elements perpendicular to the middle plane of the plate before bending remain 
straight and normal to the deflection surface of the plate after bending. 
c. The normal stress transverse to the plane of the plate can be disregarded. 

2.1.1.3 Forces and moments 

Let us now consider an orthotropic plate under an external, uniformly distributed load p, acting 
normally to the surface of a plate. 

We assume that the deflections are small in comparison to the thickness of the plate. We 
consider that, at the boundary, the edges of the plate are free to move in the plane of the plate. 
Therefore, the reactive forces at the edges are normal to the plate. Since these assumptions permit 
us to neglect any strain in the middle plane of the plate, there will be no horizontal shearing forces 
during bending. We take the XOY-plane to coincide it with the middle plane of the plate, and the 
Z-axis is perpendicular to that plane before deflection. 

Our problem is to find the stress conditions at an arbitrary point P of the plate. For this 
purpose, let us consider an element cut out of the plate by two pairs of planes parallel to the XZ 
and YZ planes around point P with sides as shown in Fig. 2.1. We assume that during bending of 
the plate, that the vertical sides of the elements remain plane and rotate about the neutral axes nn, 
so as to remain normal to the deflected middle surface of the plate. Consequently, the middle 
plane of the plate does not undergo any extension during this bending, and the middle surface is 
therefore the neutral surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Plane and cut. 
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Due to the bending of the plate, the internal stresses will originate on the vertical sides of the 
element. The internal stresses diagram of those internal stresses, are shown in Fig. 2.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Internal stresses diagrams. 

We denote the normal unit stresses on the X and Y-directions of an arbitrary plane abcd, at a 
distance Z from the neutral surface, as x and y. Those corresponding tangential stresses acting 
m the same planes we denote as xy, yx and the shear stresses as xz, yz. The positive directions 
for those components of internal, normal, tangential and shear stresses are in direction of a 
positive axis of coordinate system. 

In general, internal stresses vary throughout the plate and at any point, a change in the internal 

stress, for instance, in an X-direction over the length dx is expressed as 
x

x



 dx, where 
x

x



  is 

the rate of change of the normal stress in an X-direction assumed to be constant over a length dx. 
Such changes in the tangential and shear stresses are expressed in a similar manner, as shown 

in Fig. 2.2. In calculating the resulting forces acting on the element, we consider the sides to be 
very small. The forces are obtained by multiplying the corresponding stress at the centroid of a 
side, by the area of this side. In calculating normal bending stresses x, y, as well as tangential 
stresses xy, yx, we consider that they are proportional to a distance Z of an elementary strip abcd 
from the neutral surface. 

These normal and tangential stresses, distributed over the vertical sides of the element and 
resolved to the normal and tangential forces, can be reduced to bending moments Mx and My and 
twisting moments Mxy. 

In addition, shear stresses xz, yz distributed over the vertical sides of the element can also be 
reduced to vertical shearing forces Qx and Qy, acting per unit length parallel to Y and X axes on 
the sides of the element. The resulting diagram is shown in Fig. 2.3, where the directions in which 
these moments and forces taken as positive are indicated. In general, moments and shearing 
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forces vary throughout the plate, and at any point, a change in the moment in an X-direction over 

the length dx is expressed as 
x

M x




dx, where 

x
M x




 is the rate of change of the moment in the 

X-direction assumed to be constant over the length dx. 
The changes in the moments Mxy and the shear forces Qx, Qy are expressed in a similar 

manner. The magnitudes of all moments per unit length are: 
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And similarly for shear forces: 
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Figure 2.3 The resulting moments diagram. 

2.1.1.4 Equilibrium of a plate element 

The internal moments and forces acting on an element with an external load p, should be in 
equilibrium. Since the moments are acting per unit length, their values should be multiplied by 
their corresponding lengths dx and dy. 
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We must also consider a load p distributed over the upper surface of the plate. The intensity of 
this load acting on the element is p·dx·dy. 

 
a) Vertical Forces 
The condition of equilibrium is: V=0. 
Projecting all the forces acting an the element onto the Z-axis, we obtain the equation of 

equilibrium: 

 0p
y

Q
x

Q yx =+
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+




 /2.3/ 

b) Moments in XOZ Plane 
In calculating the moments acting on the elements, we consider the sides to be very small. 

The resulting moment is obtained by multiplying the moment acting at the centroid of a side 
along the length of this side. 

Taking the moments of all those forces acting on the element with respect to the Y-axis, we 
obtain the equation of equilibrium: 
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c) Moments in YOZ Plane 
In the same manner, by taking those moments with respect to the X-axis, we obtain: 
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d) Equilibrium of the Moments 
Let us eliminate the shearing forces Qx and Qy from the previous equations by a 

differentiation of equation /2.4/ by x, equation /2.5/ by y, and substitute in equation /2.3/. 
Knowing that Myx = Mxy, by virtue of xy = yx, we finally represent the equilibrium of the 
moments in the following form: 
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To evaluate the five unknowns, Mx, My, Mxy, Qx, Qy, we have only three equations of 
equilibrium /2.3/, /2.4/ and /2.5/. The additional conditions we will evaluate by investigating the 
geometrical problem, considering any deformations of the plate and establishing relationships 
between the stresses and deformations. 

2.1.1.5 Deformation of plate 

The relationship between unit elongations and deformations expressed as functions of unit 
displacements, are given by the theory of elasticity as follows: 
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To find the values of unit elongations and unit deflections, let us consider one element of the 
plate dx·dy·t, which deforms under and external vertical unit loading p·dx·dy, Fig. 2.4. 

For a smaller deflection at point P, we have: 
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The element displacements of the plate at a distance Z from the middle surface in an X- and 
Y-direction are: 
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By substituting these values in the equation for unit stresses and unit deformations /2.6/, we 
obtain: 
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Figure 2.4 Plate deformations. 
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2.1.1.6 Generalized Hooke’s law 

The relationship between the components of stress and the components of deformation, known as 
Hooke's law, have been established experimentally. 

Let us consider the element of an orthotropic plate with its sides parallel to the coordinate 
axes, and subjected to the action of normal stress x, uniformly distributed over two opposite 
sides, Fig. 2.5. 

For an orthotropic plate, those elastic properties expressed by the corresponding moduli of 
elasticity should be different in the direction of axes X and Y. We denote them as Ex and Ey. The 
magnitude of the unit elongation of the element in an X-direction and the lateral contraction in the 
Y-direction is given by the expression, respectively: 
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in which Ex is the modulus of elasticity in tension for an orthotropic plate in an X-direction, x 
is a constant known as Poisson's ratio. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5 Generalized Hooke’s law. 

Similarly, considering the same element subjected to the action of normal stress y and 
uniformly distributed over two opposite sides in a Y-direction, we obtain: 
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as the unit of elongation in the Y-direction and as the lateral contraction in an X-direction, 
consequently. 

Further, according to Betti's reciprocal theorem, we obtain the following relationship: 

 yxxy EE =  /2.12/ 

If the above element is subjected to the action of normal stresses x and y and uniformly 
distributed over the sides, the resultant components of deformation can be obtained by a method 
superposition as follows: 
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Solving equation /2.13/ for x and y we find: 
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Let us now consider the state of deformation of a plate element under pure shearing stresses 
xy = yx. 

On the basis of theoretical investigation [Klöppel and Yamada, 1960], the value Gxy of shear 
modulus for orthotropic material could be expressed through the values of those known moduli of 
elasticity Ex, Ey as follows: 
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According to Hooke's law for pure sheer, the distortion angle xy is proportional to the 
shearing or tangential stress xy, and we can express this relationship as follows: 
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where Gxy is the shear modulus for orthotropic material. 
Further, by introducing the values from the system /2.9/ in equations /2.14/ and /2.15/, we 

obtain the following expressions of those stresses as a function of deflection w. 
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2.1.1.7 Differential equation of the bent plate 

With the assumption of a small deflection w, while neglecting the effect of shearing forces Qx and 
Qy as well as the compressive stress z produced by load p on bending, the deflection w is 
independent of z. Therefore, by substituting equations /2.1/, the known values for x, y and xy 
from equations /2.16/, and by integration, we obtain the following expressions for the bending 
moments and torsional moment: 
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denoting 
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We obtain from equations /2.17/ 
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Quantities Dx and Dy we call the flexural rigidities of the plate, and the quantity Dxy, the 
torsional rigidity of the plate. 

By substituting expressions /2.19/ in the moment equation /2.5a/, we obtain: 
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The value of 2Dxy is defined as the reciprocal value of the angle of twist of a plate element 
with a side length dx = dy = 1 due to the action of twisting moments Mxy = Myx = 1. 

Introducing the notation, 
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 2H = Dx·y + Dy·x + 4Dxy /2.21/ 

we obtain equation /2.20/ in the following form: 

 ( )y,xp
y
wD

yx
wH2

x
wD 4

4

y22

4

4

4

x =



+




+



  /2.22/ 

This is the general differential equation of an orthotropic plate deduced by Huber and known 
in technical literature as "Huber's Equation". We call the value 2H from expression /2.21/ the 
"effective torsional rigidity'' of an orthotropic plate. 

The general differential equation can be used in the investigation of bending of plates and 
beams of orthotropic material which have different flexural rigidities in two mutually 
perpendicular directions. 

By substituting in equations /2.4/ and /2.5/ the corresponding values from equations /2.19/, we 
obtain the following expressions for shear forces: 
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By substituting in the relationship /2.12/ the values from /2.18/ we obtain: 

 xyyx DD =  /2.24/ 

By substituting /2.24/ the values from /2.21/ we obtain: 

 xyxyxyyxxyyx D2HD          ,D2HD          ,D2DH −=−=+=  /2.25/ 

By substituting /2.25/ in system /2.23/ we obtain: 
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2.1.1.8 Effective torsional rigidity 

 
Suppose that for a certain plate under a given load distribution and for known boundary 
conditions, the deflection surface w is determined by the integration of differential equation 
/2.22/. 

By substituting the value of w in equations /2.19/ and /2.20/, we can then derive the values of 
Mx, My, Mxy, Qx, Qy and, consequently find the stresses at any point in the plate. 

The outlined procedure provides a formal mathematical solution of the problem, based on the 
principles of the theory of elasticity. However, to apply this solution in practical engineering 
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problems, it is necessary to possess the proper values of the five constants Dx, Dy, Dxy, x, y in 
the differential equation for the plate. The values of the moduli of elasticity Ex, Ey encountered in 
expressions for the rigidities Dx, Dy, and Poisson's constants x, y are usually known for certain 
orthotropic material. The value of the shear modulus Gxy however, encountered in these 
expressions for the torsional rigidity H, is usually unknown. 

The following evaluation of the torsional rigidity Dxy based on theoretical analysis should be 
regarded as a first approximation, and, in cases of practical importance, a direct test is 
recommended to obtain more reliable values of the modulus Gxy. 

Let us now consider an orthotropic plate element having its sides of unit length under the 
influence of twisting moments Mxy, Myx acting upon two opposite sides, as shown in Fig. 2.3. 
Due to the known equilibrium of the tangential stress components Mxy=Myx. 

To determine the value of the torsional rigidity of an orthotropic plate, we will base the 
following investigation on the analogy between orthotropic and isotropic plates, both under the 
influence of the twisting moments. 

For an isotropic plate, the value of the torsional moment is given by the expression: 
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For the isotropic material, the relation between the shear modulus G, the elasticity modulus E 

and Poisson's constant v is given by the formula ( )+
=

12
EG . 

By substituting formula G in /2.27/ and after certain modification, we now obtain the 
expression of torsional moment of an isotropic plate. 

 ( )
yx

wD1M
2

yx



−−=  /2.28/ 

where ( )2

3

112
EtD

−
= , is the torsional rigidity of the isotropic plate. 

For an orthotropic plate, however, considering Mxy = Myx, the torsional moments will depend 
on the torsional rigidities in both directions. Therefore, to evaluate the twisting moments in the 
case of an orthotropic plate, a reasonable approximation will be to consider the expression for the 
twisting moment of an isotropic plate and to substitute the values of D and  by certain middle 
values of Dx, Dy and x, y. 

Let us use these middle values as: 

 yxyx                               ,DDD ==  /2.29/ 

and after substituting in the expression /2.28/, we obtain: 
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By a comparison of expressions /2.30/ and the final one from the system /2.19/, the value of 
the torsional rigidity of an orthotropic plate is approximately: 

 ( ) yxyx DD1xyD2 −=  /2.31/ 

By substitution in the expression for the effective torsional rigidity H /2.21/, the value from 
/2.31/ as obtained: 

 ( ) yxyx  DD12xyDyxDH2 −++=  /2.32/ 

or, after certain transformations, 

 ( ) 2
DDyDxD2H2

 
xyyx −+=  /2.33/ 

By substituting the values from /2.24/ in equation /2.33/, the effective torsional rigidity is then 
expressed as: 

 yxDDH =  /2.34/ 

2.1.1.9 Coefficient of torsional rigidity 

The theoretical value of the effective torsional stiffness expressed by the formula /2.34/ is valid 
only if one orthotropic plate generally satisfied the following conditions: 

1. the thickness of the plate is constant; 
2. deformations are purely elastic; 
3. deflections of the plate are relatively very small. 

Because these assumptions do not exist in reality, the values of H for practical problems 
usually should be reduced by multiplying the value yxDD  by the coefficient æ, which we may 

call the "coefficient of torsional rigidity" or ''parameter of torsion". 
Therefore: 

 yxDDæH =  /2.35/ 

It has been found by analysis and confirmed by experimental investigations that for steel 
decks of an orthotropic type, the value of æ < 1 and varies between 0.3 - 0.5. For example, in the 
case of the Cologne-Mulheim suspension bridge, it was found experimentally for the steel deck 
that [Cornelius, 1952]: 

 yxDD3.0H =  

It should be noted that in this extreme case, the relation between the flexural rigidities was 
Dx = 20 Dy. 
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2.1.1.10 Solution of Huber’s equation 

The solution of Huber's non-homogeneous partial differential equation /2.22/ consists of the 
superposition of two solutions: 

 w = wh + wp /2.36/ 

where 

wh represents a general solution of the corresponding homogeneous differential equation, 

 0
y
wD

yx
wH2

x
wD 4

4

y22

4

4

4

x =



+




+



  /2.37/ 

and 

wp a particular solution of the non-homogeneous equation /2.22/. 
Geometrically, equation /2.36/ represents a superposition of the two deflection surfaces wh + 

wp. 

wh represents the deflection of the unloaded portion of the plate or p(x,y) = 0. 

Under the effects of such deflections, rotations, lineloads or bending moments are applied 
along the edge where necessary to compensate for the departures of the particular solution wp 
from the required shape of the actual plate. 

wp represents the deflection surface of a plate under a given load p(x,y), which possibly 
satisfies some but not all boundary conditions of the actual plate. 

Therefore, by adding two surfaces, wh + wp, a deflection surface of the actual loaded plate is 
obtained which satisfies all boundary conditions. 

Consider the technically important case of an orthotropic plate simply supported along the 
edges x = 0 and x = a and subject to any boundary conditions along the edges y = const. 

A solution to the homogeneous equation can be given by a simple series, involving only one 
summation. This solution, first proposed by Levy [1899] to the analysis of an isotropic plate, may 
be represented in the general form: 
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where 
A and  are constants which should be determined, a is the length of the plate. 
By substituting the expression /2.38/ in equation /2.37/, we obtain the following characteristic 

equation for determination of the function ey. 
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The system /2.39/ defines four values of . Therefore, in expression /2.38/ for wh, each term 
of the series depends on four arbitrary parameters, and a general solution of the differential 
equation /2.37/ could be expressed as follows: 
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where the constants A1, A2, A3 and A4 could be determined from the boundary conditions. 
In order to find a particular solution of the non-homogeneous partial differential equation 

/2.2/, we make the following two assumptions for deflection and loading: 
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The loading p(x) can then be expressed by a Fourier sine series as follows: 
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The solution of the non-homogeneous equation is a summary: 
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2.1.1.11 Analysis of Huber’s equation 

Huber's partial differential equation of orthotropic plate /2.22/ has different solutions depending 
upon the relations between the three rigidities Dx, H and Dy. 

Depending upon the relations between the rigidities of the plate, we could consider the 
following variations of orthotropy. 
Case 1. H2 > DxDy 

This condition of great torsional rigidity is found in the case of an orthotropic deck with box-
shaped ribs. 

Case 2. H2 = DxDy 
It is considered that this condition of middle torsional rigidity is found when using reinforced 
concrete flat slabs. 

Case3. H2 < DxDy 
This condition corresponds to the small torsional rigidity and exists in the case of an 
orthotropic deck with flexible ribs. 

Case 4. Dx = 0 
This condition of negligible flexural rigidity in a transverse direction, can be considered for an 
orthotropic deck with box-shaped ribs. 
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Case 5. H = 0 
This condition can be considered in the case of an orthotropic deck with flexible ribs having 
negligible torsional rigidity. 

Case6. H = Dx = 0 
In this case, torsional and flexural rigidities in the x-direction are disregarded. Under this 
condition, the plate equation is transferred into a beam equation which is relatively simple and 
is satisfactory for the analysis of an orthotropic deck with flexible ribs. 

A summary of the above analysis is shown in Tabl. 2.1. 

Table 2.1 Relations between the rigidities of the orthotropic plates. 
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2.1.2 Application of Huber’s theory to orthotropic plate analysis 

2.1.2.1. Natural and technical orthotropy 

In analyzing the composition of an engineering structure, we should distinguish between two 
kinds of orthotropic elements. The first shows an orthotropy which is the result of different 
physical properties, for instance, the crystalline structure of the material itself may be oriented in 
two mutually perpendicular directions. We may call such elements "naturally orthotropic". 

The second group includes those elements which are reinforced to ensure strength and 
stability, arranged in proper geometrical configurations, or composed of two or more different 
materials. Sometimes, the elements, in spite of being formed of isotropic material, may also be 
considered to belong to the second group, owing to their geometrical composition. 

Typical examples of those structures contained in the second group are: ribbed plates, plate-
girders, and reinforced or pre-stressed elements. Such structures generally exhibit different elastic 
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properties in different directions. The various elastic properties in these cases could be expressed 
by the different flexural and torsional rigidities of the element in different directions. We may call 
such elements belonging to the second group and possessing different rigidities in two mutually 
perpendicular directions "structurally or technically orthotropic". 

In the elastic domain, this second group may be treated on the basis of the same theory as 
naturally orthotropic plates are, with some modifications. 

Structural or technical orthotropy is of utmost importance in modern engineering. Examples 
of such structures are: bridge decks, floor panels, bulkheads, ship hulls, aircraft wings and 
fuselages. In all these structures, the structural orthotropy is the result of geometrical 
configuration, rather than the physical properties of the materials. 

The following examples illustrate the application of structurally orthotropic elements in 
bridge engineering. 
a) Structural elements of different materials 

A typical example, shown in Fig. 2.6, is that of a two-way reinforced concrete flat slab of 
uniform thickness. 

In this example, the structural orthotropy is expressed by different amounts of reinforcement 
and, consequently, by the different static resistance of the cross sections of the slab in each 
direction. 

 
 
 
 
 
 
 

Figure 2.6 Two-way reinforced concrete slab. 

b) Geometrical Configuration 
The rigidity of a structural element may differ in both directions because of its geometric 

configuration, as is shown in the example of a concrete slab reinforced by a set of equidistant 
ribs, Fig. 2.7. 

Typical examples of structurally orthotropic elements used for bridge decks are steel plates 
reinforced with equidistant steel stiffeners in one or two orthogonal directions, as shown in Fig. 
2.8 and Fig.2.9. 

 
 
 
 
 
 
 
 

Figure 2.7 Concrete slab reinforced by a set of equidistant ribs. 
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Figure 2.8 A steel plate reinforced by equidistant steel stiffeners. 

 
 
 
 
 
 
 
 
 
 

Figure 2.9 A steel plate reinforced by orthogonal stiffeners. 

2.1.2.2. Theory of M.T. Huber 

Although the general theory of anisotropic bodies was developed in the l9th century and some 
practical applications shown, the wide use of the theory of orthotropic plates in engineering began 
in the 20th century, primarily in connection with the development of shipbuilding and the use of 
steel plates for ship hulls and aircraft structures. 

A great contribution was made by Boobnov [1902] in the application of stress analysis to steel 
plates reinforced by a system of interconnected longitudinal and transversal beams in the period 
1902 to 1914. The many applications of stiffened steel plates, concrete slabs reinforced by ribs, 
plywood plates and similar structural elements give rise to the theory of technical orthotropy. 

The idea of the application of the theory of elasticity of orthotropic plates to reinforced 
concrete flat and ribbed slabs was proposed and developed by Huber. In his first article, published 
in 1914, he considered the problem of a reinforced concrete slab as a slab with elastic properties 
differing in two orthogonal directions or as an idealized orthotropic plate [Huber, 1914]. In his 
works in the period 1923-1929, Huber developed solutions to these problems which allowed their 
practical applications [Huber, 1922, 1923 and 1929]. Improved and refined methods of stress 
analysis for technically orthotropic plates were summarized by Huber in books edited in the 
period 1948-1956 [Huber, 1950, 1956 and 1957]. 
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2.1.2.3. Method of elastic equivalence 

The basic assumption proposed by Huber for estimating overall bending deflections and bending 
stresses in a stiffened slab was to replace such a slab by an equivalent orthotropic slab of constant 
thickness having the same stiffness characteristics. 

Since reinforcing or ribs in actual concrete slabs are usually arranged in an orthogonal pattern, 
the equivalent slab would have the rigidity characteristics of an orthotropic material. The usual 
assumptions of "thin plate" theory were made, and the problem was treated in terms of plane 
stress. On the basis of this assumption, the analysis of bending of stiffened plates may be 
simplified by replacing the plate stiffener combination by an equivalent homogeneous orthotropic 
plate. 

However, it should be understood that any actual plate stiffener combination obviously cannot 
be equivalent to an orthotropic plate in every respect. Theoretical investigations and experimental 
data indicate that orthotropic plate theory is applicable to structurally orthotropic plates under 
certain provisions as follows: 

1. The ratios of stiffener spacing to plate boundary dimensions are small enough to insure 
approximate homogenity of stiffness. 

2. It is assumed that the rigidities are uniformly distributed in both directions. 
3. Flexural and twisting rigidities do not depend on the boundary conditions of the plate or on 

the vertical load distribution. 
4. In the case of steel stiffened plates, it is assumed that both the plate and the stiffeners are 

fabricated of the same isotropic material. 
5. A perfect bond exists between the plate and the stiffeners. 

The substitution of an orthotropic plate with the same stiffness characteristics as that of a 
stiffened plate may be called "method of elastic equivalence". 

By applying the method of elastic equivalence to the analysis of stiffened plates, we thus 
reduce the actual system of discrete interconnected ribs to that of a statically equivalent system 
with uniformly distributed stiffnesses in both directions. 

For practical application in engineering, an orthotropic plate is defined as a plate with 
different bending stiffnesses D = EI in two orthogonal directions, x and y, in the plane of a plate. 

These may either result from different moduli of elasticity Ex and Ey of the material in two 
directions, as for a naturally orthotropic plate, or from different moments of inertia Ix and Iy per 
unit width, as for structurally orthotropic plates. 

By applying the principle of elastic equivalence, the discontinuous structure of a technically 
orthotropic plate is represented by an idealized substitute orthotropic plate, reflecting the 
characteristic properties of the actual system. 

A practical application of the method of elastic equivalence is illustrated in Tab. 2.2. 
By this method, we replace structural orthotropy by natural orthotropy.  
To find the solution of the orthotropic bent plate problem due to the action of external 

loadings, it is necessary to determine those internal moments and shear forces acting in the plate. 
These internal moments and shears are usually expressed by the stress components as the 
functions of deflection of the plate. This function has to satisfy a linear partial differential 
equation which, together with the boundary conditions, completely defines W. Consequently, the 
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solution of the equations gives all the necessary information for the calculation of stresses at any 
point in the plate. 

Table 2.2 Orthotropic deck analysis. Huber’s Theory. Principle of static equivalence. 

Naturally orthotropic plate Technically orthotropic plate Equivalent orthotropic plate 
Differential equation of the orthotropic plate 
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Rigorous investigations have shown this method to be correct if the ribs are symmetrically 
disposed in relation to the middle plane of the plate, but gives approximate values in the case 
when the ribs are located on only one side. 

 

2.1.2.4. Design methods 

With the development of the orthotropic deck system, various design methods to determine the 
distribution of loads and internal forces were proposed. It should be noted, however, that the use 
of orthotropic theory has been somewhat limited by certain mathematical difficulties in the 
analysis. 

The current methods used for stress analysis in orthotropic deck systems and based on Huber's 
theory may be summarized in the following five groups: 
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a) Ideal gridwork system, 
b) Deck as uniform medium orthotropic plate strips, 
c) Application of influence surfaces, 
d) Semi-empirical method. 
e) Methods of deck analysis by computers 

All the above methods yield only an approximate solution to the problem. 
To show the general nature of those solutions developed, we will briefly review the various 

analytical methods mentioned above. 
 

a) Ideal gridwork system 
This method is based on the application of the orthotropic plate theory, considering the deck 

statically equivalent to open grids or an ideal gridwork system. This is a simple but approximate 
method. 

 
Y. Guyon and C. Massonnet 
The idea of applying the theory of orthotropic plates to a grid system of a bridge deck by 

treating it as an idealized plate was proposed by Guyon [1946a]. It is known in technical literature 
as the method of distribution coefficients [Guyon, 1946b]. Guyon, however, analyzed no torsional 
structures. 

In 1950, Massonnet extended the method by introducing into the analysis the effect of torsion 
[Massonnet, 1950a, 1950b and 1955]. Generally, the problem. which is involved is that of . 
determining how a concentrated load or system of such loads is distributed among the 
longitudinal beams of a bridge system for various degrees of transverse stiffness and torsional 
resistance. Basically, the method consists of replacing the actual bridge deck structure, a system 
of discrete interconnected longitudinal and transverse members, by an "elastically equivalent" 
slab system whose structural properties in the two orthogonal directions are uniformly distributed 
along their length. 

 
b) Deck as an orthotropic plate strip 

According to this method, a uniformly distributed medium is substituted in two directions for 
a stiffened plate. 

 
W. Cornelius Method 
A German engineer, W. Cornelius, was the first to use the orthotropic plate theory to analyze 

a steel deck stiffened by ribs. He developed a practical method for the analysis of orthotropic-type 
bridge decks and described his method in articles published in the period 1947-1951 [Cornelius, 
1952]. 

 
c) Application of influence surfaces 

Live loading of a highway bridge deck generally consists of the wheel loads, each one in 
effect distributed over a relatively small area. Due to such load distribution, the analysis of bridge 
decks is complicated and time consuming. In addition, the first step should be the evaluation of 
the critical position of the live loading. This problem for beams is solved by the use of influence 
lines. 
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By analogy, three-dimensional influence surfaces are used for the plates. The influence 
surfaces help to find the moments, shear forces and reactions for the given load positions. 
Evaluating the influence surfaces requires a great amount of work, which, however, need only be 
done once for a given set of conditions. The influence surfaces may be defined as three-
dimensional diagrams which show the variation of a certain structural action as a bending 
moment. 

The advantage of the influence surfaces as a design aid consists in the following: this aid is 
linked to the practical geometrical range of a particular structural system and is independent of 
loading. The design loadings are usually related to the particular country. Also, the loading 
specifications are changeable, being updated. In such cases the influence surfaces are especially 
useful. 

The systematic application of influence surfaces in structural engineering started relatively 
late with the first work only appearing in 1938. The theory of the influence surface methods is 
given in the works of Pucher [1938], Bittner [1938], Hawranek and Steinhardt [1958] 

 
d) Semi-empirical method 

A deck system is designed by any of the above-mentioned analytical methods. Then a model 
or full-scale test is made on the designed plating to determine its actual capacity. 

For the purposes of superposition of the plating stresses with the overall bridge stresses, the 
stresses theoretically computed for plating are reduced by a factor derived from tests. 

This approach was used in the design of the 856 foot centre span Save River Bridge in 
Belgrade; Yugoslavia [Pelikan and Esslinger, 1957]. 

 
e) Methods of deck analysis by computers 

Most of the research published since 1960 involves the theoretical studies of stiffened deck 
plates and deals with mathematical methods for analyzing such structures. A recent trend has 
been to develop computer programs based on particular analytical methods, such as finite 
difference [Adotte, 1967], finite element [Zienkiewicz and Cheung, 1964], finite strip [Cheung, 
1968] and other methods. 

2.1.3 Pelikan-Esslinger method [1957] 

2.1.3.1 Introduction 

Of all the methods considered in Chapter 2.1.2.4, experience has shown that the most practical is 
that of Pelikan and Esslinger [1957]. This method is based on the application of Huber's equation; 
however, the parameters expressing certain rigidities of the orthotropic deck are disregarded, as 
they are of little importance in the design. 

It is considered that the approach developed by Pelikan and Esslinger provides a practical and 
relatively simple method for the design of orthotropic-type steel bridges. In this method, the 
authors assume that the deck system is a continuous orthotropic plate, rigidly supported by its 
main girders and elastically supported by the floor beams. The design procedure is divided into 
two stages, Fig. 2.10. 

In the first stage, it is assumed that the floor beams, as well as the main girders, are infinitely 
rigid. In the second stage, a correction is applied, considering the floor beams as elastic supports. 



 51 

The reactions of the plate on the floor beams are replaced by a load group proportional at each 
point to the deflection of the floor beam. The total moments are found by superposition, due to 
the influence of dead and  live loads assuming rigid supports and live loads assuming elastic floor 
beams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 Pelikan-Esslinger Method. Stages I and II. 

2.1.3.2 Deck with open ribs 

For a deck plate stiffened by open or torsionally soft ribs, both the lateral flexural rigidity Dx and 
the torsional rigidity H are relatively small by comparison to that of the longitudinal flexural 
rigidity Dy. Therefore, for practical design purposes, they could be disregarded. Using 

 Dx = 0 and H = 0 /2.44/ 

the general differential equation /2.22/ becomes: 

 p
y
wD 4

4

y =


  /2.45/ 
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Equation /2.44/, in fact, represents the deflection line of a beam and defines an idealized 
structural system representing an actual steel plate deck with open ribs. It is assumed that the 
idealized system consists of a series of infinitely narrow plate strips placed side by side, and 
running continuously in a y-direction, Fig. 2.11. 

 
Orthotropic Deck Analysis 

Pelikan – Esslinger Method 
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Figure 2.11 Pelikan-Esslinger Method. Open rib deck. 

A comparison of the bending moments computed, per unit width, with the full plate and beam 
/2.45/ formulas indicates a negligible difference for practical design purposes. Therefore, the use 
of the beam formula for a deck with open ribs is fully justified. 

For practical design analysis, it is necessary to separately consider a deck on rigid supports 
and a deck on flexible floor beams. In both stages, the following data should be evaluated: 

First Stage – Deck on Rigid Supports 

1. Bending Moments and Reactions in the Deck in a Longitudinal Direction 

Theoretically, these moments and reactions depend on the following factors: 

a. Dead and live loading, 
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b. The relation between the floor beam and the main girder spacing, 
c. The influence of the flexural and torsional rigidities of the deck system components. 

In modern bridges having an orthotropic deck, the floor beams are closely spaced in relation 
to the main girder spacing. It is therefore considered that the main girder spacing does not 
influence that value of bending moments in a longitudinal direction. 

2. Bending Moments and Their Reactions in Floor Beams 

The evaluation of bending moments and their reactions in floor beams due to the action of 
dead and live loads depends on the composition of the bridge system. In the case of two main 
girders only, the floor beam is considered to be a simply supported T-beam. The floor beam is 
considered as a continuous T-beam if supported by more than two main girders. 

3. Section Properties of the T- Ribs and Floor Beams. 

For the evaluation of those stresses in the T-ribs and floor beams, it is necessary to determine 
in their sectional properties their effective span in a longitudinal direction and their effective 
width in the lateral direction. 

Second Stage – Deck on Elastic Floor Beams 

In this stage, it is necessary to evaluate the influence of the floor beam flexibility on a load 
distribution and, consequently, on their bending moments acting in the T-rib. 

To achieve this, the following data should be determined: 

1. The influence lines for the bending moments acting in T-ribs, considering the T-ribs as 
continuous beams elastically supported. 
2. Additional moments in the T-ribs and relief moments in the floor beams. 
3. Sectional properties of the T-ribs, namely the effective span, the effective width and the 
sectional modulus, considering the influence of flexible floor beams. 
4. To evaluate the resulting moments by superposition of both stages and to determine those 
stresses in the T-ribs. 

2.1.3.3 Deck with closed ribs 

In the case of a deck plating stiffened by closed torsionally stiff ribs, Fig. 2.12, the transversal 
rigidity Dx is negligible in comparison to the flexural rigidity in the y-direction Dy and effective 
torsional rigidity H. 

Therefore, the differential equation of the orthotropic plate /2.22/ is reduced to: 

 p
y
wD

yx
wH2 4

4

y22

4
=




+



  /2.46/ 

It should be noted that those moments computed with the assumption Dx = 0 are generally 
somewhat greater than those determined from the complete equation; therefore, they are on the 
safe side. 
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For the computation of the bending moments in the ribs, the influence surfaces for a 
continuous orthotropic plate are used, based on those deflections found in the solution of equation 
/2.46/. 

It should be further noted that in both cases for decks with open and closed ribs, although the 
flexural rigidity Dx of the deck plate does not enter equations /2.45/ and /2.46/ directly, its effect 
is not entirely disregarded, since this rigidity is a factor in the determination of that effective 
torsional rigidity expressed by formula. 

Orthotropic Deck Analysis 
Pelikan – Esslinger Method 
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Figure 2.12 Pelikan-Esslinger Method. Closed rib deck. 

For practical design purposes, the following data should be determined. 

First Stage – Deck on Rigid Supports 

1. Expressions for the influence surfaces used in the computations of the bending moments in 
the ribs, considering different loading conditions. 
2. The actual deck loading expressed through the Fourier analysis as a series of sinusoidal 
component loads. 
3. Properties of the sections, such as their effective span, width and section modulus. 
4. Flexural and torsional rigidities of the deck. 

Second Stage – Deck on Elastic Floor Beams 

1. The influence of a flexible floor beam on its load distribution. 
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2. The determination of those additional moments, shear forces and reactions which originate 
in an orthotropic deck due to the flexibility of the floor beams. 
3. Properties of the sections. 

2.2 Large Deflection Theory of Orthotropic Plate 
Large deflection theory of orthotropic plate is reviewed on the basis of Maquoi and Massonnet 
[1971] and Troitsky [1976]. 

2.2.1 General equations for large deflection 

2.2.1.1 Introduction 

The presently known methods of the analysis of orthotropic plates based on the structural theory 
of the first order. These methods may be considered as rigorous as long as the basic requirements 
of the theory are satisfied, namely, that the deflection of the orthotropic plates is small or w ≤ 
0.2 t and has no secondary effects on the stresses. By increasing the magnitude of the deflections 
beyond a certain level when w ≥ 0.3 t, we note, however, the lateral deflections are accompanied 
by stretching of the middle surface, provided that the edges of the plate are restrained against in-
plane motion. When the magnitude of the maximum deflection reaches the order of the plate 
thickness or w ≈ t, the membrane action becomes comparable to that of bending. Beyond this, 
when w > t, the membrane action predominates. 

Although the large-deflection theory of plates assumes that the deflections are equal or larger 
than the plate thickness, these deflections should remain small relative to the other dimensions of 
the plate. 

The large deflection theory of orthotropic plates presents an extension of the classical large 
deflection theory of isotropic plates with the necessary modifications. In 1910 Th.von Karman 
[1910] derived the following two partial differential equations of the large deflection for isotropic 
plates: 
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 /2.47/ 

where 
 
F = Airy's stress function 
w = deflection of the plate 
t = thickness of the plate 
p = lateral load 
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D = 






 − 2112

3Et

  

 = flexural rigidity 

E = modulus of elasticity of material 
 = Poisson's ratio 
 
Equations in /2.47/ are coupled, nonlinear partial differential equations of the fourth order. 

The geometric nonlinearities are caused either by higher order terms of derivatives or by their 
products. 

 
2.2.1.2 General equations for large deflections of orthotropic plates 

General differential equations for large deflections of orthotropic plates were derived in 1940 by 
Rostovtsev [1940], who extended von Karman's equations by introducing the orthotropic stress-
strain relationship. 

In the following discussion, we will begin with the consideration of the bending of an 
orthotropic plate under lateral and in-plane forces. If only the first type of force is acting, then the 
stress distribution is that corresponding to bending. If only the in-plane forces are acting, the state 
of the generalized plane stress prevails. 

In studying the combined action of the bending and in-plane forces in an approximate 
manner, we assume that the stress components are composed of two parts: 
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Here x
b, y

b, xy
b are stresses proportional to z due to bending; x

m, y
m, xy

m are values of the 
membrane stress through the thickness, arising from in-plane forces only. 

In order to obtain the equation which the deflection w must satisfy, we will introduce the 
quantities Nx, Ny, Nxy, Nyx as in-plane forces per unit length. 
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Evidently Nx, Ny, Nxy satisfy the equations of equilibrium in the absence of body forces: 
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In order to determine them, it is necessary to solve the plane problem of the plate. 
If we divide the plate into rectangular elements of dimensions dx, dy and t, we can then 

consider their equilibrium. Besides the forces and moments shown in Fig. 2.13, there will also 
exist the longitudinal forces shown in Figs. 2.14 and 2.15. 
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Figure 2.13 Forces and moments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14 Normal and tangential forces in a plane. 
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Figure 2.15 Components of normal and tangential forces. 

Taking the curvature of the plate into account, the forces Nx, Ny, Nxy will not lie in the xy 
plane in the deformed plate; we obtain for the components of these forces in the z-direction 

 dxdy
y
wN

yx
wN2

x
wNZ 2

2

y

2

xy2

2

x 
















+




+




=  /2.51/ 

or, per unit area, 
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This force Z  must be added to the load p in Huber's Equation /2.22/ and we obtain for the 
orthotropic plate 
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The problem of orthotropic plate bending with in-plane forces is appreciably more 
complicated if the deflection is not taken as small as when compared to the thickness. In this case, 
the deflection and the stress function are determined by a system of two non-linear equations. 

Let us assume that the stress components are determined from Eqs. /2.48/ and that the 
corresponding strains may also be expressed in two parts 
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The quantities x
b, y

b, xy
b are the middle surface strains, depending not only on the 

displacements u and v, but also on the deflection w. From the general expressions for strain 
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components, by expansion in series and retaining only the first power of the derivatives of u and 
v and the second power of the derivatives of w, we get the known expressions 
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Elimination of u and v by means of differentiation gives 
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The strains x
b, y

b, xy
b depend on the bending of the plate and are given by the formulas 
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The total stresses x, y, xy across the thickness lead to in-plane forces Nx, Ny, Nxy expressed 
by the equations /2.50/, and to the moments Mx, My and Mxy. The stresses xz, yz lead to the shear 
forces Qx, Qy. The stresses x

m, y
m, xy

m satisfy the equations of equilibrium 
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from which it follows that they may be expressed in terms of the Airy's stress function F 
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These stresses are connected to the strains by the generalized Hooke's law 
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The transverse shear and in-plane forces satisfy the equation 
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which is obtained by considering the equilibrium of a rectangular plate element of Fig. 2.13, 
taking into account the force component in the z-direction arising from the longitudinal forces, 
Figs. 2.14 and 2.15. 

After substituting expressions /2.60/ into /2.56/ and replacing the stresses by the 
corresponding stress function F from /2.59/ we obtain 
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The second equation necessary to determine F and w is obtained by substituting expressions 
for shear forces into /2.61/ and by replacing the longitudinal forces by the corresponding stress 
function F. Thus we obtain 
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Equations /2.62/ and /2.63/, together with the boundary conditions, determine the two 
functions F and w. Taking into account the stress function F, we can then determine the stresses 
in the middle surface of a plate by applying Eq. /2.59/. From the function w, which defines the 
deflection surface of the plate, the bending and the shearing stresses can be obtained by using the 
same formulas as in the case of plates with small deflection. 

Thus the investigation of large deflections of plates reduces to the solution of the two non-
linear partial differential equations /2.62/ and /2.63/. Integration of these equations is 
accompanied by great difficulties as a result of the nonlinear terms in the first equation: the 
solution of these equations in the general case is unknown. Some approximate solutions of the 
problem are known. 

2.2.2 Non-linear theory of the post-critical strength of orthotropic box girders 
[Massonnet and Maquoi, 1973] 

2.2.2.1 Basic considerations 

The problem of the evaluation of the collapse strength of a box girder composed of four thin 
walls in steel and subjected to pure bending is of considerable difficulty, because it is influenced 
simultaneously by 

(a) the geometrical non-linearity (change of geometry effect) 
(b) the material non-linearity, due to the yielding of certain portions of the girder 
(c) the interaction between the four walls composing . the box girder 
(d) the presence of numerous longitudinal stiffeners. 

With reference to (a), the Massonnet and Maquoi think that it is sufficiently well established 
[Maquoi and Massonnet, 1972] [Massonnet, 1968] that the consideration of geometric non-
linearities is absolutely compulsory, to omit further comments here. 

With reference to (b), taking into account simultaneously large deformations and plastic 
yielding, though theoretically possible (e.g. by suitable finite elements), complicates the 
calculations to such a point that, even with a very powerful computer, they become extremely 
heavy. For this reason, the current theory adopts the viewpoint of Wolmir [1962], Skaloud [1970] 
and Skalound and Novotny [1962] according to whom collapse of a compressed membrane plate 
occurs when the mean membrane stress along the lateral unloaded edges reaches the yield stress 
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y determined by a compression test. This is the first basic hypothesis of the theory of Massonnet 
and Maquoi. 

This hypothesis is compared with the tests of Massonnet and Maquoi and it is shown that it is 
in reasonable agreement with them. As it is possible to measure the value of the mean membrane 
strain mc at collapse along the unloaded edges of the compressed flange, it should be possible to 
replace the actual yield stress of the steel used by a fictitious yield stress 

 mcEy    /2.64/ 

Finally, this collapse criterion is expressed by the relation 

 ( ) y
dx2a

2a yx 2b
a
1

==
+

−
 /2.65/ 

in order to improve the degree of agreement of theory of Massonnet and Maquoi with the 
tests. 

With reference to (c), it is obvious that the interaction between the compressed flange and the 
remainder of the box girder, namely the two webs and the pulled flange, is much smaller than the 
interaction between the web of a plate girder and its stiffening frame composed of the two flanges 
and the two adjacent transverse stiffeners [Maquoi and Massonnet, 1972]. 

More precisely, the flexibility of the webs is such that it is very reasonable to adopt, for the 
bending boundary conditions of the compressed flange, the simple support condition along the 
unloaded edges AD, BC; (w = 2w/y2 = 0) (Fig. 2.16). This relates to the second hypothesis. 

With regard to the membrane boundary conditions, a box girder composed of perfectly plane 
plates and subjected to pure bending would obey Navier's bending theory and along the unloaded 
edges would be Ny = Nxy = 0. 

If the calculation includes a small unavoidable initial curvature of the compressed flange, the 
conditions Ny = Nxy = 0 must remain reasonably correct if the mean collapse stress exceeds only 
slightly the critical stress (third hypothesis). The discussion of the test results will show that the 
degree of post-criticality n= does not exceed 1.5 for the box girders used commonly in civil 
engineering. 

Longitudinally, the compressed flange presents a series of buckles alternatively above and 
below its median plane, separated by transverse straight nodal lines (Fig. 2.16). Investigations 
will be limited to the rectangular panel of dimensions a, b, corresponding to one of these buckles 
and bounded transversely by two adjacent nodal lines AB, CD, (Fig. 2.17) along which there is 
obviously w = 2w/y2 = 0. 

With regard to the second hypothesis (that of simple support along AD and BC), it is obvious 
that the non-linear buckling deformations of the panel ABCD must affect the deformations of 
both webs and therefore their collapse stress. 

However, it must be emphasized that the main aim is to predict the collapse moment Mcoll of 
the whole box girder. The two webs' contribution to the global section modulus of the box girder 
is less than 15%, so that a large error on the estimation of this contribution would only slightly 
affect the value of Mcoll. 
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Figure 2.16 Boundary conditions of box girder 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.17 Stress distribution of plate 

With regard to (d), it should be noted that the large box girders of modern bridges comprise 
between ten and twenty longitudinal stiffeners. In these conditions, it is not mathematically 
possible to analyse the individual action of these stiffeners. On the contrary, the bending rigidities 
of these stiffeners must be spread out continuously, as in the Guyon-Massonnet method for 
calculating beam grids and orthotropic plates [Bares and Massonnet, 1968] 
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Combining this consideration with the necessity emphasized in (a), to treat the plate as a non-
linear membrane plate, it is necessary to start from the equations of an orthotropic membrane 
plate. These equations were first developed by Rostovtsev [1968]. However, these equations are 
valid only if the constitutive material itself is orthotropic. In reality, a structural orthotropy due to 
one-sided stiffeners must be dealt with. Pflüger [1947] has established the mathematical model of 
such plates in linear regime and it was indicated therefore to generalize Pflüger's equation by 
replacing the familiar relations of linear elasticity 

 
x
v

y
u              ,

y
v              ,

x
u

xyyx



+




=




=




=  /2.66/ 

by the corresponding expressions of non-linear finite elasticity, first proposed by von Karman: 
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This generalization was presented by Maquoi and Massonnet [1971]. However, the resulting 
equations are rather complicated and comparative calculations showed that the additional terms 
due to the eccentricity of the stiffeners introduce corrections of only about 5%. 

It was decided, therefore, to adopt the classical formulation of orthotropic membrane plates, 
but still to use the refined expressions for the bending and torsional rigidities given by the 
extended Pflüger theory. 

2.2.2.2 Fundamental equations and their method of integration 

The fundamental equations of an orthotropic membrane plate are two coupled non-linear 
partial differential equations in terms of 

w0 – the initial deflexion of the median plane of the plate (Fig. 2.17) 
w – the additional transverse displacement of this plane 
 – the Airy stress function governing the membrane stresses through the relations 

 ˙'xy''y˙˙xN   N             ,N              , −===  /2.68/ 

with the simplifying notations ( ) ( ) .
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These equations are: 
Compatibility equation 
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Equilibrium equation 
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 ( ) ( ) ( ) 0'˙w'˙0w'˙2''w''0w˙˙˙˙w˙˙0w''˙˙˙˙wyB'˙ '̇wC2''''wxB =+−+++−++       /2.70/ 

The values of the extensional, flexural and torsional rigidities D, Dx, Dy, B, Bx, By, Bxy, Byx, as 
well as those of the modified rigidities D,C,B,B yx  are given as follows [Maquoi and 
Massonnet, 1973]: 
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integrals extended to the cross-sections of the 
stiffened plate, respectively of width bx and by. 

 
Distances of neutral axes of stiffeners to the middle plane z= 0 
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Unit flexural rigidities 
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Unit torsional rigidities 
 
The unit torsional rigidities Bxy and Byx are calculated from Saint-Venant's torsion theory. In 

the particular case of stiffeners with thin-walled open cross-section, bxBxy and byByx are 
calculated by formula G/3be3 where G is the Coulomb's modulus and b and e are the dimensions 
of rectangles composing the cross-section of the stiffeners. 

The torsional rigidity arising in the fundamental equilibrium equation of linear theory is 
C = B+Bxy+Byx 
 
 
Modified rigidities according to Pflüger [1947] 
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It has been demonstrated that the eccentricities of the stiffeners affect the preceding rigidities 
as follows: 
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The boundary conditions (Fig. 2.16) are: 

bending: loaded edges AB and CD (x = ± a / 2): 

 w = 0, Mx = 0, therefore w" = 0 /2.71/ 

unloaded edges AC and BD (y = ± b / 2): 

 w = 0, My = 0, therefore w˙˙ = 0 /2.72/ 

membrane: loaded edges AB and CD: 

 Nxy = 0 /2.73/ 

The distance x between these edges remains constant. 
Unloaded edges AC and BD (y = ± b / 2): 

 Ny = 0, Nxy = 0 /2.74/ 

The mathematical problem to be solved is the integration of equations /2.69/ and /2.70/ with 
the boundary conditions /2.71/ to /2.72/. The well known eigenfunction representing the first 
buckling mode of a compressed orthotropic plate is 

 ( )
b
ycos

a
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


=  /2.75/ 

To simplify the analysis, 
(a) the plate presents an initial deflexion 

 ( )
b
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a
xcosfy,xw 00
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
=  /2.76/ 

related to the first buckling mode (some idea about the importance of this imperfection may 
be gathered from reference [Maquoi, 1971]). 

(b) in the post-critical range, it takes a supplementary deflexion 

 ( )
b
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a
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
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=  /2.77/ 

identical to the buckling mode, equation /2.73/. 
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It has been shown by Wolmir [1962] that this assumption yields rather small errors as long as 
the degree of post-criticality crn   is less than 1.5, which is the case in our flange plates 
(fourth hypothesis). 

Starting from the expressions /2.75/ and /2.76/ of w and w0, it is easy to integrate the 
compatibility equation /2.69/ exactly in closed form. The expression /2.76/ does not, however, 
satisfy exactly the equilibrium equation /2.68/. It is necessary therefore to resort to an 
approximate variational procedure, namely to the Bubnov-Galerkin procedure, which gives the 
value of the amplitude f of the additional transverse deflexion w, by stipulating that the error 
represented by the left-hand member of /2.70/ must be orthogonal to w. This condition reads 
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−

2b
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2a
 [left-hand member of equation /2.70/] w dx dy = 0 

2.2.2.3 Collapse criterion 

After lengthy calculations, and introducing the non-dimensional quantities 
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the collapse criterion /2.65/ may be written: 
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where the new notation is defined as follows [Massonnet and Maquoi, 1973]: 
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2.2.2.4 Limit efficiency of the compressed flange 

The limit efficiency t of the compressed flange is defined to be (Fig. 2.17) the ratio of the 
mean stress x  along the loaded edges x = ± a / 2 (Fig. 2.16) to the value of the yield stress in 
compression y− , at the moment where collapse occurs and collapse criterion /2.65/ [or /2.79/] 
is satisfied. By definition, then, the following equation is obtained: 

 
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The calculations give 
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2.2.2.5 Correction to the discontinuous character of the stiffening 

The theory discussed so far is based on the assumption of 'smeared' stiffeners. In fact, the 
plate panels enter rapidly in the post-critical range and present, between two adjacent stiffeners, a 
series of alternate buckles. The diagram of the longitudinal membrane strains x shows therefore 
girdles which increase in depth with increased bending of the box girder. It is possible to take 
account approximately of this effect by introducing a partial efficiency ', which is the ratio of the 
total effort transmitted by the actual stiffened panel by the effort transmitted by the continuous 
substitution panel considered in present study. According to Fig. 2.18, this partial efficiency is 
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where ( )  e'b  specifies that the effective width of the local plate strip of width b' must be 

calculated for a maximum membrane stress at the edges of this strip, 'max, equal to  . 
Maquoi and Massonnet [1971] gives a critical review of the various effective width formulae. 

The result of it is to show that the best formulae are those of Faulkner: 
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and Winter: 
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Figure 2.18 Stress distributions with stiffenings 

The Winter formula given is not the version used in Maquoi and Massonnet [1971], but the 
modified, slightly less conservative version introduced in the 1968 edition of the Commentary of 
the AISI Specifications. 

In effect,   differs from strip to strip and is minimum at the middle of the stiffened panel 
(Fig. 2.18). If the stiffening is sufficiently strong, this pocket in the x diagram is not too large 
and the reduced effective width of all panels may be calculated by Faulkner's formula, equation 
/2.83/, where ytx == , t being computed by equation /2.81/. The local efficiency ' is 

then immediately furnished by equation /2.82/. For weaker stiffenings, the calculation of ' is 
more involved Maquoi and Massonnet [1971]. The global efficiency of the stiffened plate, g, is 
clearly given by the expression 

 'tg =  /2.86/ 

where t is given by equation /2.81/. The mean collapse stress is then 

 ygu =  /2.87/ 

2.2.2.6 Ultimate strength design of a box girder bridge 

Summarizing the preceding theory, Massonnet and Maquoi recommend designing box girder 
bridges by adopting for the collapse loads determined by the theory described, the same safety 



 69 

factor as that imposed by the specification regarding the yield stress of the steel for the considered 
loading case. 

The Massonnet and Maquoi believe that the theory summarized here is a reasonable 
equivalent, for box girder bridges, of the collapse design methods of plate girders, namely the 
Basler-Thurlimann model and the various improvements made to it at the London IABSE 
Colloquium of March 1971 [Maquoi and Massonnet, 1972]. 

The theory described in the preceding sections may be immediately adapted to any kind of 
load factor or, equivalently, limit state design theory that should be substituted to the 
conventional factor of safety approach. 

2.2.3 Results Comparison and Comments of Tests [Massonnet and Maquoi, 1973] 

2.2.3.1 Design of test girders 

The behaviour of the test girders must be as similar as possible to that of an actual box girder 
bridge. Therefore, the following principal parameters must be considered: 

(a) the thickness b/t of the compressed stiffened flange 
(b) the number (m-1) of longitudinal stiffeners 
(c) the relative rigidity  of longitudinal stiffeners 
(d) the side ratio  = a / b. 

After examining the dimensions of recent large box girder bridges, it appears that it is not 
possible to make a model exactly to scale, because of the extremely large dimensions compared 
with the small thickness of the plate. Therefore a minimum thickness of 4 mm for the plate has 
been adopted to avoid welding problems. 

The following requirements have been determined: 

(a) the ratios b/t and b'/t are such that 25 < b/t < 70 and 250 < b'/t < 750 
(b) the height of the webs is about 0.5 times the breadth b of the girder 
(c) the side ratio  is often larger than 1 and about 1.2 
(d) the neutral axis lies approximately at midheight of the girder. 

The test girders are subjected to pure bending and the number of longitudinal stiffeners 
remains constant in all tests. For convenience, the section of the test box girders is not closed; 
however, it is sufficiently braced to guarantee the permanence of the rectangular cross-section. 

The aim of these tests is to verify the theory of post-critical behaviour presented in the first 
part of [Massonnet and Maquoi, 1973] and, more precisely, to examine the effect of the rigidity 
of longitudinal stiffeners. If * is called the 'optimum rigidity' of the linear buckling theory, the 
actual rigidity of longitudinal stiffeners will vary between 0.4 * and about 4 *. 

For all the tests, the following data were selected: 

thickness of the compressed plate t = 4 mm 
breadth of test girders between axes of webs b = 1600 mm 
height of webs h = 726 - 732 mm 
length of stiffened panels a = 1920 mm 
spacing of longitudinal stiffeners b' = 200 mm 
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length of the test girder 3a = 5760 mm 

Thus: 
 m = 8,  b/t = 400, b'/t = 50,  = 1.2. 
To avoid early instability of stiffeners, these are made of angles; furthermore, they are so 

designed to have rigidity ratios / * equal to 0.4, 1.0, 2.0 and 3.5. The intention is to make two 
additional tests on stiffened panels with transverse flexible stiffeners. 

To emphasize the post-critical range, all the parts of the test box girders, as well as those of 
the re-usable end girders, are made of high strength steel. 

In the fabrication of these test girders, welding sequences have been recommended which 
minimize the residual stresses. It has also been forbidden to use any artificial treatment intended 
to reduce the initial deflexions of the plates. 

A general view of the cross-section of the test girders is shown in Fig. 2.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.19 Cross-section of test girders. 

A preliminary test led [Massonnet and Maquoi, 1973] to modify the stiffening of the test 
girders for the test panels adjacent to the bolted joints with the re-usable end girders. Indeed, 
these joints constitute a 'hard spot' and, in the preliminary test, local buckling was experienced in 
their vicinity. Therefore, an upper stiffening has been added to these panels, whose height 
decreases linearly from the joint to about 10 cm of the transverse stiffener. 

2.2.3.2 Comparison of results and comments 
Figures 2.20, 2.21 and 2.22 show, for the global efficiency, a very good agreement between 

the tests and the theory of the first part of [Massonnet and Maquoi, 1973] since the maximum 
difference is about ± 5 %. This result must be judged as excellent if the rather simple bases of the 
theory and the extremely complex character of the post-critical strength of stiffened plates are 
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considered. Massonnet and Maquoi believe that this difference between experimental and 
theoretical results could be reduced further if the loading corresponding to the collapse criterion 
could be determined more precisely. With regard to the centre deflexion, the agreement is still 
better, as shown in Table 2.3. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20 Comparison of results, test girder I    Figure 2.21 Comparison of results, test girder II 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.23 Comparison of results, test girder III 
 

Table 2.3 Comparison of results. 

Test 
girder No. 

Global efficiency 
Centre additional deflexion, 

mm 
Experimental 

mid-span 
section, me 

Experimental 
end section, 

ee 

Theoretical 
t 

t

et



−
 

Experimental Theoretical 

 I 
 II 
 III 

0.54 
0.65 
0.77 

0.57 
0.66 
0.82 

0.53 
0.69 
0.81 

-4.7 % 
5.0 % 
1.9 % 

38 
29 
10 

41.8 
28.0 
12.1 
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3 Limit States and Modelling of Orthotropic Plate 

3.1 Collapses of Plate and Box Girder Bridges 
On the turn of sixties and seventies the professional public opinion and the public were deeply 
shocked by some serious collapse of bridges (Fig. 3.1). In 6 November, 1969. the new Danube-
bridge was snapped, which was built on the ring-road, but fortunately the bridge did not collapse. 
The next bridge was the Cleddau-bridge at Milford Haven (Wales, United Kingdom), where the 
steel box-girder with slant web-plate collapsed during the cantilever method of erection. In 15 
October, 1970. the box-girder of the West Gate bridge at Yara-river collapsed during the 
cantilever method of erection. 35 people died in the accident, among them the erection manager 
engineer and his assistant. Just one year after, the steel box-girder of the Rhine-bridge at Koblenz 
(Germany) collapsed during the cantilever method of erection, 18 people died. Already at first 
sight, there was common factor in the four accident: all of the four cases the main girders were 
web-plated box-girders and all of them collapsed during the erection [Cartledge, 1973]. 

From the beginning of thirties, the web-plated steel structures started widely applied in 
Europe at building of larger bridges. At this time, the Árpád-bridge in Budapest was started to 
build, and if it could be finished, the span of the bridge could be a world record. During the 
bridge reconstruction after the Second World War this structure become more and more popular, 
and spread rapidly by the “I”-section the so-called box-girders, and the so-called orthotropic steel 
floor slab is naturalized. All this caused sharp turn against the bar-static, since these were difficult 
spatial plated-structures. Worked out the theory of gridworks, the calculation method of 
orthotropic plates, and the theory of the stability of plates (examination of plate buckling) rapidly 
developed. The way looked soft, the sky looked unclouded, when the four mentioned accident 
had occurred. Certainly immediate examination started in every case to discover the reasons of 
the accidents and to find out the responsibility. The national fact-finding committees discovered 
the causing reasons, pointed out the conditions and factors, which take part in the accident. The 
international professional public opinion summarized the cases and selected that reasons, which 
were common in all accidents. It was typical at every accident, that some reasons collective effect 
caused the collapse. However two reasons were find at every accident, thus general conclusions 
could be done. 

Buckling occurred in all the three accident and at the structure damage in Vienna. The 
capacity of one of the element of the box-girders (bottom or web-plate) against buckling is used 
up, the plate deflect from its plain, thus the girder lost the rigidity. That could be occurred, 
because there were not correspondence between some basic assumptions of the buckling theories, 
which theories were developed by very big scientific apparatus and invariably do not disputed, 
and the everyday building practice. The theory basically assume plain plate and straight bracing, 
and assume the linear behaviour of the steel plate until a certain critical strength. These are 
idealistic assumptions, which necessary for solving the problems by mathematically. The 
everyday reality is somewhat different. In practice, there are not perfectly straight and plain 
plates. Yet a very thick plate deflects a little from its plain in the structure because of the welding 
stresses. Similarly the bracing, which is welded to the plate, deflect from the theoretical straight. 
Neither the unloaded ready structure is free from the stresses, because it contains the welding 
residual stresses. The calculated results therefore necessarily a bit differ from the reality, even if 
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the manufacturer of the steel structure working with modern technology thus with maximal 
precision. Together with the increasing production imprecision, the deflections are increasing, 
too. 

The another common problem was the magnitude of the safety against the fracture in the state 
of erection. Previous to the accidents the common opinion was that, smaller safety reserve is 
enough during the erection than the safety against the calculated maximal load on the finished 
structure. Now it is known this opinion is theoretically incorrect. The prescribed moving loads of 
the finished bridge are such big, that the real occurrence on the bridge is very improbable. On the 
other hand the construction loads are really effective in every state of erection, and the possible 
instabilities are bigger during the erection. Therefore it is not justified, that the official regulations 
ordain bigger risk for the building contractor, than the operator of the finished bridge. The 
conclusions arisen from the box-girder-catastrophes were reached in every country. During the 
official orders, the designing and constructional regulations were revised and co-ordinated, the 
undertaking conditions were rendered more severe. 

The bridges at Milford Haven, at Melbourne and at Koblenz were erected, the Danube-bridge 
at Vienna was repaired, and today they serve the traffic undisturbedly. Gently the confidence 
restored against the box-girders and nowadays new bridges are erected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Collapse of bridges at the end of Sixties and at the beginning of Seventies. 

 
 

06.10.1969. 
Wien (Austria) 

02.06.1970. 
Milford-Haven 
(Great Britain) 

15.10.1970. 
Melburne 
(Australia) 

10.11.1971. 
Koblenz-Horcheim 
(Germany) 
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Figure 3.2 Plate buckling curves. 

3.2 Design Criteria for the Different Substructures [Sedlacek, 1992] 
 
The post-critical behaviour of sheared plate-panel and compressed plate are similar in several 
respects, such as the post-buckling state is occurred in the load carrying capacity state, however 
in other respects they have different behaviour (Fig. 3.2). 

All elements of the deck have to be designed for 

– the ultimate limit state, 
– the serviceability limit state, and 
– fatigue 

In general the reserve of subsystems S1 and S2 to overloading by static local loads is so great 
because of their potential membrane strength, that the ultimate limit state does not govern design. 
This is illustrated by Fig. 3.3 [Pelikan and Esslinger, 1957] which shows the load-deflection 
curves for two tests conducted with a test deck, made of Fe 235. Tests revealed the results in 
Table 3.1 for the loads P [kN]. 

In general the serviceability criteria: 

– no excessive local curvature of the deckplate (to prevent cracking of the asphalt 
surfacing) and 

– no accumulated deformations, 
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together with fatigue criteria are the relevant limit states for the design of the deck plate and 
the longitudinal stringers. These permit the use of an elastic structural model for the analysis. 

Table 3.1 Test results. 

Limit State 1st test 2nd test 
Calculated Experimental Calculated Experimental 

First yielding 35.2 41.0 20.01 22.0 
First cracks 54.2 480.0 31.0 361.0 
Ultimate load  >560.0  372.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Results of loading tests. (a) Testpiece A for 1st deck (deck plate and ribs only); (b) testpiece B 
for 2nd test (deck plate, ribs and cross-beams). 
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Figure 3.3 Results of loading tests. (a) Testpiece A for 1st deck (deck plate and ribs only); (b) testpiece B 
for 2nd test (deck plate, ribs and cross-beams). 
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Subsystem S3 is also normally analysed using an elastic model to calculate moments and 
shears and deflections because the cross girders in general are not compact and so need to be 
treated elastically. From the analysis of the subsystems S2 and S3 the bending moments and shear 
forces in the longitudinal stringers and cross girders are derived. To calculate the ultimate limit 
states of the cross girders with respect to web buckling, e.g. the plate or lateral buckling of the 
bottom flanges of cantilevering cross girders, Fig. 3.4, full or partial plastic resistance models 
may be used. For serviceability limit states and for fatigue assessment purposes the models 
should be elastic. Particular care should be given to the inclusion of the total transverse frame in 
the assessment of fatigue strength. 

The ultimate limit state check of the main girders of the bridge involves the superposition of 
the local effects from substructures S2 and S3 and the global effects from substructure S4, that 
take place in the orthotropic plate deck. 

As the extreme values of the local traffic loading do not coincide with the extreme values of 
the global traffic loading, combination factors such as those given in Fig. 3.5 [Sedlacek and 
Merzenich, 1991] may be used when checking the deck. 

When the bottom flanges of the bridge are in compression, the stability checks for the bottom 
flanges of box-girders or of open bridge sections may be performed taking account of the 
restraints provided by the integral action of the girders with the deck. For example, in Fig. 3.6 the 
spring stiffness of the cross frames influences the buckling wavelength of the bottom flanges of 
the open girders. 

 
 
 
 
 
 
 
 

Figure 3.4 Cantilevering plates. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 Combination factor for global loads for local plate verifications. 
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Figure 3.6 Spring stiffness of the frame depending on the buckling wave length l. 

3.2.1 Analytical model for substructures S1 
It is not normally necessary to model the deck plate in substructure S1 to check the ultimate limit 
state, as tests and background studies have shown that the stresses in the plate due to local 
bending may be neglected in design provided the minimum stiffness criteria for the durability of 
the asphalt layer given previously are satisfied. The ultimate local load capacity of the plate is so 
high, that the ultimate limit state is never relevant. 

Tests also suggest that compliance with the minimum stiffness criteria and with the 
recommended welded details given for full penetration welds in Fig. 3.7 negates the need to carry 
out more elaborate fatigue calculations for the stringer-to-deck plate welds. Such welds may be 
laid without bevelling by automatic welding, when evidence of sufficient penetration is provided 
by proof tests. 

It should be noted that the minimum stiffness criteria are only valid for stringers running in 
the longitudinal direction. When stringers run in the transverse direction, the situation for the 
durability of the asphalt surfacing worsens due to the 'wash-board-effect' of the traffic loading. 
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When no suitable minimum stiffness criteria are available serviceability and durability criteria 
should be established to limit the stresses, deflections or curvatures of the steel plate as calculated 
by superimposing the effects from substructures S1 and S2 [Günther et. al, 1987]. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Weld preparation for the connection of the stringers to the deck plate [Kahmann, 1973]. 

3.2.2 Analytical model for substructures S2 

3.2.2.1 Transverse stiffness of the orthotropic plate (Dx) 

The transverse stiffness of the plate supported by rigid beams and elastic crossbeams is identical 
to the plate itself, besides the small stiffening effect of the longitudinal and transverse beams is 
neglected even in case of exact calculation. According to this: 
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where E is the Young’s modulus, t is the thickness of the plate, and ν is the Poisson's ratio (ν 
= 0,3 for steel). 

As it was mentioned earlier further on Dx=0 approximation is used. 

3.2.2.2 Longitudinal stiffness of the orthotropic plate (Dy) 

The longitudinal beams stiffen the plate. When consider the plate as a continuum, the longitudinal 
stiffness of the orthotropic plate is the unit stiffness of the longitudinal beams, so: 
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where EIy is the bending stiffness of a longitudinal beam where the effective width of the 
composite plate, as the flange is taken into account, a is the distance between the beams. 

The only problem here is the consideration of the effective width of the plate. Pelikan and 
Esslinger provide an approximate calculation. Fig. 3.8 shows the cross section of the floor 
structure, where a, real width belongs to a longitudinal beam. a0 effective width results from the 
condition, that if the a0 width plate strip is compressed with the sliding force acting at the 
connection of the beam and the plate, the elongation of the plate strip will be identical to the 
elongation of the plate at the connection of the beam. According to this condition the effective 
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width depends on the a/k1 ratio and on the loading of the longitudinal beams. Here k1- since the 
longitudinal beams are multi-span beams – is a smaller value than k, the span of the longitudinal 
beams. k1 is the distance of the points of zero moment, approximately k1=0.7k. If only one 
longitudinal beam is loaded the effective width will be a0 =0,3627k1. If each longitudinal beam 
has the same loading the a0/a ratio can be taken from the graph of Fig. 3.9 in the function of 
β=π⋅a/k1. 

 
 
 
 
 
 
 

Figure 3.8 Effective width. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 The determination of effective width [Halász, Hunyadi, 1959]. 

If the loading of the longitudinal beams is not the same on each, we will be allowed to count 
with a* instead of a (Fig. 3.10). a* is: 

 a
AA

A2
a

10

0 ⋅
+

=∗ , /3.3/ 

where A0 is the load of the beam No “0” and A is the load of the beam No “1”. In this case at 
the graph of Fig. 3.9 a* is used instead of a. The ratio of a*/a can be taken from Fig. 3.14.b in the 
function of b1/a. The determination of the loading of the longitudinal beam is discussed in chapter 
3.2.3.1. 

 

    or 

    or 
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Figure 3.10 Effective width of differently loaded longitudinal beams. 
 

3.2.2.3 The torsion stiffness of the orthotropic plate (H) 

 
Torsion stiffness of longitudinal beams with open section 

 
The torsion stiffness of the open section beams comes from the stiffness of the plate and the 
beams (Fig 3.11): 

- plate: 
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Here G is the shear modulus, IT is the torsion inertia of the beam. 
The complete torsion stiffness is: 
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In the further calculations the torsion stiffness of the beams will be neglected and we consider 
that Dx = H = 0. 

 
 
 
 
 
 

Figure 3.11 Longitudinal beam with open section. 
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Torsion stiffness of longitudinal beams with closed sections 
 

The determination of the torsion stiffness of beams with closed section is rather difficult. Pelikan 
and Esslinger determines the torsion stiffness of semicircle, and trapezoid sections. The torsion 
inertia for closed sections 
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is adequate only in case of pure torsion (here A means the area of the closed section). The 
effect of the section-distortion is taken into account by λ reduction factor. An assumption based 
on energy-principle is used, that the deformation work from the torsion in the real longitudinal 
beam is identical to deformation work of an idealized beam (with reduced torsion stiffness) from 
pure torsion. According to this, the torsion stiffness of the longitudinal beams in Fig. 3.12: 
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Figure 3.12 Longitudinal beam with closed section. 

The value of λ reduction factor depends on the cross-section geometry. The formulas for 
trapezoid and semicircle section are available in the above-mentioned reference. 

3.2.3 Analytical model for substructures S3 
As it was already mentioned earlier, in case of plates stiffened by simply longitudinal beams the 
approximation of Dx = H = 0 can be used and through this the differential equation of the 
orthotropic plate is: 
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The plate with Dy longitudinal bending-stiffness can be calculated as many endless continuous 
beams close to each other with the same spans, which are supported by the elastic crossbeams. 
The calculation is carried out in two steps. In the first step the crossbeams are considered as rigid, 
so the stresses are calculated on continuous beams with fixed supports. In the second step the 
deformation of the crossbeams is taken into account, and correcting elements are determined (Fig. 
3.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13 The Pelikan-Esslinger method [1957]. 

 

First step 

Second step 

The sum of the first and second steps 
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3.2.3.1 The determination of the loading of the longitudinal beams 

The plate transmits the load between the beams. When determining the load-transmitting role of 
the plate, this can be handled as many continuous crossbeams close to each other, which are 
rigidly supported by the longitudinal beams. The loading of each longitudinal beam is the 
reaction force of these beams. It depends on the arrangement of the loading, the width of the 
loaded strip and on the distance between the longitudinal beams. For a general longitudinal beam 
the loading can be obtained from the graph of fig. 3.14.a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14 The loadings and the effective width of the longitudinal beam [Halász, Hunyadi, 1959]. 
 

3.2.3.2 Determination of bearing forces, considering rigid crossbeams 

 
Moments on the longitudinal beams 

 
The bending moment depend on the loading, the distance of the longitudinal and crossbeams, but 
independent on the sizes of the beams, so they are calculated for a structure only once. The 
moments can be calculated when knowing the loads, with the help of the influence diagram for 
continuous beams. Pelikan and Esslinger provide formulas for different loadings. These can be 
used because of their easy use [Pelikan, Esslinger, 1957] [Visontai, 1965]: 

 



 85 

1) Moments of span 
 
In cases of shown in Fig. 3.15 the formulas are the following: 

a) load-case, A concentrated force in the middle of the span distributed on a strip with 2c width 
(A=2cq): 
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b) load case, concentrated load in the midspan: 
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c) load case, concentrated load in an optional span: 
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where m is the smaller value from the numbers of the loaded span 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15 Load cases for moments of span. 
 

2) Moments at the supports 
 
The moment at the support “0” for the load cases shown in Fig. 3.16 is given by the following 

formulas: 
a) load case, A concentrated force in the middle of the span distributed on a strip with 2c width 
(A=2cq): 
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The authoritative location of the load: 
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and the moment at the support for this  
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b) load case, concentrated load in an optional span: 
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where m is to be understood as previously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16 Load cases for moments at the supports. 
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Bearing forces of the crossbeams 

 
The load from the longitudinal beams to the crossbeams is calculated as the reaction force of the 
fix supported continuous longitudinal beams. According to the reaction force influence diagrams 
the formulas can be used for the load cases shown in Fig. 3.17. 
a) load case, a concentrated force in the 0-1 span: 

 



















+






−⋅=

3

k
y1961,1

2

k
y1961,21A0B   , /3.17/ 

b) load case, a concentrated force in an optional span 
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where m is the smaller value from the numbers of the loaded span 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17 Load cases of fix supported continuous beam. 
 
When calculating the reaction forces, the distributed loads can always be substituted by their 

resultant, so only concentrated forces are used. 
The bearing forces from the transmitted loads can be determined on the crossbeam as a 

simply supported beam. 
 

3.2.3.3 The effect of the elasticity of the crossbeam 

After the loads of the crossbeam are determined, assuming continuous longitudinal beams with 
fix supports, we remove the fix supports and the external load at the joints, then we load the 
crossbeams with the reciprocal value of the determined reaction forces. Since according to our 
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assumption, the system contains infinite number of longitudinal beams, this load will be 
distributed. Although the torsion stiffness of the orthotropic plate is neglected, the load cycles of 
each longitudinal beam will not be independent on each other and due to the elastic deformation 
of the crossbeam – as the support of the longitudinal beams – some longitudinal beam will be 
loaded which normally would be unloaded. If the longitudinal beams are handled as continuous 
beams with sinking supports it will be necessary for the sinking of the supports to be proportional 
to the loading. Mathematically this means: 
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For the length of the whole crossbeam. From this: 
 wcbEIw ′′′′⋅⋅ρ=  /3.20/ 

where ρ is the proportionality factor is the Young’s modulus, EIcb is the inertia of the 
crossbeam. 

If the deflection curve is taken as a sine function variable (or function series) the load function 
will be a sine function too, since its fourth derivative is also a sine function. So the loading of the 
crossbeam has to be expanded in Fourier series and for the effect of the partial loads the 
calculation has to be carried out on the longitudinal beam as a continuous beam with elastic 
supports. The research of Pelikan and Esslinger resulted that the in often appearing cases when 
there are only two beams, it is enough to take into account only the firs member of the series ( a 
system with half wave) (Fig. 3.18). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.18 Partial loads of crossbeam [Halász, Hunyadi, 1959] 

I. partial load 

II. partial load 

III. partial load 
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The spring constant from /3.19/ after four integrations: 
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The Fourier series for the most often appearing load cases are shown in Fig. 3.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 The most often appearing load cases [Halász, Hunyadi, 1959] 

The bearing forces of the longitudinal beam from the elastic deformation of the crossbeam 
can be obtained in a way, that we determine the influence line of the continuous longitudinal 
beam with elastic support with the above-determined spring constant, and we load these curves 
with the partial loads. Pelikan and Esslinger provided some influence lines. The tables of these is 
a function of γ: 
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where 
Ib is the inertia of the longitudinal beam 
Icb is the inertia of the crossbeam,  
b is the span width of the crossbeam,  
k is the span width of the longitudinal beams (the distance between the crossbeams) 
a is the distance between the longitudinal beams 
The spring constant ρ is included in γ. 
 

3.2.3.4 Calculation of orthotropic plates in case of longitudinal beams with torsion stiffness 

In case of longitudinal beams with closed sections, the torsion stiffness of the plate H cannot be 
neglected; Dx bending stiffness can be neglected. The differential equation will be the following: 
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so the calculation has to be carried out according to the plate- phenomenon. The general 
solution of the equation: 
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The integral constants are determined according to the supports. The solution is an infinite 
series, so the loads have to be expanded into Fourier series. 

The calculation is carried out in two steps. First the bearing forces at the place of the 
crossbeams are calculated as continuous plate, than the elasticity of the crossbeam will be taken 
into account. This last process is the same as written in the previous chapter. 

So the problem is the determination of the bearing forces of an infinite length – continuous 
plate fix supported at the places of the crossbeam. The calculation process is similar to the 
process with the continuous beams. First the influence surfaces for the moments at the supports 
and the mid-spans and the reaction forces are determined, then these are loaded with the given 
load. The determination of the influence surfaces is a cinematic method; the surfaces are 

determined so that in case of moment surfaces 
b
xnsin1 π

⋅=ϑ  relative rotation is applied at the 

midspan (its distribution is a sine function) and in case of reaction force surfaces 
b
xnsin1w π
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deflection is applied at the supports (its distribution is a sine function too), and from the 
deflection surface the solution is given. There are formulas for the moment- and reaction force 
values of these surfaces. Of course the influence surfaces and the loading were expanded in 
Fourier series in these calculations and the result is given as series too. The accuracy of the 
calculation depends on the number of the elements taken into account. 

The general formula for the moments: 
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Here q is the intensity of the loading of Fig. 3.16, qx/q is the load’s Fourier coefficient and 
Q = q×2c. 

The unit moment of M/(Q×k) is: 
a) in case of moment in the span 
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where: 
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b) in case of moment at the support, formula /3.26/ is used, but instead of /3.28/ the following 
member comes in: 
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of course these formulas have to be generated as a sum of n member, by taking into account 
that in α n=1,3..n. 

For the determination of the Fourier coefficients for the two load cases of Fig. 3.20 we have 
the following formulas: 

a) case 

 
b

gnsin
n
4

q
q x π

⋅
π

= ∑ ,   5,3,1n = , 



 92 

b) case 
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Figure 3.20 Load cases of crossbeam. 

For the determination of the crossbeams, the determination of the reaction forces is necessary. 
This can be done according to the beginning of this chapter. The calculation of the crossbeams, 
and the correction from the elasticity of the crossbeams can be carried out according to the 
beginning of this chapter. 

 

3.2.3.5 Stresses in the floor slab from direct loading (tertiary stresses) 

The floor slab is a fix supported continuous isothropic plate, with infinite number of spans, 
supported by the longitudinal beams. The load is divided between the beams through the floor 
slap, while there are bending stresses it it as well. These stresses are called tertiary stresses. Load-
transmitting and dividing role of the plate has already been discussed in 3.2.3.1, and we 
concluded that from the load transmitting point of view the plat can be modelled as plenty of 
beams with infinite length close to each other. But the stresses in the plate cannot be determined 
like this. Since the orthotropic plate itself is a statically indeterminate structure it has huge load 
bearing reserves, so the use of the plate phenomenon is not necessary either. Pelikan and 
Esslinger provides an approximate process, which is simply and enough accurate [Pelikan, 
Esslinger, 1957]. The essence of this process is that the bending moment in the plate is a product 
of K plate coefficient and the moments of the structure modelled by beams. 

 gl mKm ⋅= , /3.33/ 

Where m1 is the unit moment (mMp/m) in the plate, K is the plate coefficient and mg is the 
moment of a 1 m wide plate-strip as a beam. 
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Figure 3.21 Load cases of floor slab. 

The value of K is given for three load cases (Fig. 3.22) 
During the calculation process first the moments of the plate as beams according to /3.10/-

/3.13/ are determined, than from the graphs of Fig. 3.22 we obtain K. the real moments of the 
plate are obtained from /3.33/. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22 Plate coefficients [HALÁSZ, HUNYADI, 1959]. 
 

Case Moment in the span Moment at the support 

Plate coefficient 
for moment in the span 

Plate coefficient 
for moment at the support 
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3.2.3.6 Calculation of gridworks 

3.2.3.6.1 Introduction 

Gridwork is a spatial structure, which consists of beams in two directions, which are connected to 
eachother in some way (Fig. 3.23). 

The layout of the beams can be totally random. Here we discuss only the calculation process 
of such gridworks, where two spreads of beam (consists of parallel beams) are connected to 
eachother in a way that some relative deformations are allowed. Mostly the beams are 
perpendicular. The longitudinal directional beams are called main girder, the transversal 
directional beams – supported by the main girder – are called cross-girder. The connection of the 
main and the cross girder is usually rigid, which is able to carry torsion moments as well, but in 
some cases e.g. steel structures, where the torsion stiffness of the main girders are small, this can 
be neglected [Szabó, Visontai, 1962]. 

Further on we discuss special gridworks, where the main girders are parallel, simply-
supported with identical spans, and the cross girders are perpendicular to the main ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.23 Gridworks a), b) simple and multi-span open main girder c) simple span box girder, 
d) multi-span variable web-plated main girder. 
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The basic models of the calculations can be divided into two classes: 
a) the torsion is neglected, so the connection is able to transmit only vertical forces 
b) the connection has torsional stiffness 

In both classes assumptions are made, in order to make the calculation easier, but of course 
they provide approximate results. 

In case a), the most often applied assumption is to use one ideal main girder. This comes from 
Faltus, but it has been is known from Leonhardt [Faltus, 1927] [Leonhardt, 1938]. 

It is worth to mention the process from class b), where the gridwork is substituted by a plate. 
Since the bending stiffness of the full gridworks is different in the directions of the main and the 
cross girders, the gridwork has to be substituted by an anisotropic plate where the elastic 
parameters are different in the two directions. If these directions are perpendicular, the plate is 
orthotropic plate. Guyon and Massonnet investigated this topic in details [Guyon, 1946a] 
[ Massonnet, 1950c]. Huber and Cornelius made investigations on the exact calculation of 
gridworks with torsional stiffness. 

Further on we show the approximation method of Leonhardt and the one from Guyon and 
Massonnet. 

 

3.2.3.6.2 Analysis of a straight gridwork with one cross-girder with compatibility method 
[Szabó, Visontai, 1962] 

 
The assumption of the primary structure 

 
The basic model of the analysis is shown in Fig. 3.24. The connection of the girders is able to 
transmit only vertical forces, so the cross girders works as an elastically supported continuous 
beam. The primary structure of gridwork can be taken in a way that we cancel the connections 
between the main and the cross girders. The grade of the indeterminateness of the gridwork is 
identical to the cross girder’s (as an elastically supported continuous beam) indeterminateness. In 
case of r pieces of main girder the indeterminateness is r-2. The cancelled connection forces are 
substituted by r-2 pieces of (now unknown) Xi force, which are vertical in case of vertical loads. 
So these forces are the intermediate reaction forces of the elastically supported continuous cross 
girder. With the determination of these forces the gridwork is solved, since we know all the forces 
acting on every member. 

 
 
 
 
 
 
 
 
 

Figure 3.24 Straight gridwork with one cross-girder. 
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The easiest way for the termination of these Xi forces uses the so-called cross-distribution 
factors. The cross-distribution factors are the joint forces, which arise when a unit load acts at a 
joint. The sign of these factors is qik, where the first index denotes the location of the joint, the 
second one denotes the location of the P0 = 1 kN unit load. So qik means the joint force at joint i, 
which arise from the effect of P0 unit load at joint k. The cross-distribution factors are unit factor-
like, but their components mean forces. 

 
Determination of cross-distribution factors 

 
According to the previous interpretation, the cross distribution factors are the reaction forces of 
the elastically supported continuous cross girder when the unit load is on a joint. So the reaction 
force influence lines of the elastically supported continuous cross girder have to be determined. 
The ordinates of these lines at the supports give the cross distribution factors. 

The spring constant of the supports of the cross girder can be obtained from the deflection of 
the main girder under unit load. So in case of simply supported main girders with constant 
stiffness, when the cross girder is in the middle: 

 
i

3
i

i EI48


=ρ , 

The reaction force influence lines from the already known formula: 

 ∑
=

η+η=η
n

0i
kik

0
ii )X(B)B()B( , 

where Bi is the reaction force influence line of the support “i” of the body structure of the 
cross girder Bik means the reaction force when the unit moment acts at k. η(Xk) is the moment 
influence line of point k. 

For instance in case of a gridwork with 5 main girders, the reaction force influence line of the 
cross girder at point 2 (Fig. 3.25) 

 )X(B)X(B)X(B)B()B( 323222121
0

22 η⋅+η⋅+η⋅+η=η , 

where 

 
2

21 a
1B = ,  

32
22 a

1
a
1B −−= ,  

3
23 a

1B = ., 

The ordinates of the reaction force influence line at the supports give the cross distribution 
factors q20, q21, q22, q23 and q24. 

When determining all the influence lines of the reaction forces, we get all the cross 
distribution factors (Fig. 3.26). 
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Figure 3.25 The reaction force influence lines of the cross girder. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.26 Determination of the cross distribution factors. 
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There are some relations between the cross distribution factors. On the one part because of the 
equilibrium of the structure, the sum of the reaction forces of a loading is unit, so.  

 1q
n

0i
ik =∑

=
= 1qqqqq 4232221202 =+++++  

On the other part according to Maxwell’s reciprocal theorem: 

 ikki ee = , 

so: 

 ikikik qq ⋅ρ=⋅ρ , 

from when: 

 ki
i

k
ik qq ⋅

ρ
ρ

= , 

When the main girders are of constant stiffness and the main girder is in the middle: 

 ki
k

i
ik q

I
I

q ⋅= , 

These formulas are either for checking, or for make the calculation process easier. 
 

Determination of influence lines 
 

The vertical loads of the grid can act within region T. We can analyse the value of effect Cx,y at 
point (ξ,η) for the force P(ξ,η) respectively the effect C as a function of 1/2Cx,y(ξ,η). This 
function under region T can be demonstrated by a surface, which is called influence surface. 
When determining the influence surface of a cross section the basic assumption is that the forces 
acting between the main girders are transmitted by virtual simply supported beams, parallel to the 
cross girders. From this comes, that its vertical sections, belonging to the plane of the main 
girders, can obtain the influence surface of a cross section. So the same number of sections can 
determine an influence surface as the number of the main girders. 

A section in the plan of a main girder – which is an influence line – provides the chosen 
bearing force as a function of the location of the unit load. Two cases are distinguish: 

1. P0 force acts on the same main girder where the chosen cross-section is 
2. P0 force acts on an other girder 

These two cases are demonstrated on the example of the previous gridwork with 5 main 
girders. Let section k on the main girder No. 2 be the one where the bearing forces are analysed 
(Fig. 3.27). 
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Figure 3.27 The layout of the examined gridwork. 
 
 
 
 
 
 
 

Figure 3.28 The model of main girder No. 2. 
 
1. P0 acts through the main girder No.2, so the section of the influence surface C of cross 

section k is to be determined at the main girder No.2. Main girder No.2 is directly loaded besides 
P0 by joint force X2 as well. The question is the value of X2. According to Leonhardt, we make 
the following assumption. If main girder No. 2. were rigidly supported by the cross girder, the 
structure would be a two span continuous beam. Let the reaction force of the intermediate support 
be B2m (the second index denotes the location of P0, see Fig. 28). let us ignore the assumed fix 
support; this means that we put a force on the girder, which has the same value as B2m, but its 
direction is opposite. However this force is distributed among the main girders through the cross 
girder. From this the force on girder No. 2 is B2m×q22, acts down. So altogether: 

 )q1(B)qBB(X 22m222m2m22 −−=⋅−−= , 

force (acts upwards that’s why it is negative) acts on main girder No. 2. So B2m means the 
reaction force influence line of the main girder fix supported in the middle. In case of a girder 
with constant inertia, when the analysed cross section is in the middle of the cross girder, the 
reaction force influence line can be determined analytically. According to the kinematic way of 
solution: 

 
22

2m
m2 e

e
B = , 
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where em2 denotes the deflection influence line of the simply supported beam, and e22 denotes 
the deflection of the mid-section under unit force (Fig. 3.29). The value of the deflection of a 
point with abscissa x: 
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Figure 3.29 Bending moment and deflection curves of simple span beam. 

With this we obtain the value of the joint force, which is: 

 )q1(X 222 −ξ−= , 

The bearing of the cross section is a result of the bearing forces from P0 and X2: 

 220 CXCC += , 

where C2 denotes the bearing force under the unit load at joint 2.  
In case of influence line: 
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 )q1(C)C()X(C)C()C( 2220220 −ξ−η=η+η=η , 

The value of C2 is the ordinate of η(C0) at the joint (at /2 distance); let us denote it with 
2,0 η  

so 

 )q1()C()C( 22,00
2

−⋅η⋅ξ−η=η  , 

and in general, when main girder i is analysed: 

 )q1()C()C( ii,00
2

−⋅η⋅ξ−η=η  , 

Let us determine the bending moment influence line of cross section k (Fig. 3.30): 

 )q1(
2

)M()M( ii
1

0kk −⋅
ξ

⋅ξ−η=η , 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.30 Preparation of the bending moment influence line and the shear force influence line of k 
section. 
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Or the shear force influence line (Fig. 3.30) 

 )q1(
2
1)T()T( ii0kk −⋅⋅ξ−η=η , 

 
2. P0 acts through main girder No.4. The girder is not loaded directly, the value of the force 

transmitted at the joint: 

 m2424 BqX ⋅= , 

The value of a bearing force: 

 ξ⋅⋅η=⋅⋅η= 42,0m242,0 qBqC
22
 , 

For example, the section of the influence surface of k at girder 4: 

 ξ⋅⋅
ξ

=ξ⋅⋅η=η 42
1

42,0k q
2

q)M(
2
 , 

Or in general, the section at girder j: 

 ξ⋅⋅
ξ

=η ji
1

k q
2

)M( , 

so any section at any other girder is proportional to diagram ξ. 
The sections at the girders determine the influence surface. In case of forces acting between 

two girders, the loading of the main girder is calculated by assuming simply supported beams. So 
linear ranging of the influence surface sections is assumed. For instance a moment influence 
surface is according to Fig. 3.31. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.31 The bending moment influence surface of k section. 
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According to the influence surface, the effect of an external load is obtained in a way that the 
intensity of the load, distributed on area F, is multiplied by the volume of the influence surface 
under the loaded area, so: 

 η⋅= VpCk , 

In case of concentrated load, the volume turns into an ordinate: 

 η⋅= PCk , 

Let us analyse the behaviour of the grid of fig. 3.32 parametrical according to Lindner and 
Bamm [1982], by changing the characteristics of the cross girder. The load is located at girder 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.32 Behaviour of gridwork with one cross-girder. 

It is observable, that a detectable rearrangement of the bearing forces occurs at the values of 
z>=2. Fig. 3.33 shows the effect of the change of z. 

Fig. 3.33.a shows the cross distribution diagram. According to this in case of small values of 
z, only main girder 1 will be loaded, while in cases of high values of z the other girders will be 
loaded as well. 

Fig. 3.33.b illustrates the behaviour of gird 2. 
Fig. 3.34 shows the behaviour of the grid with more cross girders. The value of z was taken to 

4,3. 
Fig 3.34.a shows the cross distribution diagram of girder 1, in case of more cross girders, Fig. 

3.34.b illustrates the behaviour of girder 2. 
 
 
 
 

girder 1 
girder 2 
girder 3 

examined girder 
loaded girder 
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Figure 3.33 The effect of varying the z factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.34 Behaviour of gridwork with more cross-girders. 
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3.2.3.6.3 Approximate calculation of gridworks by substituting them with orthotropic plate 

 
The Guyon–Massonnet method 

 
Calculation of orthotropic plates and grids is a quite often appearing problem, and the only 
difficulty of these, that the known calculation methods provide the result after long calculation. 
[Bölcskei, 1968]. 

The Guyon-Massonnet method provides the load distribution by easy-to handle and fast 
graphs. It takes into account also the torsion stiffness of the grid members. It is applicable for 
every grid and orthotropic plate, where the value of the bending and the torsion stiffness (related 
to unit length) of the main and cross girders can be assumed as constant. The simplest case 
according to this for example the regular grid, where, the distance between the main and cross 
girders is constant, both, in longitudinal and transversal direction, and the stiffness of every 
member is identical as well.. 

 
The solution of the differential equation 

 
The form of the general solution of the homogeneous equation 

 ∑
=

π
⋅=

n

1m
m

xmsin)y(Y)y,x(w


, 

In case of one line-load, the above given solution is valid for every point of the grid outside 
the loaded line. The loading is a sine function, and the general equation is [Szabó, Visontai, 
1962]: 

 ∑
∞

=

πξ
⋅=ξ

1m
m

msinp)(p


, 

By substituting the above formula of w deflection into the homogeneous equation, we get: 

 0 YBmYH2mAY m2

22

m4

44

m =′′′′+
π′′−

π


, 

Guyon offers in order to make the calculation process easier, the assumption, that the 
transversal load distribution is independent on the collinear load’s character. So the calculated 
values of the cross distribution factors for a loading are valid for every other loading as well. Let 
the collinear load be according to one sine wave (m=1): 

 


πξ
⋅=ξ sinp)(p 1 , 

and the differentia equation: 
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With the substitution of ABH α=  and the dividing of the equation by B, we get: 
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by inserting 

 
B
A

2

2
2



π
=λ , 

we can write: 

 0)y(Y)y( Y2)y(  Y 1
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This differential equation was solved by Massonnet for α = 1, and by Guyon for α = 0, so: 

 0Y Y2  Y 1
4

1
2

1 =⋅λ+′′⋅λ−′′′′ , (Massonnet) 

 

 ′′′′+ ⋅ =Y Y1
4

1 0  λ , (Guyon) 

The solution is: 
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y
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and the integral constants are determined from the adequate boundary conditions. Namely the 
line of the collinear load divides the plate into two half, and for each of these parts the general 
solution can be written. Let the solution for the one half plate be Y1

I, and for the other Y1
II. The 8 

unknown coefficients of these functions comes from the following conditional equation: 

– - at the edges the moments and the shear forces are zero: 

 0)Y()Y( II
1

I
1 =′′=′′ ,  and  0)Y()Y( II

1
I

1 =′′′=′′′ , 

– - at the connection at the two parts, the deflections the rotations and the moments are 
equal, so: 

 II
1

I
1 YY = , )Y()Y( II

1
I

1 ′=′ , )Y()Y( II
1

I
1 ′′=′′ , 

– - the difference between the shear forces is equal to the line-load: 
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Let the width of the plate be 2b, the span , the coordinate of the location of the line-load η 
and the coordinates of the unknown w deflection x and y (Fig. 3.35). Then with the substitution of 

 44
B
Ab

B
Abb


=

π
π

=λ
π

=ϑ , 

the w deflection of every point with x and y coordinates is computable in a function of ϑ. The 
w0(x, η)deflection of the simply supported beam at the line of the collinear load is computable as 
well. The quotient of the two results is the cross distribution factor: 

 
0w

w),y(K =η , 

The cross distribution factors also give that how many of a load at η location acts at a strip of 
y width. 

These cross distribution factors were determined in the function of the parameter ϑ, by 
Massonnet for α = 1 and Guyon for α = 0 for different load cases. The results were summarized 
in graphs and tables. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35 The position of the line-load. 

The introduction of the calculation process 
 

The process is based on the differential equation of the orthotropic plate [Bölcskei, 1968]: 
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We insert the following notations (Fig. 3.36): 
 
EIm bending stiffness of one main girder 
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EIc bending stiffness of one cross girder 
GImt torsion stiffness of one main girder 
GIct torsion stiffness of one cross girder 
h distance between the main girder 
k distance between the cross girders 
 
 
 
 
 
 
 
 
 

Figure 3.36 The geometry of gridwork. 

Neglecting the effect of the contraction, the constants of the differential equation will be: 
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Writing H in the following form: yx DDH ⋅α= , the characteristic value for the torsion 

stiffness of the gridwork: 
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=α , /3.34/ 

while the characteristic parameter for the bending stiffness of the gridwork: 

 4
k/cI
h/mI

l
b

=ϑ , /3.35/ 

At the members of the gridwork α = 0 and H = 0 lower limit shows the neglection of the 
torsion stiffness, the upper limit is α = 1 value for the isotropic plate’s two directional torsion 
stiffness. 

The calculation is based on that, anywhere the load is on the main girder, the distribution of 
the loading is always identical in an optional cross section (in the direction of the cross girder). 

From practical point of view the determination of the cross distribution factors is essential 
[Bölcskei, 1968]. These two factors are seen in the graphs of Fig 3.37 – 47 in the function of α 
and ϑ.  

Κ0 is the cross distribution factor for the limit state α = 0 
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K1 is the cross distribution factor for the limit state α = 1 
These values are theoretically valid for orthotropic plate, but they can be used for gridworks 

with one cross girder too. 
In case of when the characteristic value for the torsion stiffness is between α = 0 and α = 1, 

the cross distribution factor has to be inter interpolated in the following way: 
 α−+=α )KK(KK 010 , /3.36/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.37 Cross distribution factors. Figure 3.38 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.39 Figure 3.40 
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 Figure 3.41 Figure 3.42 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.43 Figure 3.44 
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 Figure 3.45 Figure 3.46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.47. 
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Now the bending moment of the main girders is computable. 
Let us assume first that simple case that the loading is one force system, acting at distance η 

from the axis of the bridge according to Fig. 3.48. Let us determine the moment of the main 
girder’s x cross section, which is in f distance from the bridge axis. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.48 The position of loading. 

Firstly we determine the M0(x) bending moment from the whole loading on the virtual simply 
supported beam at the line of the loading in the usual way, then we multiply this with Kα(η,f) 
from the diagrams. K0, K1 (from the diagrams) and K (from formula /3.36/) give the ordinates of 
the cross distribution diagrams of the main girders at the eighths of the bridge cross-section. In 
case of orthotropic plate they relate to the points at the eighths of the cross section the area of the 
cross distribution diagram is 2b. Therefore in case of orthotropic plate the unit value of the 
longitudinal moment at a point of the cross section: 

 )f,(K
b2

)x,(M
)x,f(m 0

h η⋅
η

= α , /3.37a/ 

In case of gridwork the longitudinal moment for one main girder comes from the product of 
distance h and the moment of formula (4a): 

 )f,(K)x,(M
b2

hh)x,f(m)x,f(M 0hh η⋅η⋅=⋅= α , /3.37b/ 

If the load acts along more lines the moment at an optional place is the sum of the moments 
calculated according to the above-described way. 

3.2.4 Analytical model for substructures S4 
The influence of the deformation of the cross section on stresses has been analyzed by the 
Advanced Theory of Bending, Torsion and Distortion [Tesar, 1977] [Iványi et al., 1990] which is 
a simple method of analysis but precise enough to study the three-dimensional behaviour of the 
bridge. 

Besides the axial deformation v1, the two displacements v2 and v3 and the rotation of cross 
section v4 displacement elements further sectional deformations develop in accord with the cross-
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section’s transverse stiffness. These are equivalent to the relative position change of prismatic 
plates. 

In case of open sections the number of displacement degree of freedom (v) equals to the 
number of joint-hinges (n). With the formation of the joint-hinges the cross sections’ 
frame-stiffness ceases. To secure the kinematical stability of this “released” section n additional 
bars are needed. (Fig.3.49.) 

 
 
 
 
 
 
 
 
 
 

Figure 3.49 Displacement degree of freedom in case of open sections 
(n is the number of the hinges that breaks up the frame-stiffness of the section, 

v is the number of stabilizer bars) 

In case of closed cross section (Fig.3.50.) the further number of displacement degree of 
freedom (ν) are to be calculated according to the following formula: 

 v)3s(n2 =+−  /3.38/ 

where n is the number of the hinges that breaks up the frame-stiffness of the section, and s is 
the number of the section’s prism-components (elements). 

 
 
 
 
 
 
 

Figure 3.50 Displacement degree of freedom in case of closed cross sections 
(n is the number of the hinges that breaks up the frame-stiffness of the section, 

s is the number of the section’s prism-components (elements),  
v is the number of stabilizer bars) 

The complete deformation of the cross section can be determinated, as the linear combination 
of the independent elements of the displacement of distortion of cross-section νp (p>4). We will 
get these components (elements) if we progressively operate suitable chosen unitary ϑ=1 
deflections on the section that is released by hinges, while there is always a stabilizer bar released 
(see Fig.3.51). 
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Figure 3.51 Kinematics of cross-sectional degrees of freedom 

So the v~  displacement vector: 
 
 
 
 
 
 

  /3.39/ 

 
 
 
 
 
of which has tv~  rigid body modes and pv~  distortional modes (p subscript refers to the 

displacement of the distortional cross-section). 
Moreover we assert the basic principle of bending-torsion, which says that all the section’s 

prism-components keep their shapes. So the Bernoulli-Navier hypothesis is valid for each prism 
(plate element). 

According to the previous conception, the formula /3.39/ can be extended, which gives the 
tangential component of the strain: 

 
 
 
 
So 
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 , ; 
 
 
 
 
 
 
and                         are the referring sectional prism’s force arms to the rotation-centres. 
The axial component of the displacement of thin-walled section centre-line: 

 w~)v~(sd r~)v~(sd r~)v~(u~ TTT ⋅′−=⋅′−=⋅′−= ∫∫  /3.41/ 

Where w~  is the warping vector. 
Values of w~  for open sections (Fig.3.52) 
 
 
 
 

 /3.42/ 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.52 The axial component of displacement of the thin-walled section centre-line 

In case of closed cross sections we extract the open “statically determinate” basic system first, 
with suitable chosen sections. 
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We can take into account the condition for continuity for the hollow section through the 

extension of                   vector. 

We get an analogue equation system with /3.42/ for the vector components: 
 
 
 
 
 
The warping vector is: 
 
 
 
 
 
 

  /3.43/ 

 
 
 
 
 
 
 
 
The normal stress of cross section centre line: 

 w~)v~(E~ T −=  /3.44/ 

The primary shear stress is: 

  /3.45/ 

Where v~  is the section’s global deflection vector according to /3.39/. The relation between 

the rotation vector of the section’s prisms                          and the section’s pv~  formal-change 

vector is the following: 
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Where 
 
 
 and  , where  . /3.46/ 
 
 
We have to determine the relation between the transverse moments in the section’s prismatic 

element and the section’s pv~  formal-change vector. So we compile the prism’s common relative 

rotations at the hinges im , in the common deflection vector of the section-walls e~  (Fig. 3.53): 

     v~F~~~e~ ii ===  /3.47/ 

Where 
 
 
 
 
 
 
 
 
 
 

Figure 3.53 Relative rotations of walls of cross-section: ii =  

The rows of matrix F~  come from matrix F~  matching rows’ difference. Further on we can 
suppose that the plate-stiffness of the wall can be substituted by the bending stiffness of infinitely 
many and infinitely broad frames that are close to each other. So the plates’ torsion moments, and 
longitudinal moments in the section-wall are neglected. 

If EIr  the bending stiffness of the unitary wide sectional frame, than Mri , transversal 
moment at hinge i and which is a function of j

~ , the common rotations of the section-walls at j 
places, comes from this formula: 

 
 and  
 
In case of a simply open section of which centre line is developable to a continuous line, the 

coefficients in matrix  ijB =   come from the inverse of matrix  ijD =  , where ij  elements 
are unit factors of a statically determinated basic system according to the compatibility method 
(Fig. 3.54). 
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Figure 3.54 Determination of the  elements as the elements of inverse of matrix  ijD = of continuous 

beam 

If we express the rotation vectors of the section-walls, according to /3.47/ we’ll get: 

 v~F~v~F~BM~ r == 
  /3.48/ 

Where F~BF~  = . 
 
We depart from the principle of virtual work. The work of the internal forces comes from the 

extended formula bellow: 
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If we do the examination of the energy balance, that means we use 

0externalinternal =−=  
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condition, and do the partial integration, by taking into account the following extended 
stiffness matrixes: 

   Ad w~w~I~I~

A

T
ww ki  ==  /3.50/ 

as the complex warping stiffness matrix, 
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t
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A

T
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
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  /3.51/ 

as the simple torsional stiffness matrix 

   F~)F~(R~R~ T
ik ==   /3.52/ 

and as the transverse bending stiffness matrix, then we get the extended simultaneous 
equilibrium system of differential equations: 
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 /3.53/ 

These equations give besides v~  global deflection vector, the effect of the section centre-line 
change as well. 

 
When solving open sections (Fig. 3.55) in case of ordinary plate slenderness of bridge 

systems, the torsional stiffness of the walls (prisms) can be neglected. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.55 Different shapes of open sections 
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In case of open sections if we diagonalize matrix I  and R , it is obvious, that we can separate 
all the four deflection components of the shape-keeping section (, ,  and ). 

After the normalization we get the independent difference equation system with I and R 
diagonal stiffness matrixes, where every element of v global deflection vector are equivalent to a 
model of a continuously elastic supported bar with iR  and with iEI  bending stiffness, and which 
is loaded by irp   load intensity in cross direction (see Fig. 3.56). 

 
 
 
 
 
 

Figure 3.56 The normal function in case of 
open sections 

a) The partially normalised simultaneous 
differential equations from the first phase to 

determine the eigenvectors 
 in case of open section 

b) Totally normalized independent differential 
equations 

in case of open section –analogue of the 
continuously supported transversally loaded bar 

 
 
 

 
In case of closed cross-sections (Fig. 3.57) a relevant torsional stiffness comes because of the 

t/p  vector. So it is suitable to neglect the cross directional stiffness of the section, which 
means that we assume that the section is a closed hinged mechanism (Fig.3.58). The fault of this 
assumption, that the fourth component of the deflection () is not independent. 

 
 
 
 
 
 
 
 
 

Figure 3.57 Shapes of closed sections 
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Figure 3.58 Kinematically determinated closed hinged mechanisms 

 
 

Figure 3.59 The normal function in case of 
open sections 

a) The partially normalised simultaneous 
differential equations from the first phase to 

determine the eigenvectors 
in case of closed section 

b) Totally normalized independent differential 
equations 

in case of open section –analogue of the 
transversally loaded and tensioned bar 

 
 
 
 

 
After the normalisation we get an independent system of differential equations with I and K 

diagonal stiffness matrixes, where each component of v global deflection vector equals to a bar 
with iEI  bending stiffness, with a transverse load of irp  , and with iGK  fictive axial load at the 
ends (see Fig. 3.59).  

For further details see Iványi [2002]. 

3.3 Shear Lag Phenomenon and Effective Width 
Shear lag phenomenon and effective width is reviewed on the basis of Nakai and Yoo [1988] and 
Sedlacek and Bild [1984]. 
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3.3.1 Shear lag phenomenon 
The normal stress distribution z(x) in the flange plate of a  beam made of thin plates does not 
have a constant value, as is obtained by the elementary beam theory, but varies in the direction of 
coordinate x axis, as illustrated in Fig. 3.60. Then the maximum flexural normal stress z,max 
occurs at the junction point of flange and web plates, and this result is significantly different from 
z = constant, which is calculated by elementary beam theory. This phenomenon is caused by the 
lag of shear strain in the flange plate between the web plates and is referred to as the shear lag 
phenomenon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.60 Actual bending normal stress distribution in a thin-walled beam. 

The shear lag phenomenon can be analyzed on the basis of the theory of elasticity by 
assuming that the flange plate can be analyzed as a plane-stress problem. Figure 3.61 shows the 
stresses z, x, xy, zx in a small element dx · dz, removed from the flange plate of a beam shown 
in Fig. 3.60, so that the equilibrium condition of stresses in the direction of the z axis can be 
written 
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 /3.54/ 

The relationships between displacements u and v in the direction of coordinate axes (z, x) and 
strains z, x, and zx can be written as 
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In addition, the compatibility equation for plane stress elasticity is given by 
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Figure 3.61 Actual bending normal stress distribution in a thin-walled beam. 

Stress-strain relationships for two-dimensional elasticity are 
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where  is Poission's ratio and G = E/[2(1 + )]. Substituting the stress-strain relationships in 
Eqs. (3.55e) to (3.55g) and the equilibrium condition in Eq. (3.54) into the compatibility equation, 
Eq. (3.55d), we can derive a general compatibility condition in terms of stress: 
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Thus, the shear lag problem is reduced to solving for the stresses z, x and zx, such that 
equilibrium and compatibility conditions are met. 

These procedures can be much simplified by introducing Airy's stress function (z, x): 
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Then Eq. (3.55h) can readily be rewritten as 
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3.3.2 Definition of effective width 
If the normal stress distribution z(x) in the flange plate is determined by the preceding 
procedure, it is convenient to define the effective width of the flange plate for practical design 
use. Fig. 3.62 illustrates a normal stress distribution in the deck plate of a  beam. In this figure, 
the most important stress in our design calculations is the maximum stress z,max at the junction 
point of the web and flange plates, so we try to obtain the same stress on the basis of elementary 
beam theory. For this purpose, it is assumed that a middle part of the flange plate does not 
cooperate with the cross section of  beam but that the flange plates in a region bm are only 
effective as shown in Fig. 3.62b. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.62 Definition of effective width: (a) original stress distributions, (b) idealized stress distribution 
and effective width bm. 

However, since the normal forces acting on the flange plate of Fig. 3.62a and 3.62b must have 
an identical value, the following equilibrium conditions should be satisfied: 

 ( ) max,zm
b

0
z bdxx =  /3.57a/ 

Accordingly, the effective width bm, can be estimated by 
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 /3.57b/ 

When a new centroidal point C' and the corresponding geometric moment of inertia I'x and I'y 
and product of inertia I'xy are calculated by taking into account the effective width bm, as 
illustrated in Fig. 3.62b, the flexural normal stress z,max including the shear lag phenomenon can 
be estimated on the basis of the elementary beam theory. From this, we see that a conservative 
and rational stress analysis can be conducted by introducing the concept of the effective width of 
the flange plate. 
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3.3.3 Simplified rules for the determination of the effective width of bridge decks 
caused by shear lag 

(a) General 

Now it presents an approximative method to allow for the effects of shear lag in the elastic 
range when calculating the stress distribution over the cross-sections of two bay bridges due to 
bending and torsion (Fig. 3.63). 

 
 
 
 
 
 
 
 

Figure 3.63 Cross-section of a two bay highway bridge with orthotropic deck. 

(b) Approximate calculation method for the effects of shear lag in two bay bridges with an 
orthotropic deck [Roik and Sedlacek, 1971] [Sedlacek, 1982] 

The stress distribution in a cross-section without shear lag is generally considered as a linear 
combination of four orthogonal elementary warping distributions caused by tension, bending 
about the strong axis, bending about the weak axis and torsion (Fig. 3.64). 

 
 
 
 
 
 
 
 

Figure 3.64 Elementary stress distributions "1" due to tension, "y" and "z" due to bending about the strong 
and weak axis respectively and "wT" due to torsion. 

The cross-sectional stiffnesses for the corresponding deformations , ,  and  can be 
derived from these elementary distributions as follows: 

area:  = Ad 11A  /3.58a/ 

moment of inertia:  = Ad yyA yy  /3.58b/ 

moment of inertia:  = Ad zzA zz  /3.58c/ 
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torsional warping stiffness:  = Ad wwAww  /3.58d/ 

The torsional effects are normally calculated with the solution of the differential equation for 
torsion 

 0,TDww MIG''AE =+−  /3.59/ 

where ID represents the Saint-Venant stiffness: 

  +


=
j k

Dok

3
jj

D I
3

ta
I  /3.60/ 

with IDok = torsional stiffness of the longitudinal hollow stringers and MT,0 o is the bimoment 
due to torsion without Saint-Venant stiffness. 

For taking account of the effects of shear lag the number of elementary distributions can be 
extended to more than four by allowing for additional non straight lined distributions wsi, e.g. 
parabolic distributions according to Fig. 3.65. 

 
 
 
 
 
 
 
 
 
 

Figure 3.65 Additional elementary warping distributions wsi for taking account of shear lag. 

Each of these assumed basic distributions ws allows for an additional deformation vs, which is 
defined by the equations 
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 /3.61/ 

From the curvature of an additional basic distribution ws a new shear distribution results, 
which can be defined by 
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 /3.62/ 
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This definition corresponds to the assumption that the transverse deformations of the fibres of 
a cross-section are infinitely small and that only longitudinal deformations are allowed: 

 '˙ =  /3.63/ 

From the additional elementary distributions one can derive additional warping stiffnesses Ajk 
and shear stiffnesses Sjk 
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 /3.64/ 

In order to get independent equations for vsi (only diagonal values) the additional elementary 
distributions wsi must be orthogonalized by firstly eliminating all components of the base 
distributions 1, y, z, wT and secondly combining them linearly. From this procedure a set of 
additional warping distributions follows (Fig. 3.66). 

 
 
 
 
 
 

Figure 3.66 Orthogonal additional elementary warping distributions with the stiffnesses. 
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 /3.65/ 

This leads to a set of independent differential equations 

 0,sisiisii,ss Mw~S~G''w~A~E =+−  /3.66/ 

which are fully analogous to the differential equation /3.59/ for torsion. 
By using the well known solutions of these differential equations, the additional stress 

distributions due to shear lag can be determined by 

  =−== si
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''w~w~E  /3.67/ 

and added to the stresses 
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which are calculated without regard to shear lag. An example for the resulting distribution for 
symmetrical and asymmetrical loading is given in Fig. 3.67. 

 
 
 
 
 
 
 
 
 
 
 
 
 stress distribution for stress distribution for 
 symmetrical loading asymmetrical loading 

Figure 3.67 Resulting stress distributions with shear lag considered. 

(c) Parametric study to determine the effects of symmetrical and unsymmetrical loading 

The calculation method described in section (b) is applied for a double span continuous girder 
bridge under, uniformly distributed loading on the webs (Fig. 3.68). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.68 Cross-section and longitudinal system of a highway bridge. 

The geometrical parameters which are modified are a 

 1
b

a0                     100
b
l1 2   

The purpose of the parametric study is to compare the values of the effective width of the 
deckplate at the inner support as calculated for the indicated unsymmetric loadings with the ones 
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calculated for only the symmetrical part of the loadings. The differences will demonstrate, 
whether the asymmetrical effect on the effective width may be neglected as it is common practice 
or not. 

The stress distributions including the effects of shear lag are calculated with the bending 
moment, the bimoment due to torsion and the stress resultants due to the additional deformations 
at the inner support, which can be calculated by 
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
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with 
svp  = load causing the additional deformation vs 
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The effective width bm is determined by 

 bbm =  /3.72/ 

with 
b

ds

max 


=

  /3.73/ 

for the symmetrical and unsymmetrical case (Fig. 3.69). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 symmetrical loading asymmetrical loading 

Figure 3.69 Definition of the effective width. 
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For the loading situation 1 the resulting s and s+a - values are shown in a three dimensional 
graph in Fig. 3.70. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.70 Three dimensional graph. 

The results show that s and s+a are almost equal for small l/b-values. For large l/b-values the 
s values are approaching s = 1 whereas the s+a-values approach values, which result from the 
effects of bending and torsion only without any influence of shear lag. The position of the web 
under the bridge deck has no significant effect on the  s-values, however the  s+a-values depend 
sensitively on the a2/b-values for large l/b-ratios. 

The maximum differences can be found for cross-sections with edge webs and medium l/b-
values. They are observed for extreme conditions of the cross-sectional shape and of the loading 
simultaneously. 

The small differences between the  s and  s+a-values for bridge loadings justify the common 
practice to apply the  s values only and to allow for asymmetrical loading merely by determining 
the load part on one girder by level distribution. 

(d) Derivation of a practical formula for the determination of the effective width 

As demonstrated in section (c), the effective width may be derived from a symmetrical cross-
section defined by 
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as indicated in Fig. 3.71. 
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Figure 3.71 Cross-section and cross-sectional values. 

In order to consider different support- and loading conditions in a simple way, it is 
advantageous to subdivide a continuous girder according to the existing bending moment 
distribution into independent parts, which are separated at the counter-flexure points as shown in 
Fig. 3.72 [BS 5400, 1982] [Eibl, 1983]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.72 Subdivision of a continuous girder in independent parts. 
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By this subdivision the problem of determining  -values for different kinds of supporting 
conditions of a girder and different loading may be reduced to the problem of developing a -
formula for the midspan of a simply supported beam loaded by both a uniformly distributed and a 
single load (Fig. 3.73). 
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 Figure 3.73 Explanation of the shape parameter . 

The shape of the bending moment distribution is thus governed by the factor 

 
maxM

M4 
=  /3.75/ 

Special cases for this shape parameter are indicated in Fig. 3.74. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.74 Special cases for the shape parameter . 
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The stress resultants for the bending deformation  and the additional deformation vs due to 
shear lag are indicated in Fig. 3.75. The resulting stress distribution is given in Fig. 16. 
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Figure 3.75 Stress resultants and total stress distribution. 
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 Figure 3.76 Resulting stress distribution. 
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Equation /3.73/ gives then: 
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or, according to Fig. (3.76) 
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This formula ought to be simplified for practical use. 
The first step of simplification will be achieved by eliminating the effect of the cross-section. 

A parametric study with  = 0,  = 1 and  =  shows that  =  gives the lowest values for  
(Fig. 3.77). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.77 - values according to equation (20) for  = 0,  = 1 and  = . 

By putting  →  equation (20) becomes 

 ( )+
=

,f51
1  /3.78/ 

The next step of simplification will be to replace f (,) as given in Fig. 3.75 by a more 
suitable expression f* (,) that approximates f (,) with a sufficient accuracy in the range  > 2 
and deviates from f (,) for  < 2 in such a way that the approach to -values determined by 
more accurate methods [Maquoi and Massonnet, 1982] is improved. 
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This condition is satisfied by adopting 

 ( ) ( ) ( ) 2
* 4121,f


−+


+=  /3.79/ 

which is compared with f (,) in Fig. 3.78. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.78 Comparison of f (,)  with f*(,). 

Inserting equation /3.78/ into equation /3.78/ gives 
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This formula is identical with that developed in [Maquoi and Massonnet, 1982] for  = - 1. 
Some -values calculated with equation /3.80/ are shown in Fig. 3.79. 
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Figure 3.79  - values for the effective widths bm =  · b calculated with formula /3.80/. 

(e) Comparison of the effective width formula /3.80/ with code-specifications 

For the practical application of formula /3.80/ for bridges the assumption as given in Fig. 
(3.80) may be made [Eibl, 1983]: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.80 Geometrical assumption for the determination of the effective width. 

 
A comparison with code-specifications, e.g. BS 5400 is given in Table 3.2. 
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Table 3.2 Comparison of formula /3.80/ with BS 5400 [1982]. 

 

 – values b/l orth = 0 orth = 1 
BS 5400 /3.80/ BS 5400 /3.80/ 

 
 
 
 
 

 = -1 

0 1 1 1 1 
0.05 0.98 0.98 0.97 0.97 
0.1 0.95 0.94 0.89 0.88 
0.2 0.81 0.78 0.67 0.64 
0.3 0.66 0.62 0.47 0.44 
0.4 0.50 0.47 0.35 0.31 
0.5 0.38 0.37 0.28 0.22 
0.6 0.32 0.29 0.24 0.17 
0.8 0.21 0.18 0.16 0.10 
1 0.16 0.13 0.12 0.07 

 
 
 
 
 

 = 0 

0 1 1 1 1 
0.05 0.80 0.82 0.75 0.76 
0.1 0.67 0.69 0.59 0.60 
0.2 0.49 0.51 0.40 0.41 
0.3 0.38 0.39 0.30 0.30 
0.4 0.30 0.31 0.23 0.22 
0.5 0.24 0.25 0.17 0.18 
0.6 0.20 0.21 0.15 0.14 
0.8 0.14 0.15 0.10 0.08 
1 0.12 0.12 0.08 0.07 

 
 
 
 
 

 = 1 

0 1 1 1 1 
0.05 0.68 0.71 0.61 0.63 
0.1 0.52 0.55 0.44 0.46 
0.2 0.35 0.38 0.28 0.30 
0.3 0.27 0.29 0.22 0.22 
0.4 0.21 0.23 0.17 0.18 
0.5 0.18 0.19 0.14 0.15 
0.6 - 0.17 - 0.12 
0.8 - 0.13 - 0.10 
1 - 0.11 - 0.08 
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4 Construction of Orthotropic Steel Bridges 

4.1 Structural Systems and Erections of Collapses of Orthotropic Steel 
Bridges  
Two periods could be distinguished in the construction of steel structures: the period of riveted 
structures were built from the last decades of eighties until the forties of the last century, and the 
period of welded or modern structures. The method of joining has basic effect for all structure: 
determines the construction, the grade of the basic material, the technology of manufacturing and 
erecting, the methods of controlling, and eventually the aesthetic aspects of the establishment. 

The significant differences are the following between the two system: 

– in the riveted structures the elements join each other by bracers and angles made applying 
simply tools, while in the welded structures the elements join directly each other by 
difficult cohesive holds; 

– the implementation, the sufficient quality and the controlling of riveted connections are 
simple manual work, while the welding requires big apparatus and qualification; 

– the manufacturing and erecting units of riveted structures are planar, relatively small 
elements join at in-situ joints; while the welded units are three-dimensional, and in an 
erecting unit often big numbered (30 – 60) elements join to each other; 

– the riveting is not sensitive for the position of the joint and the erection conditions, thus – 
contrary to the welding – practically it is indifferent, that the joint is made in the factory 
or in-situ; 

– the welding – contrary to the riveting – changes the property of basic material, and 
generates stresses, shrinking, deformations, cracking and rigid-fraction. 

The building procedures of the traditional structures are simple, most of them could be done 
by semiskilled workers. 

The manufacturing and erection of welded structures – mainly the difficulties of the 
producing and controlling of welding, the difficulties of keeping the shape and size according to 
the plan, and the difficulties of making of the in-situ connections – is a extremely demanding 
work, which requires highly qualified professionals. 

Due to the above mentioned differences the changeover to the welded structures was a multi-
stages, long procedure. 

In the beginning, the designers had to convert the rules of the construction details of riveted 
structures according to the requirements of the new joining method, the welding. 

The main object of the construction was to produce and apply the sufficient basic material, the 
welding methods, the welding materials, the welding technology, and controlling methods. 

The material saving characterized the second phase of the development – in the years after the 
world war. Today, in the third phase, the main object is to increase the effectiveness of the 
erection and to improve the working conditions. This could be reached by simplification of the 
construction and by mechanization of the manufacturing and erection [Domanovszky, 1984]. 

The manufacturing and erecting of the modern steel bridges are close-knit with the structural 
system. The floor slabs of modern bridge structures consist of orthotropic plates, which draw up 
special conditions against the erection, too [Weitz, 1966, 1974, 1975]. 
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Figure 4.1 Variants of orthotropic plate with open longitudinal ribs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Variants of orthotropic plate with closed longitudinal ribs. 
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Figure 4.3 Longitudinal rib shapes for floor slabs of light steel bridges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 Fabrication of the floor slabs of light steel bridges with hollow longitudinal ribs. 
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Figure 4.5 Division of an orthotropic steel bridge floor structure, using welded joints, in the context of the 
cantilever method of erection. a) transversal mounting system; b) longitudinal mounting system. 
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Figure 4.6 Sava bridge at Belgrade, Yugoslavia 

 
The division of the structure into fabrication units, and formation of mounting joints. 
Example for the transversal division. Numbers relate to the building sequence. 
 
 - longitudinal joints of the main girder: riveted webs, 
  riveted cross bracings 
 - transversal joints of the floor slab: butt welded 
 - longitudinal joints of the floor slab: no joint, 
  no joints in the lower flanges 
 - joints of the cross girder in the floor structure: no joints in the webs 
 - joints of the longitudinal ribs in the floor structure: butt welded 
 - transversal joints of the main girder: riveted webs 
 - joints in the bottom flange of the main girder: riveted 
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Figure 4.7 Europe Bridge in Innsbruck, Austria 

The division of the structure into fabrication units, and formation of mounting joints. 
Example for the transversal and longitudinal division. Numbers relate to the building 

sequence. 
 
 - transversal joints of the floor slab: butt welded 
 - longitudinal joints of the floor slab: riveted 
 - joints of the longitudinal floor stiffener: preloaded bolted 
 - joints of the floor cross girder: riveted 
 - transversal joints of the main girder (web and flanges): preloaded bolted 
 - longitudinal joints of the main girder: riveted 
 - transversal joints of the bottom plate: butt welded 
 - longitudinal joints of the bottom plate: riveted 
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Figure 4.8 Rhine bridge at Wiesbaden-Schierstein, Germany 

The division of the structure into fabrication units, and formation of mounting joints. 
Example for the longitudinal division of elements. Numbers relate to the building sequence. 
 
 - longitudinal joints of the main girder: butt welded webs, 
  riveted web and flanges in the cross 

brace – at the pre-assembly site 
 - transversal joints of the floor slab: butt welded (Fusare process) 
 - longitudinal joints of the floor slab: butt welded (Fusare process) 
 - joints of the floor cross girder: bottom flanges butt welded, 
  webs with preloaded bolts 
 - joints of the longitudinal floor stiffener: butt welded (with backing plate) 
 - transversal joints of the main girder: riveted (bolts used near the floor 

structure) 
 - joints in the lower chords of the main girder: riveted 
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Figure 4.9 Comparison of the mounting processes of the slab-and-beam bridges (long span river bridges) 
at Speyer and Wiesbaden-Schierstein, Germany 
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Figure 4.10 Development of highway bridges with light steel floor structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11 Development of large span bridges: the example of three Rhine bridges. 
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Figure 4.12 Development towards the structural continuum 
Step 1: The assembly of planar cross-sectional units 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Development towards the structural continuum 
Step 2: “Transversal” systems. Transition between from the planar to the spatial cross-sectional units. 
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Figure 4.14 Development towards the structural continuum 
Step 2: “Longitudinal” systems. Spatial cross-sectional units. 

4.2 Hungarian Examples 

4.2.1 ‘Erzsébet’ bridge [Catalogue, 1998] 

Location and name of the bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15 The Castle of Buda, the Lánchíd and the Erzsébet Bridge. 
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Figure 4.16 General view. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17 The view of Erzsébet Bridge from the Gellért Monument. 



 150 

Name of the bridge "Erzsébet" bridge 
Distance: 1646+000 km 
Country: Hungary 
City/town: Budapest 
Year of building - completion: 1898-1903 
Year of rebuilding - completion: 1959-1964 

 

Span lengths: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18 The view of Erzsébet Bridge from top of Gellérthegy. 

 
Main bridge over streambed: 44.3+290.0+44.3 m 
Roadway widths: 4.45+18.2+4.45 m 
Designer: UVATERV, Pál Sávoly, 

FÖMTERV, János Juhász 
Main contractor: Ganz-MÁVAG, Károly Massányi, János Fekete, 

 Károly Vogt Bridge Construction Company 
Construction cost: 381 million HUF 

 

Traffic function of the bridge 

Highway: 
 number of lanes: 6 
 

Antecedents; the history of the bridge 

Before the construction of the "Erzsébet" and "Szabadság" bridges, international tenders were 
invited for both bridges together. The first price winner plan was for the "Erzsébet" bridge, while 
the second price winner was the design for the "Szabadság" bridge. But the winner design was 
not realised, mainly because of the limited technological possibilities. 
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The first prize winner plan of the common tender finally has not been realized. Its main 
reason was, that it was a cable bridge, and at that time in Hungary cables of the required quality 
had not been produced. Therefore a chain bridge was built. Although during construction this 
change of the solution caused controversy, the realized structure later became famous and found 
approval. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.19 The first prize winner plan of the 1894 tender by Kübler, Eisenlohp and Weigle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.20 The bridge. 

The bridge, named after Queen Elizabeth of Hungary, was the largest span suspension bridge 
of the world for three decades, and is still considered as the most attractive suspension bridge 
ever built. In addition, it involved several new technical features (design by István Gállik), 
including the hinged pier with hinged chain connections and the special joint types of the 
continuous stiffening girder. 
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Figure 4.21 The erection of the bridge. 

The plans of the realized construction were made by the Bridge Department of the Ministry of 
Trade Affairs, headed by Aurél Czekelius, and they applied the statical calculation method of 
Antal Kherndl, professor of the Technical University, who was a very important personality of 
the Hungarian bridge engineering. 

A new design was carried out by Aurél Czekelius in the form of a chain bridge solution and it 
was realised. Fully propped erection method was applied. 

Near the end of World War II, in January 1945 the Buda side anchorage chamber was blown 
up, the pylon and the chain together with the stiffening girder of the bridge felt into the river, only 
the pylon of the Pest side remained in the original position. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.22 The bridge as blown up, 18 January 1945 
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When the bridge was blown up, the pylon of the Pest side (some 3000 metric tons) remained 
in its position; it was later supported by temporary structures, and was not removed until 1960. 

As the original structure, by the opinion of a lot of people was one of the nicest chain bridge 
in the world, reconstruction was first planed in the style and form of the destroyed bridge. But the 
width of the roadway (11 m) was not enough the fulfill the requirements of the increasing traffic. 
For this and other reasons a completely new structure was designed in form of a cable suspension 
bridge. 

Special model tests have been carried out in the laboratory of the Department of Steel 
Structures, TUB, to help the design of the erection of the new construction. 

The model was of a scale of 1:50. Forces in the suspension cable, as well as, the characteristic 
deformations of the structure in different erection phases have be measured. 

The technical data of the bridge 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.23 General view. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.24 Cross section 

Structural system, span lengths, widths 
The two bundle of cables contains 61 elementary cables. It is formed in the shape of a regular 

hexagon resting on its vertex. An elementary cable contains 115 pieces of wires and it has a 
diameter of 54.5 mm. 
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Deck 
The stiffening girder and the floor structure of the bridge is an orthotropic steel construction. 
To prevent the slip of the asphalt layers on the deck plate, zig-zag shaped ribs were welded on 

the top of the deck plate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25 The floor system 

Foundation, substructure 
The abutments needed a thorough rebuilding due to the different layout of the new bridge. 

After demolishing of the original ones the reinforced concrete blocks of anchorage chambers 
were built. The embankment piers also required a complete repair. 

 
Bearings 

At the pylons, the original hinges were applied 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.26 The new pylon, similarly to that of the old structure, is hinged. 
The original hinges were re-used. 

Quantities of applied materials 
Weight of steel structure: 6300 t 
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Method of construction/erection; joints 

The portal frames of the pylons were built first, each of them containing two columns, made from 
six elements and a transverse beam. For transferring the cables from one bank to the other, an 
assembly "carpet" of 420 m long was built on both sides. The two carpets were stiffened to each 
other in five sections by tubular trussed constructions. The cables were drawn through form Buda 
to Pest side, they were clamped into the disc shoe and were fixed into the anchorage chambers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.27 The erection of the bridge. 
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The stiffening girder and the floor system containing 195 assembly units, was manufactured 
at the yard of Ganz-MÁVAG at Lágymányos and they were shipped by barges to the building 
site. The units were lifted with the help of a floating crane of 100 t capacity. First the middle 
element was positioned and the further ones were lifted in a symmetrical order. The units were 
connected to each other with temporary hinges, the final connections by riveting were done, when 
the total structure was build and it was preloaded with 2400 t of sandy gravel ballast to achieve 
the final shape. 

Corrosion protection 

Re-dusting of the steel deck plate was performed by sand blasting, and after cleaning it was 
furnished with a zinc-coating. 

Other parts of the steel construction were furnished with a double prime coating of red lead 
and a semi-synthetic painting in two layers. 

Traffic situation 

After reconstruction the bridge carried a two track tramway line, which was removed in 1973. 
This way the number of road lanes could be increased from four to six. 

Test loading(s); periodical assessment of serviceability 

The loading test, after finishing the construction, involved measurements of deformations and 
those of stresses around the intermediate supports of the main girders. Results of these later ones 
clearly showed that in case of such a great number of flange plates in a riveted construction the 
stress distribution is not linear along the flange thickness and its maximum develops around the 
centroid of the complete chord. 

4.2.2 ‘Árpád’ bridge 

Location and name of the bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.28 The side view of Árpád bridge. 
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Figure 4.29 The Árpád bridge. 

 
Name of the bridge "Árpád" bridge 
Distance: 1651+400 km 
Country: Hungary 
City/town: Budapest 
Year of building: 1939-1942 
Completion: 1948-1950 
Widening: 1980-1984 

 

Span lengths: 

Widening of the bridge began in 1960, according to a new concept. The original two main 
girders carry the loads of the trams, and the two new girders carry the road traffic 

 
 

Main bridge over streambed: 60.0+65.0+45.0+82.0+2*103.0+ 
+ 82.0+90.0+ 76.0+102.0+ +76.0+36.9 m 

Roadway widths: 2.73+11.3+7.2+11.3+2.75 m 
Designer: FÕMTERV, UVATERV, Alajos Petur 
Main contractor: Bridge Construction Comp., Ganz-MÁVAG 
Construction cost: 2325.365 million HUF (whole complex) 
Owner of the bridge: City of Budapest 
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Figure 4.30 Cross sections. 

Traffic function of the bridge 

Highway bridge with tramway: 
 number of lanes: 6 
 number of tramway tracks: 2 

Antecedents; the history of the bridge 

The idea for a new bridge on the north part of the city was initiated by the fact, that the left bank 
was a developed industrial area, while on the right one there was a dense population. Law No. 
XLVIII. in 1908 ordered the construction of the bridge, but its completion was cancelled because 
of World War I. Later the development of the south part of the capital had a higher importance, 
therefore the design process started only in 1930. 

The conditions were quite difficult, as the Danube has four arms in this area with very 
different distances to span over, and it was rather hard to decide, how the divide them, where and 
how to give the axis of the complete construction, etc. As not all of the conditions were clearly 
drawn, the designer teams should give recommendations for the solutions. 

Two plans were honoured by the first prize, both of them were certain arched solutions, made 
by university professors János Kossalka and Gyula Wilder, and by Gyõzõ Mihailich and Iván 
Kotsis, with the main difference, that the arches were trusses in the first plan, while plated ones in 
the second. But the question, where to situate the bridge, was open. This caused delay in starting 
the construction and meantime some new ideas came into existence concerning the statical 
system of the new structure. 
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Figure 4.31 The original cross-section; continuous girder with four main girders. 

 
 
 
 
 
 
 

 
 
 

Figure 4.32 The erection of Árpád bridge. 

The erection of the Buda side of Árpád Bridge before the war, with four main girders as 
according to the original plans. The work stopped in 1942, and the structure survived the war in 
Budapest (Fig. 4.32.a). The erection of Árpád Bridge after the war, 1948-50. Only the two central 
main girders were erected (Fig. 4.32.b). 

Finally taking into account, that an arch system would cause high horizontal forces to balance, 
which would increase the mass of foundations, it was decided, that a series of multi-span 
continuous plated structures would be realized. The final version of the bridge was planned by 
Károly Széchy, and the construction started in 1939, but after the building of the foundations it 
was interrupted by World War II. 

The original plan of the bridge was partly realised for 1950. This structure was very narrow, 
its width was enough to carry the tramway tracks and two lanes of 2.22 m widths for the road 
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traffic. As the bridge is the northest one, crossing the Danube on the Hungarian territory, it has a 
very high infrastructural importance. 

 

The technical data of the bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.33 The side view of Árpád bridge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.34 The Pest side, the Buda side and the Hajógyári Island section of Árpád Bridge. 
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Structural system, span lengths, widths 
The original part of the bridge is carrying the two tramway lines, for road traffic two new, box 

plated structures were built, carrying 3 lanes each. 
The cross sectional layout of the new bridges is identical everywhere, only the height of the 

main girders and its profiles, as well as the shape of the transverse bracings is different. 
The cross girders are plated ones, the distance is 4250 mm. Their height between the web of 

mains is 800 mm. 
The height of the main plated girders varies between 3747 and 5460 mm, web thickness is 12-

20 mm, and they are stiffened both horizontally and vertically. 
 
 
 
 
 
 
 
 
 
 

Figure 4.35 The three independent main beams, with two main girders each, are similar. 

Deck 
The deck is an orthotropic steel plate, stiffened by horizontal stiffeners and the cross beams. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.36 Cross section at the supports and at mid-span 

Foundation, substructure 
All the abutments and river piers of the old bridge were built for a total bridge width of 27.6 

m. But for the new structural beams to be laid out, the pier had to be rebuilt at a height of about 
1.5 m under the bearings. The middle part of the piers and abutments (under the remaining old 
structure) had been left unchanged 
Quantities of applied materials 

Weight of new steel construction: 8330 t (Grades used: A 38 B, 37 B-C, 52 C-D) 
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Method of construction/erection; joints 

For the widening of the river bridge, a floating crane of 120 t load capacity was ordered to be 
built by the Bridge Construction Company in 1979. It was finished for February 1981 and was 
named after the constructor of the Chain Bridge, Adam Clark. The first elements of the bridge 
were lifted in May 1981. 

Manufacturing and erection of the steel construction was carried out by Ganz-MÁVAG Steel 
Factory. As the bridge had to serve the traffic during widening, first the south extension structure 
was completed in full length, then the northern one. In the Ganz-MÁVAG yard at Lágymányos, a 
BK 300 type tower crane and a moving crane of 50 t capacity were built 

The pre-assembled structural units were taken by ships to the building site. The construction 
was stated from steel pedestals, built beside the piers by incremental launching. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.37 The erection of the bridge. 
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Corrosion protection 

The orthotropic plate of the bridge is covered with a synthetic resin insulation of type VDW 
from Germany, which was performed in three layers after sand blasting and a degreasing by 
acetone. The third layer was faced with spread crushed stone to increase the adhesion between the 
insulation and asphalt topping. 

Test loading(s); periodical assessment of serviceability 

Certain parts of the complex construction were tested by different times and methods. In some 
cases only the characteristic deflections were measured, while other times more detailed 
measurements, containing measurement of strains (stresses), the vertical alignment, etc.,. were 
carried out. 

4.2.3 ‘M0, Háros’ motorway bridge 

Location and name of the bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.38 The Háros bridge. 

 
Name of the bridge M0 circular motorway Danube-

bridge at Háros 
Distance: 1632+810 km 
Country: Hungary 
City/town: Budapest 
Route: M0 circular motorway in section 

15+010 km 
Year of building - completion: 1987-1990 
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Span lengths: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.39 The general layout and the general cross-section of the Háros bridge. 

 
River bridge: 3 × 108.50 m 
Flood plain bridges: 3 × 73.50 m (two bridges) 
Roadway widths: 4 × 17.50/4 m 
Designer: UVATERV (Engineering Consultants for Transport and 

Communication), Dr. Tibor Sigray (chief engineer) 
Main contractor: Bridge Construction Company 
Construction cost: 883.954 million Ft 
Owner of the bridge: Motorway Directorate 

 

Traffic function of the bridge 

Highway: 
 roadway width: 17.50 m 
 number of lanes: 4 
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Antecedents; the history of the bridge 

The idea to construct the M0 circular motorway to provide a connection between the M1 (to 
Vienna) and M5 (to Belgrade) motorways arised in the early seventies. The 28 km long southern 
sector of the belt to encircle Budapest crosses the two arms of the Danube outside of the capital. 
The invitation for the tenders was based upon detailed design and included two bridge system. 
The main Danube bridge at Háros was designed in the tender documentation, as a continuous 
prestressed, reinforced concrete bridge having 11 spans and constructed by the cast-in-place 
cantilever method. For this structure 6 alternative solutions (concrete and composite) were 
proposed and finally the composite construction of the tender by the Hidépitö Vállalat (Bridge 
Construction Company) has been found by the international jury, as the most economic one. The 
detailed design was carried out by UVATERV (Engineering Consultants for Transport and 
Communication). 

The technical data of the bridge 

Structural system, span lengths, widths (Fig. 4.39) 
The superstructure of the bridge consists of three independent, continuous three-span bridges 

and its total length is 770.42 m. The main dimensions of the cross sections of the bridges are 
uniform. The bridges are composite ones consisting of a steel box girder of constant depth and a 
reinforced concrete deck slab. 

The river bridge has the longest spans (3*108.50 m) of this kind in Hungary. The two flood 
plain bridges are identical, spanning 3*78.50 m each. 

The complete width of the deck plate is 22.05 m. It supports a cycle path of total width of 
3.30 m on the north side and a service walkway of 1.25 m width on the south one. The entire 
width for the four traffic lanes is 17.50 m. 

The four traffic lanes have a constant cross fall of 2.5 % to the north direction, therefore the 
heights of the two webs are different, resulting an asymmetric cross section. 

Quality of steel: grades 52C, 52D, 37C and A38B. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.40 The general plan of the bridge. 

Deck 
Reinforced concrete deck, general thickness: 23 cm, at haunches: 29 cm, at cantilever edges: 

20 cm. Prestressed by vertical movement of supports and above the intermediate supports of the 
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river bridge by post-tensioned tendons. Concrete quality: C25 (flood bridges) and C30 (river 
bridge), reinforcement quality: B 60.50. 

Quality of the post-tensioned tendons over the intermediate supports of the river bridge: 
1570/1770 N/mm2. 

 
Foundation, substructure 

The foundation for the abutments, intermediate piers of the flood plain bridges and the 
common pier with the river bridge on the west side could be executed by drilling of large 
diameter piles started from the dry area. It was a routine job. 

The foundation of the intermediate piers of the river bridge and the common pier on the east 
side could be executed by a basically new method. First a reinforced concrete casing element of 
105 t weight and of dimensions 8 m * 18.70 m should be placed in the riverbed very accurately. 
In the second step 1.500 mm dia Soil-Mec piles were drilled from a catamaran. After positioning 
the steel upper casing element, under water concreting took place in a thickness of about 4.5 m. 
Pumping out the water, the reinforced concrete foundation and the rising walls were prepared in 
dry construction pit. Later the upper steel casing element was removed. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.41 The piers of the bridge. 

Bearings 
Synthetic rubber bearing imported from East-Germany. 
Fixed bearings of flood plain bridges: on the abutments, that of river bridge: intermediate pier 

on Buda side. 
 

Quantities of applied materials 
 

steel structure: 4340 t 
HSFG bolts: 174.000 pieces 
studs for composite connection: 80.000 pieces 
reinforced concrete: 13.150 m3 
reinforced concrete slab: 3950 m3 
steel reinforcement: 1375 t 
Soil-Mec piles: 1300 m (diameter 1200 mm) 900 m (diameter 1500 

mm) 
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Method of construction/erection; joints 

The steel box girder was divided longitudinally into construction units, not exceeding the weight 
of 100 t. The flood plain bridges were built up from 13 elements each, while the river bridge from 
21 ones. These units were further divided by longitudinal connections during fabrication. The 
typical connection among the section elements in plant was welding, while in site mainly HSFG 
bolted connections were used, combining with welding for the elements of secondary importance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.42 The erection of the bridge. 

The construction schedules for the flood plain bridges and for the river bridge were similar, 
but different in details. The steel girders were erected in an overlifted position, using temporary 
support in the mid-spans (except for the middle span of the river bridge, which was open 
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permanently for navigation). Certain lengths of the deck plates were concreted in different phases 
to reduce the development of tension stresses in concrete slab under traffic conditions. 
Combination of removement of temporary supports, vertical movements of final supports and 
(only for river bridge) post-tensioning resulted an acceptable state in every part of the composite 
structure during erection and in the finished position 

 

Traffic situation 

The clearance of the navigable fairway is 100 m in each span of the river bridge. Possibility 
for 30 pieces of telecommunication cables and two water pipes of 1000 mm diameter has been 
taken into account during design. 

 

Test loading(s); periodical assessment of serviceability 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.43 The piers of the bridge. 

 
Time: September 29-October 2, 1990. 
applied methods: static and dynamic loadings 
vehicles, loads: 48 trucks filled with 18 t soil and weighted 
nature of measurements: deflections: 

52 points on river bridge,  
42 points on flood plain bridges  
stresses (strains): 
80 points on river bridge, 
60 points on flood plain bridges 
relative displacements at bearings natural frequency 
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4.2.4 ‘Lágymányosi’ bridge 

Location and name of the bridge 

 
Name of the bridge "Lágymányosi" bridge 
Distance: 1643+230 km 
Country: Hungary 
City/town: Budapest 
Year of building - completion: 1992 - 1995 

 

Span lengths: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.44 General view of the Lágymányos Bridge with the Southern Railway Bridge. 

 
Main bridge over streambed: 49.26+4x98.52+49.26=493.80 m 
Roadway widths: 2 × 8 m 
Designer: UVATERV, Dr. Tibor SIGRAI 
Main contractor: METRO Investment Co., Bridge Construction Co., 

Ganz Steel Construction Co. 
Owner of the bridge: City of Budapest 
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Traffic function of the bridge 

Highway bridge with tramway: 
 number of lanes: 2 × 2 and a pair of tramway lanes 
 

Antecedents; the history of the bridge 

Construction of the bridge was decided as early as in 1972, when a tender was held. Its realisation 
is on agenda from the end of the eighties. 

The axis of the bridge is in a distance of 27.98 m from the northern structure of the Southern 
railway bridge. This fact determined the spans of the bridge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.45 The general cross-section of the Southern Railway Bridge and the Lágymányos Bridges; the 
ensemble of the highway and railway bridges and aerial view of the bridge. 
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The technical data of the bridge 

Structural system, span lengths, widths 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.46 General plan and cross-section of the main girder. 
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The main girder is a six-span continuous asymmetric double cell box girder, having 
cantilevers on both sides to support the carriageways, walkway and bicycle track. Above the 
intermediate supports the main girder is suspended by inclined (appr. 30 °) rods, having a box 
section of 1.5 x 1 m. Pylons carrying the lightening have the cross section of 3 x 1 m. Their 
height is 35 m from the deck. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.47 The erection of the columns 

 
Total width of the bridge is 30.67 m. 

 
Box width: top: 17.1 m, bottom: 13.1 m. Webs are inclined. 
Box heights: large spans: 3.76 m, side spans: from 3.76 m decreases 

to 3.26 m parabolically. 
Cantilever lengths: north: 7.685 m south: 4.485 m. 

 
Deck 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.48 Laying of the elements of box girders and Pre-assembly of the main box girder sections at the 
GANZ-MÁVAG plant 
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Structure, arrangement: Orthotropic slab, trapeziodal stiffeners 
Spacing of cross girders: 4.105 m 

 
Foundation, substructure 

Piers in the riverbed are situated on 48 pieces of Soil-Mec piles having a diameter 1.5 m and 
length of 24 m. 

Abutments are r/c structures, being 31 m long, 11.78 m wide and 14.77 m high. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.49 Lifting in of the upper casing element 

Bearings 
A pair of Maurer-type disk bearings is at each supported cross section, fixed ones are situated 

at the middle pier. Longitudinal sliding of the bridge is free in two directions. 
 
Quantities of applied materials 

Total amount of steel structure: 6500 t 
 

Method of construction/erection; joints 

Erection started on both banks from scaffolds, and was continued by free cantilever method using 
temporary supports. Erection units are of the length 10.21 - 14.32 m, unit weights are not 
exceeding the lifting capacity of floating crane "Adam Clark" (120 t) . The double cell cross 
section was divided into two asymmetrical parts. 

 
 
 
 



 174 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.50 The erection of the bridge. 

Traffic situation 

Situation of navigation: the clearance widths are the same as in case of the Southern railway 
bridge. 

The public utilities (bicycle track and sidewalk; heating steam conduits, gas and water 
pipelines, electric and postal cables) are placed on Northern side. 

The bridge has a unique illumination system based on special mirrors located at the tops of 
the pylons placed above the supports. These mirrors receive the light from reflectors located at 
the joints between the pylons and the inclined rods, and transmit it to the surface of the bridge, 
ensuring practically uniform distribution of light for the highway. 
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Figure 4.51 One of the lightening pylons with the mirrors and the erection of the lightening system. 

Test loading(s); periodical assessment of serviceability 

The construction was finished at the end of 1995, and the load tests has been carried out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.52 Load tests for the bridge. 
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4.2.5 ‘Szekszárd’ bridge 

Location and name of the bridge 

 
Name of the bridge Highway-bridge 
Country: Hungary 
City/town: Szekszárd 
Year of building - completion: 2001 - 2003 

 
A bridge close to Szekszárd was tendered 1988 and the construction started in 2001, will be 
completed early 2003. 

 

Main data of the bridge 

The bridge is situated along the M9 perspective motorway, between the main roads No.6 (parallel 
to the right riverside) and No.5 (parallel to the left riverside), crossing the Danube close to 
Szekszárd, the Tolna country-town. [Koller, 2001] 

The spans are as follows: At the left side flood area 3×65.5 m, over the riverbed 80.0 m + 
3×120.0 m + 80 m, and at the right side flood area 3×65.5 m, the full length is 916.0 m 
(Fig. 4.53). In the cross section the bicycle way, the carriageway and the sidewalk are 2.95 m + 
10.0 m + 1.05 m = 14.0 m. 

The realised superstructure is a continuous composite box girder (reinforced concrete deck 
slab and steel spines and bottom slab) over both flood areas, and over the riverbed a continuous 
steel box girder with an orthotropic plate deck. The structural depth is constant, approx. 4.0 m. 
The elevation of a bay is seen in Fig. 4.54, the steel cross section above the riverbed in Fig. 4.55 
and the composite cross section above the flood area in Fig. 4.56. The piers have a deep 
foundation using bored piles and are made of concrete. 

Span lengths: 

 
 
 
 

Figure 4.53 Span arrangement of the Danube bridge at Szekszárd. 

Main bridge over streambed: 3×65.5 + 80 + 3x120 + 80 + 3×65.5 = 916.80 m 
Roadway widths: 2.95 + 2×5.0 + 1.05 = 14.0 m 
Designer: steel bridge: Pont-TERV, Dr. Ernő KNÉBEL 

composite bridge: UVATERV, Zsolt KOVÁCS 
Main contractor: Magyar Hídépítő Konzorcium 
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Figure 4.54 Elevation of a span of the steel bridge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.55 Steel cross section of the steel bridge over the riverbed. 
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Figure 4.56 Composite cross section above the flood area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.57 The general view of the bridge. 
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Figure 4.58 The erection of the bridge before lifting the last element. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.59 The connection of the orthotropic deck and webplate. 

 
 
 
 
 
 
 
 
 

Figure 4.60 The lower flange plate and the cross bracing. 
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Figure 4.61 In-situ connection of steel bridge and lower flange plate of composite bridge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.62 Outer support of the concrete slab and the connection of the concrete slab and steel girder. 

 



 181 

5 Refurbishment of Orthotropic Steel Bridges: 
  Case studies from Germany 

5.1 Traffic Data of the Examined Bridges 
Lately, an increasing number of crack has been apparent in several steel highway bridges built 
between 1950 and 1970. Most affected are sway bracings, diaphragms, web stiffeners, 
components of orthotropic decks and crossing connections These problems are not confined to 
German bridges [Nather, 1991] [Iványi, 2002]. Earlier reports from the USA describe similar 
damage, and for some time fatigue damage detected in Japanese bridges has been reported too 
[Nather, 1991]. 

The main cause of the increasing number of damages is the development of traffic. Most 
bridges suffer more severe loading than was envisaged during their design due to increased traffic 
and higher axle loads. Other causes include inadequate fatigue design of structural details and 
fabrication defects. Another reason for fatigue cracks in steel bridges is inadmissible 
simplification of statical systems, mainly because the three-dimensional behaviour of bridges and 
secondary stresses are usually neglected in design practice. 

Data of traffic flow and vehicle composition is necessary for bridge rehabilitation and 
investigation of damage. Earlier forecasts of lorry traffic on these motorways underestimated 
current traffic conditions. For instance, lorry traffic over the Haseltal bridge increased from 5700 
lorries per day in 1978, to 9000 lorries per day in 1988. Over the period from 1980 to 1989, the 
number of applications for permission of special transports almost tripled [Nather, 1991]. 

Because of the predominant local traffic, the portion of vehicles with four and more axles did 
not exceed 55%. Further measurements indicated that the rate of capacity utilization was low and 
that the impact factor depends to a high degree on the velocity of vehicles. In assessing remaining 
fatigue life, development of future traffic must be considered. For instance with the European 
Community liberalization beginning in 1993, permissible axle loads and maximum weight of 
commercial vehicles will be increased. 

5.2  Cracks in Connections of Cross Beams and Stiffeners. 
Fatigue cracks have been detected: 

– in fillet welds between the cross beam flange and the web or flange of the inside or 
outside main girder stiffener (Fig. 5.1, Detail No. 4) 

– in the seam between web and flange of the cross beam (Fig. 5.1, Detail No. 2) 
– in fillet welds between cap and connection plate of transverse stiffeners (Fig. 5.2, Type I, 

II, III) or sway bracings (Fig. 5.2, Type II, VI) 
– in fillet welds connecting the connection plate to the main girder web (Fig. 5.2, Type III, 

IV) 
– in the butt weld between connection plate and transverse stiffener (Fig. 5.2, Type V, VI), 

and 
– in the connection between longitudinal and transverse web stiffeners. 
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Depending on the position of axle loads that may be located either between the main girders 
or on the cantilever, the haunches receive bending moments of changing signs. These moments 
are usually not considered during design of the connection. On curved bridges, the influence of 
local loads and forces due to the curvature are superimposed. On the Haseltal bridge (Fig. 5.1) the 
outside vertical stiffeners have been torn down in some spans. This led to a drop of the safety 
factor for lateral buckling of the bottom chord in compression. Fatigue assessment showed that 
fatigue cracking of the haunches could have been foreseen. 

 
The Danube bridge near Sinzing (Fig. 5.2) has a superstructure for each lane. The main lane is 

located between the main girders, and every passage of a lorry results in bending stresses in the 
stiffeners. Field measurements and structural analyses revealed stresses larger than the yield 
stress even under service loading in welding outlets of nodes V and VI. Consequently, 17 of a 
total of 18 nodes of type VI and 47 of a total of 62 nodes of type V were cracked. The main 
reason for this damage was an inadequate statical system assumed during bridge design, i.e. the 
support points of the cross beams were assumed to be hinges. 

 
On Fig. 5.2 node III, cracks are indicated in welded connections between vertical stiffener and 

cap plate. These cracks have been detected at an earlier date and repaired in 1977. Although 384 
of a total of 424 welding showed cracks, no investigation of the causes of these cracks was 
conducted. Additionally, reinforcing plates have been mistakingly welded on top of the flanges of 
transverse stiffeners, and cap plates were also welded on flanges of cross beams. Thus, the cause 
of cracks was not eliminated, and new cracks similar to those presented in Fig. 5.2 developed. 
During repair work, 1990 diagonals had been fastened between transverse stiffeners and cross 
beams, as indicated on Fig. 5.3. 

 
The influence of the deformation of the cross section on stresses in various structural details 

of the Danube bridge near Sinzing has been analyzed using the Advanced Theory of Bending, 
Torsion and Distorsion, which is a simple method of analysis but precise enough to study the 
three-dimensional behaviour of the bridge. Structural analysis indicated that the bending stresses 
in vertical web stiffeners reached values larger than those allowed (Figures 5.4 and 5.5). 
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Figure 5.1 Haseltal bridge 
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Figure 5.2 Danube bridge near Sinzing 
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Figure 5.3 Danube bridge near Sinzing: Reconstruction of node type III (VII) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Haseltal bridge: Influences in the design calculation 
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Figure 5.4 Danube bridge near Sinzing: Reconstruction of node type III (VII) 

5.3 Cracks in Orthotropic Decks 
Between 1960 and 1973, 25 steel bridges have been built in Germany with orthotropic deck and 
ribs of «Y»-(«wine glass») or «V»-shape. Ribs are cut into the floor beams, and their «V»-part is 
buttwelded with bevel groove welds to the floor beam webs. Outside Germany, only one bridge 
with «Y»-ribs and one with «V»-ribs has been built, i.e. the Bosporus Bridge (with continuous 
ribs) and the Komatsugawa Bridge (with backing strips). 

The ideal case of a cross joint of the longitudinal V-stiffener, shown in Fig. 5.6, does not often 
occur. The axis of «V»-ribs tend to misalign, and an incomplete penetration may lead to fatigue 
cracks that are not visible from the outside. These fatigue cracks may even penetrate the cross 
beam web. For instance, the cracks in the rib-to-floor intersections of the Haseltal bridge could 
not be detected from the outside. 

The ribs are directly stressed by the wheel loads. Structural analysis showed that a single 
passage of a vehicle causes several stress cycles of relatively high amplitude. For repair, short 
reinforcing plates have been welded first to the cap plate and then to both the deck plate and the 
«V»-rib by fillet welds (Fig. 5.7). Finally, the cap plates on both sides of the cross-beam web 
have been connected using high strength bolts. A fatigue assessment has been made for this 
connection to adapt the fatigue life of the ribs to the design life of other important structural 
members, i.e. 50 years. The detail category of 36 according to [ECCS, 1985] and a partial safety 
factor of 1.0 were chosen. From this, section modulus of the strengthened joint of 611 cm3 has 
been determined, while for the original joint it was 290 cm3. 
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Figure 5.6 Cross joint of the longitudinal stiffener 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7 Haseltal bridge: Reconstruction of the connection of V-stiffener to cross beam 

Three different designs of the intersection between «Y»-ribs and floor beams are known (Fig. 
5.8). The tee-portions of structural type A are spliced by a formed piece which runs continuously 
through circular cutouts in the floor beams. This detail has been used in the Sinntal bridge. The 
tee-portions of design B and C run continuously through the cut-outs and are welded, either 
single-sided or on both sides, to the floor-beam web by fillet welds. Design B for example, was 
used for the Rhine bridge near Leverkusen. In the deck of this bridge, a multitude of cracks 
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developed from the lower end crater of the fillet weld, and some of them run through the inclined 
weld to the cover plate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Rib-to-floor-beam junctions 

The numerous welds in the intersection of design A represent various possible locations for 
fatigue cracks. In a first phase of rehabilitation of the Sinntal bridge, cracks have been found in 
welds of the inclined plates of the «Y»-ribs. At some locations, the ribs were almost completely 
torn down. As a consequence, the grid effect of the deck was reduced which resulted in a 
propagation of damage similar to the opening of a zip-fastener. The accumulation of cracks in the 
last four spans near the southern abutment was explained by high dynamic stresses in the bridge 
deck caused by the traffic. It could be observed that trucks overtake one another even though no 
other vehicles were on the bridge. 

In the second phase of rehabilitation, many new cracks have been detected which could not be 
attributed to fatigue. A considerable quantity of cracks may have developed as a result of the 
Sinntal bridge reached 115 °C on the side of the base. 

The damage in the rib-to-floor intersection is typical for this type of structural detail. Cracks 
are not expected where the ribs with hollow sections run continuously through the cut-outs of the 
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floor beams. Insufficient fatigue strength of rib cuts welded to floor-beam webs, has already been 
described in 1961. 

5.4 Strengthening of Main Girders under Traffic 
Increasing traffic loads, the high probability of occasional overstressing and a high utilization of 
the material without considering fatigue, are the main causes that may require strengthening of 
bridges [Nather, 1991]. The possibilities of strengthening and broadening of bridges, even under 
traffic, is the main advantage of steel structures. Two methods of strengthening are described 
next: 

1. To reinforce the Haseltal bridge, two lattice girders were mounted between the existing 
main girders as shown in Fig. 5.9. Transverse truss bracings have been built-in, every 9.24 
m, to form a grillage with the main girders. At the centre, pier hinges were built in the 
lattice girders to avoid additional loading of the cross bracings at the support which could 
result in replacement of the existing support bracings. The support reactions of the 
additional lattice girders are taken over by additional support bracings, from where they 
are led off to the main girders and finally to the bearings. 

2. Another suggestion, shown in Fig. 5.10, is to build an additional lattice girder in the centre 
line of the bridge together with a torsional bracing that is fixed above the bottom chords of 
the existing main girders. The floor-beam cantilevers are braced by diagonals to the 
stanchions of the torsional bracings. These stanchions and diagonals form, together with 
the cross beams and web stiffeners, transverse diaphragms to keep the cross sections 
elastic. All joints are bolted using high-strength bolts. To reduce the stress-resultant 
components, additional transverse bracings may be built-in. In case removal or 
strengthening of the existing support bracing is not possible, the new lattice girder may 
also be supported spatially by diagonal bracings that are directly supported by the bearings. 

5.5  Final Remarks. 
Experiences derived from the rehabilitation of highway steel bridges have been described. 
Fatigue cracks in orthotropic plates and in connections of cross beams and stiffeners have been 
detected, and repaired, on three steel road bridges. The main cause of the increasing number of 
damages, is the more severe loading of bridges due to increased traffic and higher axle loads. 
Other causes include inadequate fatigue design of structural details and fabrication defects. 
Repair and strengthening of steel bridges can be conducted relatively easily under traffic. 
Additionally, inadmissible simplification of statical systems is a further reason for damage on 
steel bridges. 
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Figure 5.9 Strengthening of the Haseltal bridge 
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Figure 5.10 Strengthening of Main Girders under Traffic 
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6 Design of Steel Bridges with Structural Eurocodes 
New design rules for steel bridges have been developed by CEN / TC 250 / SC 3. The result of 
the work in the EN-version of Eurocode 3 Part 2 (EC3-2). 
 

For educational purpose some chapters are presented helping the knowledge of design of steel 
bridges. The rules concerning with design of planar plated structures without transverse loading, 
presented in Appendix II., and with design of planar plated structures with transverse loading, 
presented in Appendix III., belongs to this topic. 

 
The summary is reviewed on the basis of Johansson et. al [1999] and Johansson et. al [2001]. 
 
The Figure 6.1 summarizes the general procedures calculating the interaction between shear 

force, bending moment, axial and transverse force. 
The Figure 6.2 shows the flow chart of the procedure for the determination of effective cross-

section properties of a longitudinally stiffened class 4 panel. 
The Figure 6.3 shows the flow chart of the procedure for the determination of effective cross-

section resistance in the shear buckling. 
The Figure 6.4 shows the flow chart of the procedure for the determination of the cross-

section resistance under patch loading. 
The Figure 6.5 shows the interaction between effective widths due to shear lag effects and 

effective widths from plate buckling. 
 
The presented examples are reviewed on the basis of Eisel-Müller-Sedlacek [1995] and 

Bancila [1996]. 
 
Example 1: Truss element (Danish-Swedish truss diagonal) 
Example 2: Stiffened bottom plate of a bridge in compression (French bridge) 
Example 3: Stiffened bottom plate and webs of a composite bridge 
 
 
 
 
 



 193 

 

 
                Longitudinal stresses  Shear stresses with shear force 

including shear from torque 
 Transverse stresses with 

transverse forces 
        Longitudinal normal stresses with 
gross cross-section 

 

 Shear stresses with gross 
cross-section 

 

 Stresses under the transverse forces 
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(Suppose: rigid supports for panels) 
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Interaction between shear force, bending moment, axial and transverse force 
Figure 6.1 Flow chart describing the general procedure for the design of plated structures according to 

EC3, Part 1.5. 
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Effective cross-section for subpanel buckling: 
.geometr
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A A

A
=  

       Column buckling attitude  Plate buckling attitude 
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y
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f

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2
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2
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( ) 2
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          Interpolation between column buckling 
attitude and plate buckling attitude 

 

     
Simplified method: 

neglect the plate 
buckling attitude:  =0 

 
1

c.cr

p.cr −



=   

     ( ) ( ) cccc 2 +−−=   
  
   

     += tbAA p.cpeff,slc   

     Effective area for a compression flange with 
respect to plate buckling 

cceff,c AA =  

 

     Effective area at ultimate limit states the effect 
of shear lag and plate buckling 

= eff,ceff AA  

 

Figure 6.2 Flow chart describing the procedure for the determination of effective cross-section properties 
of a longitudinally stiffened class 4 panel. 
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            Web plate  Flange plate 
            

Web with transverse 
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Web with transverse stiffeners at the 

supports and intermediate transverse 

and/or longitudinal stiffeners 
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Figure 6.3 Flow chart describing the procedure for the determination of effective cross-section resistance 
in the shear buckling. 
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Figure 6.4 Flow chart describing the procedure for the determination of the cross-section resistance under 
patch loading. 
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Definitions of notations for 
shear lag 

 Effective length Le for continuous beam and distribution of 
effective width 

     

 

 

 
      Asl: Area of all longitudinal 

stiffeners 

e00
0

sl
0 Lb    
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A1 =+=  

 
      Effective width factor  
  

e

00
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=  Location for 

verification 
 - Value 

   0,02   = 1,0 
  0,02 – 0,07 Sagging bending 
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Figure 6.5 Interaction between effective widths due to shear lag effects and effective widths from plate 
buckling. 
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Example 1: Truss element (Danish-Swedish truss diagonal) 
Geometry 

 
 L = 15,0 m 
 

Material: S 355 
 

Effective breadths (5.3.6.2 (10), 5.3.5) 
 
plate subpanels 
 
b = 750 mm, t = 15 mm 
 

( )

mm 551750734,0b

734,0087,122,0087,122,0

087,1
0,481,04,28

15750
k4,28
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'
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'
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'
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


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stiffener subpanels 
 
b = 250 mm, t = 20 mm 
 

( )
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

 

 



 199 

  [mm] 
 

Aeff = 20  222 + 1100  15 = 209,4 cm2 
 

Global plate buckling (5.3.6.3) 

  [mm] 
 Ast,eff = 44,4 cm2 (5.3.6.3 (3)) 
⊥ Aeff = 127,1 cm2 

 z = 3,88 cm 
 I = 5398 cm4 

 
Comment: (5.3.6.3 (4)) 
 Open section stiffeners shall be proportioned so as to be fully effective. 
 In this case a reduction has to be done. 
 A reduction of the breadth is chosen. 

kN 1,6480
750750

15001510539821000005,1
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btI
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=


=

 

(5.3.6.3 (8)) and (5.3.6.3 (7)) 
 
Alternative calculation of Ncr,p (Petersen): 
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1 923,01c

1500375
3
1EI

1,309
1291,0

15I

375
4

1500M

2

3

=


=

=

=


=

==

 

 
diagram Peterson (p. 468): 
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The continued calculation will be done with Ncr,p = 6480,1 kN. 
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 (c will not be calculated) (5.3.6.2 (9)) 

 
Calculation of p  with Ast,eff: 
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 (5.3.6.2 (7)) 
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Buckling resistance (5.5) 

1500 
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cm 3770951I

cm 1100A
2

2

=
=
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a) Determination of A and I with the gross area (5.5.1.2 (1)) 

( ) 
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(5.5.1.2 (2)) and (5.5.1.2 (1)) 
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b) Determination of A and I by a cross section with equivalent thickness tc,equi = Ac,eff/bc 
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( ) 

kN 233071,1355101100672,0977,0fAN

977,0
264,0546,0546,0

11
546,0264,02,0264,034,015,0

34,0

264,0672,0
1,76
5,24

672,0
1100

9,1844
A

A

1,7681,09,939,93fE

5,24
4,612

15000
i

s

2
MyARd,b

2222

2

A
1

eff

y1

k

===

=
−+

=
−+

=

=+−+=

=

==



=

=


==

====

===

(5.5.1.2 (2)) 

Example 2: Stiffened bottom plate of a bridge in compression (French 
bridge) 

 
Geometry 
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Distance between diaphragms: L = 4000 mm 
 

Material: S 355 
 
 

Global plate buckling (5.3.6.2 (1) and 5.3.6.2 (3)) 
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 (5.3.6.2 (4) and 5.3.6.2 (5)) 
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 (5.3.6.2 (7) and 5.3.6.2 (8)) 

 

 
 NA plate + stiffeners NA plate 
 
 NA – neutral axis 
 Calculation with gross area! 
 

( ) ( ) 

( ) ( ) ( ) ( ) 670,0665,0048,02048,0665,0728,02
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(5.3.6.2 (10)) 

 
 

Local plate buckling (5.3.6.2 (10) and 5.3.5) 
 

plate subpanels 
 

b’ = 920 mm, t = 15 mm 
 

NA stiffeners 
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b’ = 600 mm, t = 15 mm 
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stiffeners subpanels 

 
b’ = 250 mm, t = 8 mm 
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b’ = 271 mm, t = 8 mm 
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(5.3.6.2 (11)) 

 
Consideration of shear lag effects 

 
Geometry 

 

 
 
Distance between diaphragms: L = 4000 mm 

Material: S 355 
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Span lengths: (5.4.2.3.3 (6), Fig. 5.18) 
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(5.4.2.3.3 (4) and 5.4.2.4 (1)) 
 
 

Example 3: Stiffened bottom plate and webs of a composite bridge 
 

Material: S 355 
 

Distance between diaphragms: L = 4000 mm 
 

4
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2
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cm 744 627 28I
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Geometry 
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Classification (and local plate buckling) (5.3.5) 
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Global plate buckling (5.36) 
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 NA plate + stiffeners NA plate 
 
 NA – neutral axis 
 Calculation with gross area! 
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NA stiffeners 
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Web 
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New calculation of Ncr,p (Petersen) 
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Shear lag effects 

 

 
 

( )
( )

2
ccombeff,c

20500
3500181,1

L
b

comb

22

e

0

e

0
2

0

e

cm 7,8474,1054804,0AA

804,0847,0950,0440,0950,0

440,0

20500
3500181,16,1

20500
3500181,10,61

1

L
b6,1

L
b0,61

1

181,1
153500

447240082

1
tb

A1

m 5,200,442,3852,0L

e

0

===

====

=








 
+


+

=













 
+


+

=

=


+

+=



+=

=+=



 

 
Shear buckling resistance of the web 
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I.1 Serviceability Limit States [prENV 1993-2:1997, Section 4] 

I.1.1 Basis 
 

A bridge shall be designed and constructed such that all relevant serviceability limit states are 
satisfied. In general the following serviceability requirements should be taken into account: 
 

a) restriction to elastic behaviour in order to exclude: 
- excessive yielding; 
- deviations from the intended geometry by residual deflections; 
- accumulation of deformations; 

b) limitation of deflections and curvature in order to exclude: 
- unwanted dynamic impacts due to traffic (also deflection limits together with natural 

frequencies); 
- infringement of required clearances; 
- cracking of brittle layers (of asphaltic pavements for example); 
- impairment of drainage; 

c) limitation of natural frequencies in order to exclude: 
- vibrations due to traffic or wind perceptible to pedestrians or passengers in cars; 
- fatigue damages caused by resonance phenomena; 
- excessive noise emission from plated elements; 

d) limitation of plate slenderness in order to exclude: 
- visible buckling of plates; 
- breathing of plates (also in view of fatigue); 
- reduction of stiffness due to plate buckling, that may result in an increase of deflection; 

e) achievement of sufficient durability by appropriate detailing to reduce corrosion and 
excessive wear; 

f) ease of maintenance and repair throughs: 
- accessibility of structural parts to permit maintenance, inspection and renewal (of corrosion 

protection and asphaltic pavements, for example); 
- exchangeability of bearings, anchors, individual cables, expansion joints and the like, that 

might have a limited service life, with the minimum practicable interruption to use of the 
structure. 

 

In appropriate cases, serviceability limit states may be verified by numerical assessment. 
Where more appropriate, serviceability aspects may be dealt with in the conceptual design of the 
bridge, or by suitable detailing. 
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I.1.2 Calculation models 
 

Deflections should be determined by linear elastic analysis, using gross cross-section properties 
reduced to take account of shear lag effects. Stress-resultants at serviceability limit states should 
be determined from a linear elastic analysis, using gross cross-section properties as specified in 
ENV 1993-1-5. The stresses should then be obtained using effective cross-section properties 
determined taking account of shear lag. Simplified calculation models may be used for stress 
calculations provided that the effects of the simplification are conservative. 

I.1.3 Limitation for reversible behaviour 
 

The nominal stresses in all elements of the bridge resulting from characteristic (rare) load 
combinations Ed,ser and Ed,ser, calculated making due allowance where relevant for the effects of 
shear lag in wide flanges and the secondary effects implied by deflections (for instance secondary 
moments in trusses), should be limited as follows: 
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The partial factor for serviceability limit states may be taken as: M,ser = 1,0. The nominal 
stress range fre due to the representative values of variable loads specified for the frequent load 
combination should be limited to 1,5 fy/ M,ser. For non-preloaded bolted connections loaded in 
shear, the bolt forces due to the characteristic (rare) load combination should be limited to: 

 Fb,Rd,ser ≤ 0,7 Fb,Rd /I.2/ 

in which Fb,Rd is the bearing resistance for ultimate limit states verifications. For slip-resistant 
preloaded bolted connections category B, the assessment for serviceability shall be carried out 
using the characteristic (rare) load combination. 

I.1.4 Limitation of web breathing 
 
The slenderness of unstiffened or stiffened web plates should be limited to avoid excessive 

breathing that might result in fatigue at or adjacent to the web-to-flange connections. Unless a 
more accurate calculation method is used, the following simplified procedure may be applied. 
The stresses x,Ed,ser and Ed,ser in a web panel, see Fig. I.1, should be calculated using the frequent 
load combination. 
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Figure I.1 Stress state for a panel [Fig. 4.1]. 

If either of these stresses is not constant along the length of the panel, the design value should 
be taken as the maximum of: 

– the greater of the values at a distance equal to the lesser of a/2 or b/2 from a transverse 
edge, in which a is the longitudinal dimension of the panel and b is the transverse 
dimension; 

– half of the maximum value within the length of the panel. 

For a sub-panel, its dimensions ai,k and bi,k should be used in place of a and b. 
The following criterion should be satisfied: 
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in which k and k are given by the following: 

– for unstiffened plates: 
– k is given in table 5.3.2 of ENV 1993-1-1; 
– k is given in 5.6.3(3) of ENV 1993-1-1; 

– for stiffened plates: see ENV 1993-1-5; 

and bp is the smaller of a and b. 

I.1.5 Limits for clearance gauges 
Specified clearance gauges shall be maintained without encroachment by any part of the structure 
under the effects of the characteristic (rare) load combination. 
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I.1.6 Limits for visual impression 
If it is necessary to avoid the visual impression of sagging, consideration should be given to 
precambering. In calculating the precambering, the effects of shear deformation and of slip in 
riveted or bolted connections should be considered. For connections with rivets or fitted bolts a 
fastener slip of 0,2 mm should be assumed. For preloaded bolts no slip need be considered. In 
modelling the distribution of permanent weight and stiffness in a bridge, the non-uniform 
distribution resulting from changes in plate thickness, reinforcement and the like should be taken 
into account. 

I.1.7 Performance criteria for railway bridges 
Specific performance criteria for deformations and vibrations for railway bridges may be 
obtained from annex G of ENV 1991-3. Requirements for the limitation of possible noise 
emission should be given in the project specification. 

I.1.8 Performance criteria for road bridges 

I.1.8.1 General 

Excessive deformations should be avoided if they might: 

– endanger traffic when the surface is iced; 
– affect the dynamic load on the bridge; 
– affect the dynamic behaviour to an extent that might cause discomfort to users; 
– lead to cracks in asphaltic surfacings; 
– adversely affect the drainage of water from the bridge deck. 

Calculations of deformations should be carried out using the frequent load combination. To 
ensure the durability of asphaltic pavements on road bridges, the difference between the 
deflections of two adjacent stringers or stiffeners should be limited. Unless otherwise specified 
the minimum stiffness of stringers should be as indicated in Fig. I.2. The natural frequencies and 
deflections of the bridge structure should be limited to avoid discomfort of users. 

I.1.8.2 Deflection limits to avoid excessive impact from traffic 

The roadway should be designed such that it exhibits uniform deflection behaviour along the 
length with no abrupt changes in stiffness or smoothness of surface giving rise to impact. Sudden 
changes in slope of the surface deck and changes of level at expansion joints should be 
eliminated. Transverse girders at the end of the bridge should be designed such that the deflection 
does not exceed: 

– the deflection limit specified for the proper functioning of the expansion joint; 
– 5 mm. 

Where the deck structure is irregularly supported (for instance by additional bracings at 
intermediate bridge piers) the deck area adjacent to these additional deck supports should be 
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designed for the enhanced impact factors given in ENV 1991-3 for the area close to expansion 
joints. 

I.1.8.3 Resonance effects 

Mechanical resonance of the main girders of bridges should be taken into account when relevant. 
Where light bracing members, cable stays or similar items have natural frequencies that are close 
to the frequency of any mechanical excitation (for instance regular passage of vehicles over deck 
joints) consideration should be given to artificial damping of the members (by means of 
oscillation dampers, for example). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: 1) Curve 1 applies to stringers or stiffeners that are located under the most heavily 

loaded traffic lane and within 1,2 m of a web of the main girder. 
 2) Curve 2 applies to all other stringers or stiffeners. 
 3) The figure applies to any type of stiffeners. 

Figure I.2 Minimum stiffness of stringers [Fig. 4.2]. 
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I.1.9 Performance criteria for pedestrian bridges 
For footbridges and cycle track bridges vibration that might produce discomfort may be 
eliminated either through the structural design or by providing suitable damping devices. 

I.1.10 Performance criteria for effects of wind 
Vibrations of slender members induced by vortex excitation should be limited to values below 
those that generate stresses of sufficient magnitude to cause fatigue. For the determination of 
fatigue loads from vortex excitation reference should be made to annex F. Aerodynamic effects 
caused by flutter or galloping or by divergency should be treated as ultimate limit state 
conditions. Appropriate checks should be carried out according to the procedures given in ENV 
1991-2-4. 

I.1.11 Accessibility of joint details and surfaces 
All steelwork shall be designed and detailed to minimise the risk of corrosion and to permit 
inspection and maintenance. All parts should satisfy at least one of the following alternatives: 

– accessible for inspection, cleaning and painting; 
– effectively sealed against corrosion (for instance the interior of boxes or hollow portions); 
– made of steel with adequate corrosion-resistant properties; 
– be thicker than required structurally, to allow for future corrosion. 

None of the above provisions need be applied to temporary bridges or to those with an 
appropriately short design life. 

I.1.12 Drainage 
The surfaces of carriageways and footpaths shall be sealed to prevent the ingress of surface water. 
Bridge decks shall be drained in such a way that surface water cannot damage structural 
elements. Arrangements for drainage should take into account the slope of the bridge deck, the 
position, diameter and slope of the waste pipes, the drainage of expansion joints and the discharge 
of waste water. Free fall drains should carry waste water to a point clear of the underside of the 
structure so that no structural element and no supporting structure is hit by water under any 
conditions of wind and weather. 

Waste pipes should be designed so that they can be easily cleaned out. The distance between 
centres of cleaning openings should be stated in the project specification. Where waste pipes are 
used in box girder bridges, provisions shall be made to avoid accumulation of water in the event 
of a leak in a pipe. For road bridges, drains should be provided outside each expansion joint, on 
both sides where necessary. For railway bridges up to 40 m long carrying ballasted tracks, the 
deck may be assumed to be self-draining and no further drainage provisions need be provided. 
Provision should be made for drainage of all closed cross-sections. 
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I.2 Ultimate Limit States 

I.2.1 Structural elements [prENV 1993-2:1997] 

I.2.1.1 Structural system: Orthotropic plates [prENV 1993-2:1997, Section 5.2.3.1] 

In verifying the stresses in the orthotropic plate as the load distributing deck the following effects 
should be taken into account: 

a) membrane stresses in the stringers and in the deckplate from bending moments caused 
by local loads and from axial forces from cooperation as flange of the main girder 
(longitudinal stringers) or cross girder (transverse stringers). 

b) membrane stresses in the cross girders with cut-outs at the intersections with the 
stringers. This might imply the consideration of a Vierendeel-behaviour. 

Bending stresses in the deckplate and the walls of the stringers need not be considered, 
provided that minimum distances of stiffeners are observed. The cross girders together with the 
vertical stiffeners of the webs, may be part of transverse frames, for which the frame behaviour 
and its consequences for restraining moments at the interconnection at the frame knees and for U-
frame behaviour in case of open bridge-sections should be considered. 

 

I.3 Special considerations for structural detailing of orthotropic decks 
[prENV 1993-2:1997, Annex G] 

 
A) Road bridges 

 
Deckplate 

 
In the view of both fatigue cracking in the deckplate and cracking of the asphalt layer, the 
thickness of the deckplate should be limited to 

tmin   12 mm for asphalt layer   70 mm 
tmin   14 mm for asphalt layer   40 mm 

The spacing of the support of the deckplate by webs of stringers should be: 
e ≤ 300 mm for t = 12 mm and e/t < 25, Fig. I.3. 
For temporary bridges the plate thickness t may be smaller than indicated previously however 

the ratio e/t < 25 should be fulfilled. 
For permanent bridges the stringers should only be provided transversally to the traffic lanes 

if agreed by the competent authority. When the recommendations mentioned before are satisfied, 
the bending moments in the deckplate need not be verified. 

 
Transverse splices with weld running in crosslane direction are on Fig. I.4. Double-V weld or 

single V-weld with root jointing and additional weld or single V-weld with ceramic backing strip. 
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- 100 % inspection required. 
 
 
 
 
 
 
 
 
 
 

Figure I.3 [Fig. G.1]. 

 
 
 
 
 
 
 
 
 

Figure I.4 [Fig. G.2]. 

Longitudinal splices with welds running in in-lane direction are on Fig. I.5. Methods as for 
transverse splices or single V-weld with steel backing strip with the following requirements: 

– Tack weld in the final butt weld 
– Special attention to be given to corrosion protection 
– Standard inspection requirements 

 
 
 
 
 
 
 
 
 
 

Figure I.5 [Fig. G.3]. 
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Stiffeners 

 
Stiffeners made of hollow sections type V, trapezoidal or round should have a minimum plate 
thickness t   6 mm. The radius for cold forming should be R/t   4. For open section stiffeners 
the plate thickness should be t   10 mm. Stiffeners should satisfy the minimum stiffness 
requirements in [prENV 1993-2:1997, Section 4.8]. 

Gap between stiffener and deckplate before welding ≤ 1 mm. Weld throat: 1.25 x thickness of 
the stiffener. The weld penetration: see Fig. I.6. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure I.6 [Fig. G.4]. 

Welding process/inspection: 

– For automatic welding: 
– Standard inspection requirements 

– For manual welding: 
– 100 % inspection to confirm weld penetration and throat thickness 

– For manual welding in overhead position: 
– Edge preparation must be provided for the total length of the weld and 50 % inspection 

is required. 
– Special attention must be payed to starts and stops (grinding). 
– No undercuts permitted. 

 
Length of the stiffener - stiffener connection:   200 mm, see Fig. I.7. Weld length connecting 

stiffener: 100 - 200 mm. Root gap between splice plate and connecting stiffener: 6 mm, see Fig. 
I.8. Backing strip: thickness 3 mm, width   30 mm; fit-up gap ≤ 1 mm; misali0gnment between 
stiffener and splice ≤ 1 mm. Tack weld is located within the butt weld, over the full length of the 
butt weld and has the same quality as the butt weld. The welding process/inspection: 

– M.M.A.W. is allowed with 100 % inspection 
– MIG/MAG is preferred with 50 % inspection 
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Welding procedure: 
- 1. First weld between stiffener and splice plate 
 2. Second weld between stiffener and splice plate 
 3. Deckplate weld 
- Special requirements must be made for several straight passes, not using weaving 

techniques 
- Special attention must be paid to starts and stops (grinding) 

General requirements are tolerances for fit up 1 mm and side welds 50 % inspection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure I.7 [Fig. G.5]. Figure I.8 [Fig. G.6]. 

 
Stiffener-crossbeam connections with cope holes connection 

 
Stiffener should be continuous, passing through cut outs in the webs of the crossbeams. A cope 
hole should be provided around the soffit of the stiffener, but cope holes close to the deck plate 
are not permitted. The cope holes should have the following recommended dimensions: 

– V-stiffener: continuous radius (75 mm) on the same centre as the soffit of the stiffener. 
– Trapezoidal stiffener: for the minimum size of the cope hole see figure I.9. 
– Round stiffener (bottom radius 100 mm): radius of 35 mm at each side centred on the 

lower end of the straight part of the stiffener web. Connecting radius of 140 mm on the 
same centre as the soffit of the stiffener. 

The following requirements apply: 

– Special attention to be given to providing a smooth edge to cope holes. Any notches to be 
ground smooth. 

– Welds to be returned around the edges of cope holes in the web. 
– Weld throat thickness to be   50 % of diaphragm plate thickness. 
– No undercut permitted. 
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By the above mentioned recommendations and the ULS-assessment of the welds the 
formation of fatigue cracks in the welds due to shear from shear forces and torsion and from 
restraints from deflections of the stringers prevented. By the above mentioned recommendations 
and the ULS and SLS-assessments of the stringers the formation of fatigue cracks in the stringer 
web (vertical before the weld toe) is prevented. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.9 [Fig. G.7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.10 [Fig. G.8]. 

Provisions for the crossbeam in case of cope holes 
 

The stiffness of crossbeams and in particular of the web should be sufficient to prevent the 
formation of horizontal fatigue cracks in the web of the stringers at the returns of the welds, due 
to variable imposed deformations from the crossbeam web, Figure I.11. By applying the ULS-
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assessment rules for the web of the cross beam taking account of the Vierendeel action, the 
formation of such cracks will be prevented. 

 
 
 
 
 
 
 

Figure I.11 [Fig. G.9]. 

Connections without cope holes 
 

Stringers should be continuous, passing through cutouts in the webs of the crossbeams. Best 
fatigue behaviour is achieved, when trapezoidal stiffeners or round stiffeners are used without 
cutouts at the bottom of the stiffeners (welded all around). For this solution the maximum gap 
between the webplate and the stiffener is 3 mm and the minimum throat thickness is 50 % of the 
thickness of the cross-beam web. Standard inspection requirements apply. 

 
Short stiffeners fitted between cross-beams 
 
In exceptional cases, for instance shallow decks for light traffic, short stiffeners fitted between 
cross-beams may be used when following requirements are satisfied: 

– - crossbeam spacing ≤ 2,75 m 
– - stiffener to cross-beam welds to be full-penetration welds with a prepared end on the 

stiffener, see Fig. I.12. 
– - the sequence of assembly and welding should be decided with advice from the 

fabricator to prevent excessive shrinkage effects. 
– - 100 % inspection required for stiffener to cross-beam welds. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure I.12 [Fig. G.10]. 
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Crossbeams 
 

In case of continuous stringers with cutouts the crossbeams should be designed for the 
Vierendeel-action resulting from the cutouts, Fig. I.13. The design stresses are the result from the 
Vierendeel- actions multiplied with the stress concentration factors (SCF). The values of the 
SCF's are depending on the form and the location of the cope hole. 

 
 
 
 
 

Figure I.13 [Fig. G.11]. 

To avoid fatigue cracks at the cutouts the following recommendations have to be satisfied: 

– - the requirement for limiting the stresses to yielding in the ultimate limit state in the 
critical sections A-A and B-B, Fig. I.14; 

– - the determination of an optimum for the web thickness by the combination of the in-
plane and out-of-plane behaviour; 

– - the above mentioned recommendations for structural detailing of the cutouts. 

In case of continuous stringers without cope holes the strength of critical sections A-A and B-
B may be determined using an effective breadths of the stringer web beff = 5 t. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.14 [Fig. G.12]. 

Crossbeam to deckplate connection: the gap before welding ≤ 1 mm. Continuous double fillet 
weld: a = 0.5 × crossbeam thickness. 

The connection between the crossbeam and the vertical stiffeners of the web, that from a 
transverse frame shall be designed for the restraining moments. Fatigue restraint design as 
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indicated in Fig. I.15 has to be applied. If the lower flanges of the crossbeam and main girder are 
at the same level the radius for the edges should be R = 8 mm, see Fig. I.16. 

 
 
 
 
 
 
 
 
 
 
 

 Figure I.15 [Fig. G.13]. Figure I.16 [Fig. G.14]. 

 
B) Railway bridges 

 
All clauses for road bridges apply apart from more conservative rules to follow. In the following 
also additional rules for railway bridges are presented. 

 
Deckplate 

 
The thickness of the deckplate should be limited to tmin   14 mm and tmin   e/40, where e is the 
maximum distance between the stiffeners. 

 
Stiffeners 

 
Non-continuous stringers are allowed; however they have a low fatigue classification. In 

connections with cope holes circular or apple forms of cutouts are recommended for railway 
bridges (Fig. I.17a to d). Their radii should be 40 to 50mm. Connections without cope holes in the 
web of the cross girder (Fig. I.17e and f) are allowed if welding is carried out in such a way that 
residual welding stresses are limited. Unsymmetrical cutouts (Fig. I.l7g) are not recommended for 
railway bridges. 

In case of trapezoidal stiffeners with cutouts in the web of crossbeams these cutouts shall 
meet the requirements of Fig. I.18. In case the weld is not prepared as indicated in Fig. I.18 
sufficient weld penetration should be ensured otherwise. 

The geometry of trapezoidal stiffeners should fulfill the requirements of Fig. I.19. 
Stiffener-to-stiffener connections shall be made at a location 0.15×eQT to 0,25×eQT away from 

a crossbeam. 
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Figure I.17 [Fig. G.15]. 
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Figure I.18 [Fig. G.16]. 

Crossbeams 
 

The geometry of crossbeams should fulfil the requirements of Fig. I.19. 
 
 
 
 
 
 
 
 
 
 
 
 
Requirements for geometry of crossbeams and stiffeners: 
 
600 ≤ eT ≤ 900 mm; eR   eT 2500 ≤ eQT ≤ 3500 mm 

hT/hQT < 0.4 6 ≤ tT ≤ 10 mm 16 ≤ tQT ≤ 20 mm 

Figure I.19 [Fig. G.17]. 
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I.4 Design of diaphragms in box girders at supports [prENV 1993-2:1997, 
Annex H] 

 
H.1 General 

 
Diaphragms should be provided at supports of box girders to transfer applied loads to the 
bearings. Subject to the limitations and provisions of H.2, unstiffened and stiffened diaphragms 
should be designed in accordance with H.5 and H.6, respectively, on the basis of the loadings and 
effective sections given in H.3 and H.4, respectively. The diaphragm/web junctions should meet 
the provisions of H.7. Deck cross beams and/or cantilevers supporting the deck and located in the 
plane of a diaphragm should meet the provisions of H.8. The geometric notation used is shown in 
Fig. I.20. 

 
H.2 Limitations 

 
H.2.1 Box girders 

 
Box girders should be of nominally rectangular cross section or of nominally trapezoidal cross-
section with webs in single planes inclined at less than 45° from the vertical, and when 
unstiffened, should be nominally symmetrical about a vertical axis (i.e. ignoring cross fall or 
superelevation). Box girders should be of a single cell form with or without interconnecting cross 
members and cantilevers and should not be subject to internal pressure effects due to sealing. 

 
H.2.2 Diaphragms and bearings 

 
The plane of the diaphragm should be within ±5° to the normal to the axis of the girder in 
elevation, within ±10° in plan, and within ±5° of a vertical plane. The diaphragm should be in a 
single plane, except as permitted in H.2.4 for starter plates. 

Each diaphragm should be supported on a single or twin bearings under each box. Bearings 
under unstiffened diaphragms should be symmetrically placed about the vertical axis of the 
diaphragm. The contact width j of a stiffened diaphragm above a bearing, as defined in Fig. I.20, 
should not exceed half the depth of the diaphragm with a single bearing nor one-quarter of the 
depth of the diaphragm with twin bearings. A bearing below a stiffened diaphragm should not 
extend across the width of the diaphragm beyond the line of attachment of a bearing stiffener by 
more than 15tpp, where: 

– tp is the thickness of the diaphragm plate 
– p = (235/fyp)0.5 
– fyp is the nominal yield strength of the diaphragm plate, 

 
H.2.3 Cross beams and cantilevers 

 
Where the deck projects beyond the box web and is supported on cross beams and/or cantilevers 
which are in the plane of a diaphragm, the flanges of such members should provide a continuous 
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load path through each box web and across the diaphragm for the forces they are required to 
carry. These members should be assumed to be supported by the diaphragm/box web junctions 
(see H.7 and H.8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.20. Geometric notation for diaphragms [Fig. H.1] 
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H.2.4 Starter plates 
 

Where starter plates are to be used to connect a diaphragm to the box walls, they should either be: 

– a) positioned in the plane of the diaphragm and be butt-welded or connected by double 
cover plates to the diaphragm; or 

– b) lap jointed to the diaphragm, provided that a suitable system of stiffening is designed 
to withstand, in addition to any other load effects, all the moments resulting from the 
eccentricity of connection. 

 
H.2.5 Stiffeners to diaphragms 

 
All stiffeners to plate diaphragms should be in accordance with 5.3.6.2 of ENV 1993-2. Bearing 
stiffeners should be symmetrically placed about the diaphragm plate, unless a special analysis is 
made of the effects of any eccentricity with respect to that plate. 

 
H.2.6 Plating in diaphragms 

 
The thickness of plating in an unstiffened diaphragm should be uniform throughout. 

 
H.2.7 Openings in unstiffened diaphragms 

 
Openings in unstiffened diaphragms should be in accordance with the following: 

– a) only one circular opening may be provided on each side of the vertical centreline of the 
diaphragm within the upper-third of the height of the diaphragm; 

– b) the diameter of any such opening should not exceed the least of: 6tp; D/20; B/20. 
where 

– tp is the diaphragm plate thickness 
– D is the depth of the diaphragm (see Fig. I.20) 
– B is the width of the diaphragm taken as the average of the widths at the top and 

bottom flange levels for boxes with sloping webs; 
– c) cut-outs for longitudinal stiffeners on the box walls should have the stiffeners 

connected to the diaphragm plate by one of he following methods: 
– welding, along at least one-third of the perimeter of the cut-out; 
– cleating to the longitudinal stiffener with at least two bolts or rivets per side of the 

connection, or by full perimeter welding of the cleat. 
In addition, the length of the free edge of any cut-out should not exceed l0tpp, when any part 

of this free edge is within a distance l2tpp, from any part of a bearing plate, 
where tp is the diaphragm plate thickness. 
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H.2.8 Openings in stiffened diaphragms 
 

Openings in stiffened diaphragms should be in accordance with the following. 
a) With the exception of openings permitted in item (d), openings should not be positioned 

within the areas shown shaded in Fig. I.21. 
b) Unstiffened openings should be circular and of diameter not exceeding the least of: 6tp; 

a/20; b/20. 
except when 

 
m

yp
e 2

f


  

for which the limiting diameter is twice the limits given above, where 
a and b are the panel dimensions 

 2
p2p1p

2
2p

2
1pe 3+−+=  

p1, p2, and p are the stresses in the diaphragm plate derived in accordance with H.6.2 fyp is 
the nominal yield strength of the diaphragm plate. 

Not more than one such opening should be positioned in a single plate panel. 
c) Stiffened openings should: 

- be framed on all sides by stiffeners; 
- have circular corners of radius at least one-quarter of the least dimension of the hole, 

with no re-entrant corners; 
- be positioned such that the distance of any edge from an adjacent wall of the box is at 

least 0.7 times the maximum dimension of the hole parallel to the wall, plus the distance 
from the wall to the tips of any cut-outs in the diaphragm for longitudinal stiffeners (see 
Fig. I.21), unless the adjacent plate is designed for secondary in-plane stresses. 

d) Cut-outs for longitudinal stiffeners should be in accordance with H.2.7(c). 
 

H.3 Loading on diaphragms 

 
H.3.1 Derivation 

 
The load effects in diaphragms and associated parts of box girders should be derived from 

global analysis undertaken in accordance with 5.2 of ENV 1993-2. The design methods of H.5 
and H.6 use strength provisions that are compatible only with the assumed methods of stress 
derivation contained therein. Stresses derived by finite element analyses should not be substituted 
directly for these derived stresses. 
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Figure I.21. Openings in stiffened diaphragms [Fig. H.2] 
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H.3.2 Effects to be considered 
 

Diaphragms should be designed to resist, with due account being taken of any lack of symmetry 
in the cross section or in the bearing arrangement, the combined effects of the following. 

a) All externally applied loads and the associated bearing reactions. 
b) Changes in bearing reactions and web shears due to: 

– creep, shrinkage and differential temperature; 
– settlement and other movement of supports. 

c) Errors in installation of bearings, comprising: 
– bearing misalignment in plan; 
– errors in level of a single bearing, or in the mean levels of more than one bearing at 

any support; 
– bearing inclination; 
– departures from common planarity of twin or multiple bearings. 

d) Changes in longitudinal slope of box flanges at the diaphragm. 
e) Errors of longitudinal camber in continuous construction. Allowance for this may be made 

by assuming, at the bearings, a vertical displacement of a support relative to two adjacent 
supports of 1/5000 times the sum of the adjacent spans. 

f) Out-of-plane moments due to any or all of the following, as appropriate: 
– longitudinal movements of the bridge; 
– changes in slope of the bridge; 
– eccentricity due to bearing misalignment along the span or due to the shape of the 

bearing; the combined eccentricity for these may be taken as: 
  - half the width of the flat bearing surface plus 10 mm for flat topped rocker bearing 

in contact with flat bearing surface; or 
  - 3 mm for radiused upper bearing resting on flat or radiused lower part; 
  - l0 mm for flat upper bearing resting on radiused lower part. 

– interconnection between deck and diaphragm stiffeners; 
– any intended eccentricity of the centroidal axes of the effective section of the bearing 

stiffeners with respect to the diaphragm plate. 
 
 
 

H.4 Effective sections 

 
H.4.1 General 

 
For determining the stresses in a diaphragm, the effective elastic section modulus and effective 
area of a vertical cross-section, and the effective vertical and horizontal shear areas, should be 
derived in accordance with H.4.2 and H.4.3. For determining the stresses in stiffeners, their 
effective sections shall be derived in accordance with H.4.4 or H.4.5, as appropriate. In H.4.2 and 
H.4.3 the references to transverse tension and compression apply to directions normal to the 
longitudinal axis of the girder. 
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H.4.2 Vertical sections 
 

The determination of the effective area Ae and the effective section modulus Ze of a vertical cross-
section of a diaphragm, should be based on effective areas of box flanges and diaphragm plate as 
given in H.4.2.2 to H.4.2.5. 

 
In calculating an effective area of a box flange, an effective width we should be determined 
separately for each side of the diaphragm and should not exceed any of the following: 

a) one-quarter of the distance of the section under consideration from the nearest web/flange 
junction; 

b) half the distance to an adjacent diaphragm or cross beam for any flange in transverse 
tension, or for a composite flange in transverse compression; 

c) outside an end diaphragm, the actual width of plate provided; 
d) 15tff for a non-composite flange in transverse compression. This limit may be increased to 

one-quarter of the distance to an adjacent diaphragm or cross beam provided that the 
transverse compressive stress (using the increased width) does not exceed the lesser of: 

- one-quarter of the longitudinal compressive strength of the flange; 

- E
b
t5.0
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
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where 
tf is the thickness of the flange plate; f = (235/fyf)0.5; fy is the nominal yield strength 
of the flange plate; b is the spacing of the longitudinal flange stiffeners or the 
distance between box webs for an unstiffened flange. 

 
The effective area of a box flange should be determined as follows 

a) The effective area of steel plate on each side of the diaphragm should be taken as: Kctfwe 
where 

- tf is the flange thickness 
- we is the effective width on the appropriate side of the diaphragm derived from H.4.2.2 
- Kc is a coefficient taken as 1.0, except in the case of a non-composite flange in 

transverse compression with an effective width greater than 15tff when the value of 
Kc should be obtained from Fig. I.22 with the dimension a taken as the spacing of 
longitudinal flange stiffeners and dimension b taken as the distance from the 
diaphragm to an adjacent cross beam or diaphragm. In using Fig. I.22, the restrained 
curve should be used for diaphragms at internal supports of continuous beams and the 
unrestrained curve for diaphragms at end supports 

b) Any transverse flange stiffeners within the effective width should be ignored. 
c) In composite construction, the effective flange area may include the area of steel 

reinforcement within the total effective width, and, if subjected to transverse compression, 
may also include the transformed area of concrete within the total effective width. 
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NOTE: The value of Kc to be used is the higher of the values obtained using either: 

(a) curve 1 or 2 as relevant, with  = b/(tff) or 
(b) curve 3, with  = a/(tff), where a is the panel dimension in the direction of stress 

considered; b is the panel dimension normal to the direction of stress. 
(a) will always give the higher value for Kc when a/b   0.5. For a/b < 0.5, (a) or (b) may 
give a higher value. 

 

Figure I.22. Coefficient Kc for panels under direct compression [Fig. H.3] 
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Holes within the vertical section of a diaphragm should be deducted. When a stiffened opening is 
provided, diaphragm plating extending within the framing stiffeners by more than 15tff should 
be ignored. 

 
In the case of box girders with inclined webs, no part of the webs should be included in the 
vertical section of a diaphragm. 

 
H.4.3 Shear area 
The effective vertical and horizontal shear areas Ave and Ahe should be taken as the net areas of a 
vertical and horizontal cross section, respectively, of diaphragm plating only. 

 
H.4.4 Diaphragm stiffeners 
The effective section of a stiffener on a diaphragm should be taken to comprise the stiffener with 
widths of diaphragm plate on each side of the stiffener where available, not exceeding the lesser 
of: 

a) half the distance from the stiffener to an adjacent stiffener or to the wall of the box; or 
b) l5p times the thickness of the diaphragm plate. 

Additionally, for a bearing stiffener, the effective width of plate assumed on the side towards 
the web should not exceed half the distance from the stiffener to the web/bottom flange junction. 
The sectional area of discontinuous diaphragm stiffeners should be ignored. 

 
H.4.5 Diaphragm/web junction 
The effective section of this part should be taken to comprise both of the following: 

a) a width of web plating each side of the diaphragm (where available) of up to 16 times the 
web thickness; 

b) the area of a stiffener, together with a width of diaphragm plate equal to 25tp, when there 
is a stiffener on the diaphragm parallel to the web within 25tp of the web, or a width of 
diaphragm plate equal to 15tpp when there is no stiffener parallel to and within 25tp of the 
web, where tp is are the thickness of the diaphragm plate. 

 
H.5 Unstiffened diaphragms 

 
H.5.2 Reference values of in-plane stresses 

 
The stresses in an unstiffened diaphragm, resulting from the load effects given in H.3, should be 
determined at the reference point indicated in Fig. I.23, in accordance with H.5.2.2 to H.5.2.4, for 
each of the appropriate reference stresses required. 
The reference value of the in-plane vertical stress Rl should be taken as follows: 

a) for a diaphragm with a single central bearing: 
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b) for a diaphragm with a pair of twin symmetrical bearings: 
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where 
Rv is the total vertical load transmitted by the diaphragm to one bearing (including the 

effects of torque on twin bearings) 
Tb is the torsional reaction at a single central bearing 
j is the width of contact of the bearing pad plus 1.5 times the thickness of the bottom 

flange at each end if available (see Fig. I.20) 
wh is the sum of the widths of any cut-outs for stiffeners within the width j at the level 

immediately above the flange. 
tp is the thickness of the diaphragm plate 
Iyp is the second moment of area of the diaphragm plate of width j excluding cut-outs, 

about the Y-axis (see Fig. I.20) 
e is the eccentricity of bearing reaction along the span, which should include the effects 

of: 
- movements of the beam relative to the bearing due to changes in temperature; 
- changes in the point or line of contact at the spherical or cylindrical surface of a 

bearing due to slope of the beam when deflected by load; 
- uneven seating which may occur on a flat bearing surface; 
- inaccuracy which may occur in positioning of the beam relative to the bearing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.23. Reference point and notation for unstiffened diaphragms [Fig. H.4] 
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The reference value of the in-plane horizontal stress R2 should be taken as: 
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where 
 
Kp is a factor to allow for the effects of boundary shears and should be taken as 2.0 in the 

absence of any special analysis; 
Rv  is the total vertical force transmitted by the diaphragm to the bearings; 
Qfv is the vertical force transmitted to the diaphragm by the portion of the bottom flange 

over a width f  when there is a change of flange slope; 

f  is the horizontal distance from the reference point to the nearest edge of the bottom 
flange; 

B is as defined in H.2.7; 
T is the torque transmitted to the diaphragm in shear through the box walls and from 

cross beam and/or cantilever loading; 
xR is the distance parallel to the bottom flange from the reference point to the web mid-

point (see Fig. I.23); 
Ze and Ae are the effective section modulus and the effective area respectively of the 

diaphragm and flanges at the vertical cross section through the reference point, derived 
in accordance with H.4.2; 

b is the inclination of the box web to the vertical. 
 
 

a) Except as required by (b), the reference value of the in-plane shear stress R should be taken as 
follows: 
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where 
 
Rv, Qfv and T are as defined above; 
B is as defined in H.2.7; 
Qh is the shear force due to transverse horizontal loads on the bridge transmitted from the 

top flange to the diaphragm; 
Avea is the minimum value of the effective vertical shear area, as given in H.4.3, for any 

section of diaphragm plating taken between the web and a point j/4 inside the outer 
edge of the bearing (see Fig. I.23); 

j is as defined above; 
Ahe is the effective horizontal shear area, as given in H.4.3 for the section of diaphragm 

plating through the reference point. 
b) In addition, in the case of diaphragms on twin symmetrical bearings where there is a 

change in slope of the bottom flange, an alternative value Rf should be derived from: 
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where 
T is as defined above; 
Qbv is the total vertical force transmitted to the diaphragm by the portion of the bottom 

flange between the inner edges of the bearings when there is a change in flange slope; 
c is the distance between centres of bearings; 
Aveb is the minimum value of the effective vertical shear area, as given in H.4.3, for any 

section of diaphragm plating taken within a distance R  from the inner edge of a 
bearing (i.e. towards the diaphragm centreline) and a distance j/4 inside the same inner 
edge of the bearing (see Fig. I.23); 

R  is as defined in Fig. I.23. 
This value Rf should be adopted if it exceeds the value of R determined in (a). 
 
 

H.5.3 Buckling coefficient 
 

In checking the adequacy of an unstiffened plate diaphragm, a coefficient K is required which is 
given by: 

K = K1K2K3K4 
where 
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D, Bp, B and b (in degrees) are as defined in Fig. I.23; 
j is as defined above; 
f = 0.55 when D/B ≤ 0.7; 
 = 0.86 when D/B   1.5 with intermediate values found by linear interpolation 

b  = j/2 for single central bearings, or 
 = c for twin bearings 
Rv and T are as defined above 
c is the distance between centres of bearings 
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Wp is the total uniformly distributed load applied to the top of the diaphragm 
P is any local load applied to the top of a diaphragm 
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w is the actual width of the load P plus an allowance for the dispersal through a concrete 
flange ac an angle of 45° to the vertical, and through a steel flange at an angle of 60° to 
the vertical. 

 
H.5.4 Yielding of diaphragm plate 

 

The value of Rl and 2
R

2
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where 
Rl, R2 and R are the reference values of stress and T are as defined above 
Rv and K are as derived in H.5.3 
D is as defined in Fig. I.23 
tp and fyp are, respectively, the thickness and nominal yield strength of the diaphragm plate. 
 

H.5.5 Buckling of diaphragm plate 

The value of bv TR +  should not exceed: 
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where 
b  and K are as derived in H.5.3 

tp is the thickness of the diaphragm plate 
D is as defined in Fig. I.23 
Rv and T are as defined above. 
 
 

H.6 Stiffened diaphragms 

 
H.6.1 General 

 
Diaphragms in accordance with H.2.1 to H.2.6 and H.2.8 and stiffened by an orthogonal system 
of stiffeners, generally as indicated in Fig I.20, should be designed such that the diaphragm plate 
meets the yield criterion of H.6.4 and the buckling criterion of H.6.5, using the appropriate 
stresses determined from H.6.2. 
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In addition, all types of stiffeners, as defined in (a), (b) and (c) below, should be designed 
such that they meet the yield criterion of H.6.6 and the buckling criterion of H.6.7, using the 
appropriate stresses determined from H.6.3. Web/flange junctions should, additionally, be in 
accordance with H.7.3 and H.7.4. 

Stiffening may consist of (see Fig. I.23): 
a) bearing stiffeners, which span from a box flange immediately above a bearing, to the flange 

at deck level; 
b) stub stiffeners, which are short vertical stiffeners above bearings; 
c) intermediate stiffeners, which may be either primary or secondary. Stiffeners spanning 

between box walls or, if horizontal, between a box web and a bearing stiffener, or between 
bearing stiffeners should be treated as primary. All other stiffeners should be treated as 
secondary. 

 
H.6.2 Stresses in diaphragm plates 

 
Vertical stresses p1 may be neglected with the exception of those due to: 

a) a change in slope of the main girder flange; and 
b) local wheel loads applied above the diaphragm, which should be calculated in accordance 

with 4.4 of ENV 1993-1-5. 
 

Horizontal stresses p2 should be calculated under the action of the following. 
a) The in-plane primary moment M on the diaphragm which should be taken as: 
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where (as shown in Fig. I.24) 
 
Qv is the total vertical component of symmetric shear transmitted into the diaphragm from 

one web 
QT is the vertical component of torsional shear transmitted into the diaphragm from one 

web, given by T/(2B)  
xw is the horizontal distance, from the section under consideration to the mid point of the 

web 
Qc is the vertical component of any cross beam or cantilever shear 
xc is the horizontal distance from the section under consideration to the root of the cross 

beam or cantilever 
Pi is a locally applied deck load between the section under consideration and the web 
xi is the horizontal distance from the section under consideration to the locally applied 

deck load Pi; 
Rv is the total vertical load transmitted to one bearing by the diaphragm 
xb is the distance from the section under consideration to the inner edge of the nearest 

bearing plus j/4 for sections between"uwin bearings, or is zero for all other sections, 
and for diaphragms with a single bearing 

Kp, Qfv, and f  are as defined above 
j is as defined above 
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The horizontal bending stress 2b should be taken as: 

e
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M
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where 
Ze is the effective section modulus of a vertical cross-section of the diaphragm and flanges, at 

the point under consideration, derived in accordance with H.4.2. 
 
b) The horizontal component of girder shear when the webs are inclined. The horizontal stress 

2q from this component should be taken as: 

e

v
q2 A

tanQ 
=  

where 
Qv is as defined in (a) 
Ae is the effective area of a vertical cross section of the diaphragm and flanges, at the point 

under consideration, derived in accordance with H.4.2 
b is the inclination of the box web to the vertical. 
 

The total horizontal stress p2 at the point under consideration should be taken as: 
p2 = 2b + 2q 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I.24. Load effects and notation for stiffened diaphragms [Fig. H.5] 
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Shear stresses should be calculated under the action of the shear flow q at the section of the 
diaphragm under consideration. This shear flow q should be taken as constant over the net depth 
or width of the diaphragm, and as follows: 

a) In sections between a box web and an outer bearing stiffener: 

e

h

e

icfvTv
B
Q

D
PQQQQ

q +
++++

=   

b) In sections between inner bearing stiffeners where there are twin bearings: 
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c) In sections between pairs of bearing stiffeners above one of a pair of bearings, up to the 
height of longitudinal flange stiffener cut-outs: 
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d) In sections between pairs of bearing stiffeners above a single bearing, up to the height of 
longitudinal flange stiffener cut-outs: 
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where 
Qv, QT, Qc, Pi, Qfv, T, Qh, Qbv and c are defined above 
De and Be are the net depth and width of the diaphragm at the point under consideration 
j and wh are defined above 
ss is the distance between stiffener centroids. 
 
The shear stress p in the sections referred to in above mentioned (a), (b), (c) or (d) should be 

taken as: 

p
p t

q
=  

where tp is the thickness of the diaphragm plate in the panel under consideration. 
 
In sections other than those referred to in above mentioned (a), (b), (c), or (d) p may be 

neglected. 
 

H.6.3 Stresses in diaphragm stiffeners 
 

Vertical stresses in bearing stiffeners 1s in a bearing stiffener should be taken as: 

se

s
s1 A

P
=  

where 
Ps is the total vertical force in the group of bearing stiffeners 
Ase is the effective cross-sectional area of the group of bearing stiffeners, derived in 

accordance with H.4.4.  
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In the absence of openings in the diaphragm between the group of bearing stiffeners and the 
adjacent web, the vertical force Ps may be assumed to vary linearly from the value of the reaction 
at the bearing to the value of any reaction transmitted from the deck to the top of the bearing 
stiffener. 

If there are any openings in the diaphragm between the group of bearing stiffeners and the 
adjacent web, no variation of load over the depth of such openings should be assumed. The 
variation over the remaining parts of the diaphragm should be assumed to be linear of constant 
slope. In the case of a diaphragm above a single bearing, an additional vertical stress 1sT in a 
bearing stiffener should be taken as: 

yse

s
sT1 I

xT
=  

where 
Ts is the value of the moment in the plane of the diaphragm on the group of bearing 

stiffeners 
x is the horizontal distance of the stiffener under consideration from the centroidal axis, 

normal to the plane of the diaphragm, of the stiffener group (see Fig. I.20) 
Iyse is the effective second moment of area of the stiffener group about the same centroidal 

axis, derived in accordance with H.4.4. 
Where stub stiffeners are used, the stress calculated as above may be reduced locally by 

including the area of such stiffeners, provided their connections to the diaphragm plate are 
adequate to transfer their share of the bearing reaction. 

 
The bending stresses in bearing stiffeners bs in a bearing stiffener due to an out-of-plane moment 
should be taken as: 

xse

s
bs I

yM
=  

where 
Ms is the proportion of the out-of-plane moment carried by the group of bearing stiffeners 
y is the distance of the extreme fibre of the stiffener under consideration from the 

centroidal axis, parallel to the plane of the diaphragm, of the stiffener group (see Fig. 
I.20) 

Ixse is the effective second moment of area of the stiffener group about the same centroidal 
axis, derived in accordance with H.4.4. 

 
A proportion of the out-of-plane moment may be assumed to be carried by the flange 

longitudinal stiffeners, provided due account is taken of this in their design. Stub stiffeners should 
not be considered to carry any part of the out-of-plane moment carried by a bearing stiffener 
group unless they have an adequate out-of-plane shear connection to the bearing stiffeners and/or 
the box walls. 
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The equivalent axial stress for buckling check se to be used in the buckling check of all 
stiffeners, should be taken as the maximum value within the middle-third of the length s , of the 
stiffener, calculated from: 
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where, for all stiffeners, 
 
Ase is the effective cross-sectional area of the stiffener derived in accordance with H.4.4 

s  is the length of the stiffener between points of effective restraint 
tp is the thickness of the diaphragm plate 
ks is obtained from Fig. I.25 using the slenderness parameter  = s /rses, 
rse is the radius of gyration of the effective section of the stiffener about its centroidal axis 

parallel to the plane of the diaphragm, derived in accordance with H.4.4 
s = (235/fys)0.5 
fy is the nominal yield strength of the stiffener. 
As is the sum of the areas of all stiffeners which intersect the stiffeners being designed, 

within the length s  not including any adjacent diaphragm plate 
p2 is derived above, for the level being considered, and taken as positive when 

compressive 
2s is the average value of p2 within the middle-third of the length s  
a,  q, max, h and hh are defined as follows for the appropriate type of stiffener. 
 

(a) For bearing stiffeners: 
a  = 1s + 1sT, 1s and 1sT are as derive above 
q  = 2s 
max is the maximum spacing of vertical stiffeners which would ensure the adequacy 

of the diaphragm plate and any horizontal stiffeners, and may conservatively be 
taken as the actual spacing of vertical stiffeners 

h and hh are taken as zero. 
 

(b) For all intermediate stiffeners: 
max is one-half of the sum of the panel widths on each side of the stiffener. Where the 

widths vary over the length s , the average value of the middle-third should be 
used 

 is the average shear stress in the panels on either side of the stiffener 
h is zero except in the case of the stiffeners framing openings where h is the shear 

stress which would occur in the plating adjacent to the stiffener if the opening 
had been fully plated 

hh is zero except in the case of the stiffeners framing openings where hh is the 
dimension of the opening parallel to the stiffener. 
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Figure I.25. Parameters for the design of diaphragm stiffeners [Fig. H.6] 
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(c) For horizontal intermediate stiffeners only: 
a  = p2 
q  =  

 
(d) For vertical intermediate stiffeners only: 

a  = 0 

12
min.b2max.b2

s2q
+

++=  

2b max and 2b min are the maximum and minimum values of 2b derived above, within 
the length s  and taken as positive when compressive. 

 
H.6.4 Yielding of diaphragm plate 

 
Plate panels between stiffeners, or between stiffeners and the box walls, should be designed such 
that at all points in every panel: 
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where 
p1 = 1s + q1sT for parts of plate panels forming part of the effective section of any 

bearing stiffener, or is the vertical in-plane stress due to local deck loads and change in 
flange slope, if relevant, for all remaining parts of plate panels 

1s  is defined above 
1sT  is as derived above, but with the value of x in that clause taken as the dimension from 

the centroidal axis to the extreme fibre of the effective section of the stiffener group 
p2 is defined above 
p is defined above 
fyp is the nominal yield strength of the diaphragm plate. 
 

H.6.5 Buckling of diaphragm plate 
 

Plate panels need not be checked for buckling provided that: 
a) the cross section of the girder is nominally rectangular; 
b) the ratio of the depth of the diaphragm D to the minimum plate thickness tp is less than 100 

p 
c) the overhang L (see Fig. I.23 or I.24) from the outer edge of the bearing to the box web is 

less than D/2; 
d) stiffening is limited to the bearing stiffeners themselves, and any member providing 

continuity of cross beam or cantilever flanges through the diaphragm; 
e) there is no change in flange slope at the diaphragm. 
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H.6.6 Yielding of diaphragm stiffeners 
 

A bearing stiffener section should be designed such that, at any point along its length: 

m

ys
bssT1s1

f


++  

where 
1s and 1sT are as defined above 
bs  is as defined above 
fys is the nominal yield strength of the stiffener. 
 
The bearing stress at the point of contact with a flange should be verified in accordance with 

4.4.6(6) of ENV 1993-1-5. 
 

H.6.7 Buckling of diaphragm stiffeners 
 

The stiffener section should be such that, at any point within the middle-third of the length of the 
stiffener: 
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where 
se  is as defined above 
bs  is as defined above for a bearing stiffener, or is taken as zero for an intermediate 

stiffener 
sf  is obtained from Fig. I.25 using the slenderness parameter  = s /rses, 

s  is the length of the stiffener between points of effective restraint 
rse is the radius of gyration of the effective section of the stiffener about its centroidal axis 

parallel to the plane of the diaphragm, derived in accordance with H.4.4. 
 

H.7 Diaphragm/web junctions 

 
The diaphragm/web junction should be designed as a stiffener to the box web, spanning between 
box flanges, unsupported in the plane of the diaphragm, and with effective section derived as in 
H.4.5. 

 
H.7.2 Loading effects to be considered 

 
The junction should withstand the effects of the following. 

a) All loads transmitted to the diaphragm from the cross beams and/or cantilevers in the plane 
of the diaphragm. Such loads should be assumed to be applied at the centroidal axis of the 
effective section, and to vary linearly from a maximum at the top of the junction, to zero at 
the bottom. 
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b) Any forces resulting from tension field action in the adjacent web panels. Such forces 
should be assumed to be applied in the plane of the box web, and to be constant over the 
height of the junction. 

c) An equivalent axial force representing the destabilizing influence of the web. This force 
should be assumed to be applied at the centroidal axis of the effective section, and to be 
constant over the height of the junction. 

 
H.7.3 Strength of diaphragm/web junction 

 
The maximum stress at any point on the cross section of the junction, at any section in its length, 
should not exceed fys/m, where fys is the nominal yield strength of the junction section. 
The effective junction section should be such that: 
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where 
P and M  are, respectively, the maximum force on the effective junction section and the 

maximum moment about the centroidal axis parallel to the web due to all the effects 
specified in H.7.2, within the middle-third of the length of the junction 

Ase is the effective area of the junction section (see H.4.5) 
Zse is the lowest section modulus of the effective junction section about the centroidal axis 

parallel to the web (see H.4.5) 
sf  is obtained from Fig. I.25 using the slenderness parameter  = s /rses, 

s  is the total length of the junction section 
rse is the radius of gyration of the effective junction section about its centroidal axis 

parallel to the web, derived in accordance with H.4.5 
fy, is the nominal yield strength of the junction section. 
 

H.7.4 Junction restraint provided by diaphragm stiffeners 
 

Diaphragm/web junctions should be designed in accordance with H.7.1 to H.7.3, except that full 
width horizontal stiffeners in the diaphragm may be assumed to offer restraint to the junction in 
the plane of the diaphragm, provided that the equivalent axial stress se in such stiffeners is 
increased by an amount equal to: 

senA
P025.0  

where 
P is as defined in H.7.3 
n is the number of full width horizontal stiffeners 
Ase is the effective area of the horizontal stiffeners, derived in accordance with H.4.4. 
 
In this case s  in H.7.3 may be taken as the distance between such stiffeners. 
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H.8 Continuity of cross beams and cantilevers 

 
When continuity of cross beams and cantilevers is provided in the plane of a diaphragm, in 
accordance with H.2.3, that portion within the box walls should be in accordance with the 
following. 

a) The force in the member providing continuity to the bottom flange of the transverse 
member should be taken as the moment in the transverse member at the box wall divided by 
the distance between the mid-plane of the top and bottom flanges of the member. If the 
force is different at the two box walls a linear variation along the length may be assumed. 

b) If the member providing the continuity in (a) is also required as a horizontal stiffener for a 
diaphragm designed in accordance with H.6, it should be designed to withstand, in addition 
to the load given in (a), an axial force equal to Asese. 
where 

Ase is the effective cross-sectional area of the continuity member derived in accordance 
with H.4.4 

se is as specified above. 
c) The member providing the continuity in (a) should be designed as a compression member 

in accordance with 5.5.1 of ENV1993-1-1, and should be assumed to be unrestrained out of 
the plane of the diaphragm unless provided with effective intermediate restraint. If these 
restraints are provided by bearing or primary vertical diaphragm stiffeners, such stiffeners 
should each be designed to resist, in addition to all other forces given in H.I.3, a force equal 
to 2.5% of the maximum axial load in the continuity member including that given in (b), if 
appropriate. This force should be applied, out of the plane of the diaphragm, at the point of 
intersection of the continuity member and the stiffener providing the restraint. The stiffener 
should be designed to satisfy the criterion: 

mys

2bbs

s

se 1
ff 


+

+




 

where 
b2 is the bending stress induced in the stiffener by the above force, taken as the 

maximum value within the middle-third of the lengths of the stiffener 
bs, sf , se, and fys are as defined in H.I.7. 
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Planar plated structures without transverse loading 
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II.1 General 
Definitions 

 
For the purpose of this standard, the following definitions apply: 

elastic critical stress: Stress at which an elastic structure without imperfections becomes 
unstable according to small deformation theory. 

gross cross-section: The total cross-sectional area of a member but excluding longitudinal 
stiffeners that are not continuous, battens and splice material. 

effective cross-section: The gross cross-section reduced for the effects of plate buckling and 
shear lag. 

membrane stress: Stress at mid-depth of the plate. 
plated structure: A structure that is built up from nominally flat plates which are welded 

together. The plates may be stiffened or unstiffened. 
stiffener: A plate or rolled section attached to a plate with the purpose of delaying or 

preventing buckling of the plate or reinforcing it against local loads. A stiffener is 
denoted: 

- longitudinal if its direction is parallel to that of the member; 
- transverse if its axis is perpendicular to that of the member. 

stiffened plate: Plate with transverse and/or longitudinal stiffeners. 
subpanel: Unstiffened plate surrounded by flanges or stiffeners. 
 

Symbols 

 
Complementary to those given in ENV 1993-1-l, the following symbols are used: 
As1 is the total area of all the longitudinal stiffeners within the flange width b0; 
Ast is the gross cross sectional area of one transverse stiffener; 
Aeff is the effective cross-section area; 
b is the width of the plate; 
bw is the clear width between welds; 
beff effective width for elastic shear lag; 
FSd is the design transverse force; 
fyd is the design value of the yield strength fy/M1. Further index f and w indicate flange 

and web, respectively; 
hw is the clear web depth between flanges; 
Leff is the effective length for resistance to transverse forces; 
Mf.Rd is the design plastic moment resistance of a cross-section consisting of the flanges 

only; 
Mpl.Rd is the plastic resistance of the cross-section (irrespective of cross-section class); 
MSd is the design bending moment; 
NSd is the design axial force; 
t is the thickness of the plate; 
teff is the effective thickness for shear buckling; 
VSd is the design shear force; 
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Weff is the effective section modulus; 
b is the effective width factor for elastic shear lag; 
 is the relation between resistance in shear and yield strength in tension; 
M,ser is the partial factor for resistance at serviceability states. 

II.2 Basis of design 
Modelling for elastic global analysis 

 
The effects of shear lag and of local buckling on the stiffness shall be taken into account if this 
significantly influences the global analysis. The effects of shear lag of flanges in elastic global 
analysis may be taken into account by the use of an effective width. For simplicity this effective 
width may be assumed to be uniform over the length of the beam. 

For each span of a beam the effective width of flanges should be taken as the lesser of the full 
width and L/8 per side of the web, where L is the span or twice the distance from the support to 
the end, for a cantilever. For the global analysis the effect of plate buckling on the stiffness may 
be ignored in normal plated structures. If the effective cross-sectional area according to 4.2 of an 
element in compression is less than 0,5 times the gross cross-sectional area, the reduction of the 
stiffness due to plate buckling should be considered. 

 
Verification of cross-sectional resistance 

 
General 

 
At ultimate limit states the verification of cross-sectional resistance shall take the following 
effects into account: 

a) longitudinal stresses x,Ed considering shear lag and plate buckling 
b) transverse stresses z,Ed considering their distribution and plate buckling 
c) shear stresses Ed considering plate buckling 
d) combined effects of a), b) and c) acting in the same cross-section where relevant. 

The verification should in general be performed as follows 
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where: 
Aeff is the effective cross-section area; 
b is the width of the plate (for a web the clear distance between flanges); 
eN is the shift in the position of neutral axis; 
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FSd is the design transverse force; 
fyd is the design yield strength fy/Ml; 
Leff is the effective length for resistance to transverse forces; 
MSd is the design bending moment; 
NSd is the design axial force; 
t is the thickness of the plate; 
teff is the effective thickness for shear buckling; 
VSd is the design shear force including shear from torque; 
Weff is the effective section modulus. 
 

Longitudinal stresses at ultimate limit states 
 

In calculating longitudinal stresses, account should be taken of the effects of shear lag and plate 
buckling by the use of an effective width. The effective area Aeff should normally be determined 
assuming a cross-section subject only to stresses due to axial compression NSd. For non-
symmetrical cross-sections, the possible shift eN of the centroid of the effective area Aeff relative 
to the centre of gravity of the gross section, see Fig. II.1. The resulting additional moment should 
be taken into account in the cross-section verification using expression /II.1/. The effective 
section modulus Weff should normally be determined assuming a cross-section subject only to 
bending stresses due to MSd, see Fig. II.2. 

As an alternative the effective cross-section may be determined for the resulting state of stress 
from NSd and MSd acting simultaneously. The effects of eN should be taken into account. 

The stress in a flange should be calculated using the elastic section modulus with reference to 
midline of the flange. Hybrid girders may have flange material with yield strength fyf up to 2 fyw 
provided that: 

a) the increase of flange stresses caused by yielding of the web is taken into account 
b) fyf (rather than fyw) is used in determining the effective area of the web. 

In hybrid girders, the increase of deformations due to yielding of the web may be ignored. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure II.1. Class 4 cross-sections [Fig. 2.1] Figure II.2. Class 4 cross-sections [Fig. 2.2] 
 – axial force – bending moment 
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Verification methods for interaction 
 

Provided that 3 does not exceed 0,5 the design resistance to bending moment and axial force 
need not be reduced to allow for the shear force. If 3 is more than 0,5 the combined effect of 
bending and shear in a web of an I or box girder should satisfy: 
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where: 
Mf.Rd is the design plastic moment resistance of a cross-section consisting only of the 

flanges; 
Mpl.Rd is the plastic resistance of the cross-section (irrespective of cross-section class). 
 
The above criterion should be fulfilled in every cross-section, but it need not be checked 

closer to an interior support than hw/2. The plastic resistance Mf.Rd of the cross-section consisting 
of the flanges only should be taken as the design yield strength times the effective area of the 
smaller flange times the distance between the centroids of the flanges. 

If an axial force NSd is applied, then Mpl.Rd should be replaced by the reduced plastic 
resistance moment MN.Rd according to 5.4.8.1 (2) of ENV 1993-1-1:1992 and MfRd should be 
reduced according to 4.3.4(2). If the axial force is so large that the whole web is in compression 
the above mentioned plastic resistance Mf.Rd should be applied. 

A flange in a box girder should be verified using (2.4) taking MfRd = 0 and Ed as the average 
shear stress in the flange but not less than half the maximum shear stress in the flange. In addition 
the subpanels should be checked using the average shear stress within the subpanel calculated 
using teff,w determined for shear buckling of the subpanel, assuming the longitudinal stiffeners to 
be rigid according to 4.3.3. 

If the girder is subjected to a concentrated transverse force in combination with bending and 
axial force, the resistance should be verified using the following interaction expression: 

 4,18,0 12 +  /II.5/ 

Stress verification for serviceability and fatigue limit states 
 

The verification of the section for stresses at serviceability and fatigue limit states should be 
based on the effective cross-section taking elastic shear lag into account. 

For biaxial states of stress the effective stress e for verification of yielding should be 
determined using the following expression: 
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Stresses should be entered with signs, tension is positive. 
The effective stress e,Ed should satisfy: 

 ser,MyEd,e f   /II.7/ 

where: 
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M,ser is the partial factor for resistance at serviceability limit states. 

II.3 Effects of shear lag on stress distribution and resistance 
 

Effective width for shear lag at serviceability and fatigue limit states 

 
The effective width beff for elastic shear lag should be determined from: 

 
The effective width factor b should be obtained from table II.1 using values of  determined 

using: 

  = 0b0/Le /II.8/ 

with: 

 0 = (1 + As1/b0t)0,5 

in which As1 is the area of all longitudinal stiffeners within the width b0 and all other symbols 
are as defined in Fig. II.4. 

Provided that no span is longer than 1,5 times an adjacent span and no cantilever is longer 
than half the adjacent span the effective lengths Le may be determined from Fig. II.3. In other 
cases Le should be an estimate of the distance between adjacent points of zero bending moment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.3. Effective length Le for continuous beam and distribution of effective width. [Fig. 3.1] 
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Figure II.4. Definitions of notations for shear lag. [Fig. 3.2] 

Table II.1 Effective width factor b. 
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Stress distribution in case of shear lag 

 
The transverse distribution of stresses due to shear lag should be obtained from Fig. II.5. 
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Figure II.30 Transverse distribution of stresses due to shear lag. [Fig. 3.3] 

 
In-plane load introduction 

 
The elastic stress distribution in a stiffened or unstiffened plate due to local introduction of in-
plane forces, see Fig. II.6, should be determined from: 

 ( )0,steffSdEd,z AtbF +=  /II.9/ 

with: 
( )( ) 5,02

eeeff nsz1sb       +=  

( ) 5,0
1,st tA878,01636,0n     +=  

ffe t2ls +=  
where: 
Ast,l is the gross cross-sectional area of stiffeners per unit width; 
Ast,0 is the gross cross sectional area of the stiffeners directly loaded taking into account a 

load spread 1:1 through the thickness of the flange. 
 

Shear lag effects at ultimate limit state 

 
At ultimate limit states the effect of shear lag and plate buckling should be taken into account by 
using an effective area Aeff given by: 



 267 

 = eff,ceff AA  but eff,ceff AA   /II.10/ 

where: 

Ac,eff is the effective area for a compression flange with respect to plate buckling from 4.2 
 is the effective width factor for elastic shear lag from 3.2 
 is the ratio defined in 3.2(2) 

Expression (II.10) is also applicable for flanges in tension in which case Ac,eff should be 
replaced by the gross area of the tension flange. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.6 Transverse distribution of stresses due to shear lag. [Fig. 3.4] 

 

II.4 Resistance to plate buckling 
 

Buckling of plates in compression 

 
Effective cross-section of Class 4 cross-sections without longitudinal stiffeners 

 
The effective cross-section properties of Class 4 cross-sections without longitudinal stiffeners 
should be based on the effective areas of the compression elements and their locations within the 
effective cross-section. 

The effective areas and locations of flat compression elements should be obtained using Table 
II.2 for internal elements and Table II.3 for outstand elements. The effective area of a plate or part 
of it in compression with area Ac should be obtained from: 
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 Ac,eff =  Ac /II.11/ 

where: 
 is the reduction factor for plate buckling. 

As an approximation, the reduction factor p may be obtained as follows: 

 when 673,0p   1=  /II.12/ 

 when 673,0p   ( ) 2
pp 22,0 −=  /II.13/ 

with: 

 


=













=

k4,28

tbf p
5,0

cr

y
p   /II.14/ 

bp is the appropriate width as follows (for definitions, see table 5.3.1 of ENV 1993-1-
1:1992) 

bw for webs; 
b for internal flange elements (except RHS); 
b - 3 t for flanges of RHS; 
c for outstand flanges; 
(b + h)/2 for equal-leg angles; 
h or (b + h)/2 for unequal-leg angles; 
k is the buckling factor corresponding to the stress ratio  from table II.2 or 

table II.3 as appropriate; 
t is the thickness; 
cr is the elastic critical plate buckling stress. 

 
For flange elements, the stress ratio  used in table II.2 or table II.3 should be based on the 

properties of the gross cross-section, reduced for shear lag according to 3.5 if relevant. 
For web elements the stress ratio  used in table II.2 should be obtained using the effective 

area of the compression flange and the gross area of the web. 
The plate slenderness p  of an element may be replaced by: 

 ydEd,compred,p f=  /II.15/ 

where: 

com.Ed is the maximum design compressive stress in the element determined using effective 
areas of all the compression elements. 

This procedure generally requires an iterative calculation in which  is determined again at 
each step from the stresses calculated on the effective cross-section defined at the end of the 
previous step. 
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However, when verifying the design buckling resistance of a member using 5.5 of ENV 1993-
1-1, the plate slenderness p  should always be used. 

 

Table II.2 Internal compression elements. 

 
 

Stress distribution 
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Table II.3 Outstand compression elements. 

 
Stress distribution 

(compression positive) 
Effective width beff 

 

01   

 

cbeff =  

 

0  

 

)1/(cbb ceff −==  

12 / =  1 0 –1 11 −  

Buckling factor k  0,43 0,57 0,85 207,021,057,0 +−  

 

 
 

01   

 

cbeff =  

 

 
 

0  

 

)1/(cbb ceff −==  

12 / =  1 01   0 10 −  –1 

Buckling factor k  0,43 )34,0/(578,0 +  1,70 21,17570,1 +−  23,8 
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Effective cross-section of Class 4 cross-sections with longitudinal stiffeners 
 

The effective cross-section properties of class 4 cross-sections with longitudinal stiffeners should 
be based on the effective areas of the compression elements. As a first step the effective cross-
sectional areas Aeff should be determined by a reduction factor pan for each subpanel to account 
for plate buckling between the stiffeners. In a second step the plate should be considered as an 
equivalent orthotropic plate and a reduction factor c for overall plate buckling of the equivalent 
plate should be determined. 

The area of each subpanel between the stiffeners or panels forming the stiffener should be 
reduced by a reduction factor pan to account for possible plate buckling where pan is taken as 
equal to the value of  determined in accordance with 4.2.1 (3) 

 
Plates with multiple longitudinal stiffeners 
The elastic critical plate buckling stress of the equivalent plate is: 

 Ep,p,cr k =   /II.16/ 

where: 
 
k,p is the buckling coefficient ignoring buckling between stiffeners obtained from 

appropriate charts for buckling coefficients, by relevant computer simulations or 
according to annex Al.l 

b, t are defined in Fig. II.32 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.7 Notations for longitudinally stiffened plates. [Fig. 4.1] 

The relative plate slenderness p  of the equivalent plate is defined as: 

 
p,cr

yA
p

f



=        with 

A
Aeff

A =  /II.17/ 
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where: 

A is the gross area of the compressed part of the stiffened plate; 
Aeff is the effective area of the same part of the plate taking plate buckling of subpanels 

into account. 

The elastic critical column buckling stress cr,c of the equivalent plate should be taken as the 
buckling stress of the same plate with the supports along the longitudinal edges removed. For 
uniform compression cr,c may be obtained using: 

 
2

x
2

c,cr
Aa

EI
=  /II.18/ 

where: 

Ix is the second moment of gross area for bending in the longitudinal direction of the 
stiffened plate 

A stress gradient along the plate may be taken into account by the use of an effective length. 
The relative column slenderness c  of the equivalent plate is defined as: 

 
c,cr

yA
c

f



=  /II.19/ 

The reduction factor c should be obtained from 5.5.1.2(1) of ENV 1993-1-1 where  is 
replaced by: 

 
ei
09,049,0e +=            with  

A
I

i x=  /II.20/ 

where: 
e is the largest distance from the respective centroids of the plating and the one-sided 

stiffener (or of the centroids of either set of stiffeners when on both sides) to the 
neutral axis of the stiffened plate, see Fig. II.7. The factor e accounts for an initial 
bow imperfection of a/500. 

 
The final reduction factor c should be obtained by interpolation between c and  according 

to: 

 ( ) ( ) ccc 2 +−−=  /II.21/ 
where: 

 1
c.cr

p.cr −



=  /II.22/ 

The parameter  should not be taken as less than 0 nor larger than 1. 
Effective cross-sectional area 
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The effective cross-sectional area of the compression zone of the stiffened plate should be taken 
as: 

 cceff,c AA =  /II.23/ 

in which Ac is composed of the effective cross-sectional areas of all the stiffeners and 
subpanels that are fully or partially in the compression zone. 

The area Ac should be obtained from: 

 cceff,c AA =  /II.24/ 

where: 
Asl,eff is the effective cross-section of all longitudinal stiffeners 
bc,pan is the width of the compressed part of each subpanel 
pan is the reduction factor for each subpanel. 

The reduction of the area of the compressed part through c may be taken as a uniform 
reduction retaining the overall geometry. The effective cross-sectional area of the tension zone of 
the stiffened plate element should be taken as the gross area of the tension zone. The effective 
section modulus Weff may be taken as the second moment of area of the effective cross section 
divided by the distance from its centroid to the mid depth of the flange. 

 
Plates with one or two stiffeners in the compression zone 
If the plate has only one or two longitudinal stiffeners the procedure in 4.2.2.3 may be simplified 
by replacing the elastic critical plate buckling stress in 4.2.2.3(2) with the elastic critical stress for 
a fictitious column elastically restrained by the plate. The cross-section of the fictitious column 
should be obtained from 4.2.2.5(2)-(3). The critical stress may be obtained from annex A2. 

The gross cross-section of the fictitious column (for calculation of A and Isl) should be taken 
as the gross area of the stiffener As1 and adjacent parts of the plate. If the subpanel is fully in 
compression, half the width is taken as part of the fictitious column. If the stresses change from 
compression to tension within the subpanel, one third of the compressed part should be taken as 
part of the fictitious column, see Fig. II.8. 

The effective area of the fictitious column should be taken as the effective cross-section of the 
stiffener Asl,eff and the adjacent effective parts of the plate, see Fig. II.8. The slenderness of the 
plate elements in the fictitious column may be determined according to 4.2.1 (6) with com,Ed 
calculated for the gross cross-section of the plate. 

If cf'yd with c according to 4.2.2.3(6) is greater than the average stress in the fictitious 
column c,Ed no further reduction of the effective area of the fictitious column should be made. 
Otherwise the reduction according to expression /II.23/ is replaced by: 

 Ed,ccydceff,c AfA =  /II.25/ 

The reduction mentioned in above should be applied only to the area of the fictitious column. 
No reduction need be applied to other compressed part of the plate, other than that for buckling of 
subpanels. 
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Figure II.8 Notations for plate with single stiffener. [Fig. 4.2] 

Requirements for transverse stiffeners 
In order to form rigid supports for longitudinal stiffeners, transverse stiffeners should satisfy the 
stiffness and strength requirements as given below. The cross-section of the transverse stiffener 
should be taken as including an associated part of plate beff =30t, see Fig. II.15. 

Cut-outs of the stiffeners should be taken into account. The transverse stiffener should be 
treated as a simply supported beam with an initial sinusoidal imperfection w0 equal to s/300, 
where s is the smallest of a1, a2 or b, see Fig. II.9 

 
 
 
 
 
 
 
 
 

Figure II.9 Transverse stiffener. [Fig. 4.3] 

The transverse stiffener should carry the deviation forces from the adjacent compressed 
panels under the assumption that both adjacent transverse stiffeners are rigid and straight. The 
compressed panels and the longitudinal stiffeners are considered to be simply supported at the 
transverse stiffeners. It should be verified that both the following criteria are satisfied: 

– - that the maximum stress in the stiffener should not exceed fyd 
– - that the additional deflection should not exceed b/300 

Both criteria may be assumed to be satisfied provided that the second moment of area Ist of 
the transverse stiffeners is not less than: 
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where: 
emax is the distance of the extreme fibre of the stiffener to the centroid of the stiffener. 
NSd is the largest design compressive force of the adjacent panels but not less than the 

largest compressive stress times half the effective area of the panel including 
stiffeners; 

cr,c, cr,p are defined above. 
 

Requirements for longitudinal stiffeners 
In order to avoid torsional buckling of stiffeners with open class 4 cross-sections the following 
criterion should be satisfied: 

 
2

p
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b
t0,11

I
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



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


  /II.27/ 

where: 
b is the width of plate between stiffeners; 
Ip is the polar second moment of area of the stiffener (excluding the plate) around the 

edge fixed to the plate; 
IT is the torsional constant (St. Venant) for the stiffener without plate; 
t is the thickness of plate between stiffeners. 
 
Webs may have discontinuous longitudinal stiffeners, provided that those are not included in 

the cross section carrying longitudinal stresses. A large trapezoidal stiffener may be considered as 
two separate stiffeners or as one stiffener located at the middle of the stiffener. 

 
Stiffeners at support 
Stiffeners at support should be designed to carry the reaction force together with the possible 
bending moment arising from bearing eccentricity. If the stiffeners are assumed to provide lateral 
restraint to the top flange they should be designed for stiffness and strength in conformity with 
the assumptions in the beam design. 

 
 
 
 
 
 

Buckling of plates in shear 
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Design method 
 

Plates with bw/t greater than 41/ for an unstiffened web, or  k18  for a stiffened web, 
shall be checked for resistance to shear buckling and shall be provided with transverse stiffeners 
at the supports. For notation , see 4.3.3( 1 ) and k see 4.3.3(3). 

For webs with or without stiffeners shear buckling should be taken into account by reducing 
the web thickness to an effective web thickness teff for shear obtained using: 

 teff = teff.w + teff.f /II.28/ 

in which teff.w is a contribution from the web and teff.f is a contribution from the flanges, 
determined according to 4.3.3 and 4.3.4, respectively. For simplicity the contribution from the 
flanges teff.f may be neglected. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.10 Criteria for end-stiffener. [Fig. 4.4] 

Contribution of the web to the effective thickness 
 

For webs with transverse stiffeners at supports only and for webs with intermediate transverse 
and/or longitudinal stiffeners, the contribution of the web to the effective thickness for shear teff.w 
Should be obtained from 

 tt vw,eff =  /II.29/ 

in which v is the effective thickness factor for shear buckling according to Table II.4 or Fig. 
II.11. 

A distinction should be made between: 

a) rigid end posts. This case is also applicable for panels not at the end of the girder and at 
an intermediate support of a continuous girder; 

b) non rigid end posts. 

Table II.4 Effective thickness factor v for shear buckling. 
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w  Rigid end post Non-rigid end post 

 48,0      

08,148,0 w   w48,0   w48,0   

08,1  ( )w7.079,0 +  w48,0   

 =0,70 for S235, S275 and S355 

 =0,60 for S420 and S460 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.11 Effective thickness factor for shear buckling. [Fig. 4.5] 

The slenderness parameter w  in Table II.4 and Fig. II.11 should be determined from: 

 ( ) 5,0
cryww f76,0 =  /II.30/ 

in which cr is the critical shear buckling stress obtained from: 

 Ecr k =   /II.31/ 

in which E should be taken from 4.2.2.3(2) and k from (5) or (6). 
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For webs with transverse stiffeners at supports only the slenderness parameter w  may be 
taken as: 

 


=
t4.86

bw
w  /II.32/ 

For webs with transverse stiffeners at the supports and intermediate transverse and/or 
longitudinal stiffeners the slenderness parameter w  may be taken as: 

 


=
k4.37

bw
w  /II.33/ 

in which k is the smallest buckling coefficient for the web panel surrounded by rigid supports 
(flange or transverse stiffeners). 

If k is governed by a buckling mode that include stiffener buckling the difference between k 
for the stiffened panel and that for the same panel without longitudinal stiffeners should be 
multiplied by 1/3. Formulae for k taking this reduction into account in annex A3 may be used. 

For webs with longitudinal stiffeners the slenderness parameter w  should not be taken as 
less than 

 
1

1w
w

k4.37
b


=  /II.34/ 

where the shear buckling coefficient k1 refers to the largest subpanel with depth bw1 and 
length a, see Fig. II.12. Annex A3 may be used with k  st = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.12 Web with transverse and longitudinal stiffeners. [Fig. 4.6] 

Contribution of flange to the effective web thickness 
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If the flanges are not completely utilized by bending moment (MSd < Mf.Rd) there is a contribution 
teff.f of the flanges to the effective thickness obtained from: 

 tt vff.eff =  /II.35/ 

with: 
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in which bf and tf are taken for the smaller flange. 
If an axial force NSd is also applied, the value of Mf,Rd should be reduced by a factor: 
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where: Afl and Af2 are the areas of the flanges. 
 

Stiffeners 
 

Rigid end post 
The rigid end post should act as a bearing stiffener resisting the reaction at the girder support, and 
as a short beam resisting the longitudinal membrane stresses in the plane of the web. 

A rigid end post may comprise of two double-sided transverse stiffeners that form the flanges 
of a short beam of length hw, see Fig. II.10 (b). The strip of web plate between the stiffeners 
forms the web of the short beam. Alternatively, an end post may be in the form of an inserted 
section, connected to the end of the web plate. Each stiffener should have a cross sectional area of 
at least 4 hwt2/e where e is the distance between the stiffeners and e > 0.1 hw, see Fig. II.10 (b). 

 
Non-rigid end post 
A non-rigid end posts may be a single stiffener as shown in Fig. II.10 (c). It may be assumed to 
act as a bearing stiffener resisting the reaction at the girder support. 
 
Intermediate transverse stiffeners 
Intermediate stiffeners acting as rigid supports of interior panels of the web should be checked for 
resistance and stiffness. 
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Other intermediate transverse stiffeners may be considered flexible, their stiffness being 
considered in the calculation of k in 4.3.3 (4). Intermediate stiffeners acting as rigid supports for 
the web panel should have a second moment of area fulfilling the following: 

 if 2ha w   233
wst ath5,1I   /II.39/ 

 if 2ha w   3
wst th75,0I   /II.40/ 

The resistance of intermediate rigid stiffeners should be checked for an axial force equal to 
VSd minus fywdhwteff,w calculated assuming the stiffener under consideration removed. 

 
Longitudinal stiffeners 
Longitudinal stiffeners may be either rigid or flexible. In both cases their stiffness should be taken 
into account when determining the slenderness w  in 4.3.3. If the value of w  is governed by 
the subpanel then the stiffener may be considered as rigid. The strength should be checked for 
direct stresses if the stiffeners are taken into account for resisting direct stress 

 
Welds 

 
The welds may be designed for the nominal shear flow VS/hw if VS does not exceed fywdhwteff,w. 
For larger values the weld between flanges and webs should be designed for the shear flow fywt 
unless the state of stress is investigated in detail. 

 
 

Resistance of webs to transverse forces 

 
The resistance of an unstiffened or stiffened web to transverse forces applied through a flange, is 
given by 2.2.1 (2) with Leff determined from the following rules, which are applicable for rolled 
beams and welded girders provided that the flanges are held in position in the lateral direction 
either by their own stiffness or by bracings. 

A distinction should be made between three types of load application, as follows: 
a) Forces applied through one flange and resisted by shear forces in the web, see Fig. 

II.13(a); 
b) Forces applied to one flange and transferred through the web directly to the other 

flange, see Fig. II.13(b). 
c) Forces applied through one flange close to an unstiffened end, see Fig. II.13(c) 

For box girders with inclined webs the resistance of both the web and flange should be 
checked. The internal forces to be taken into account are the components of the external load in 
the plane of the web and flange respectively. In addition the effect of the transverse force on the 
moment resistance of the member should be considered. 
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Figure II.13 Buckling coefficients for types of load applications. [Fig. 4.7] 

Length of stiff bearing 
 

The length of stiff bearing, ss, on the flange is the distance over which the applied force is 
effectively distributed and it may be determined by dispersion of load through solid steel material 
at a slope of 1:1, see Fig. II.14. However, ss should not be taken as larger than hw. 

If several concentrated loads are closely spaced, the resistance should be checked for each 
individual load as well as for the total load. In the latter case ss should be taken as the centre-to-
centre distance between the outer loads. 

 
 
 
 
 
 
 

Figure II.14 Length of stiff bearing. [Fig. 4.8] 

Effective length for resistance 
 

The effective length for resistance should be obtained from: 

 yFeff lL =  /II.41/ 

with: 

 15,0

F
F 


=  /II.42/ 
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The factor kF should be obtained from Fig. II.13. 
 

Effective loaded length 
 

The effective loaded length ly should be calculated using two dimensionless parameters m1 and 
m2 obtained from: 
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For box girders, bf in equation /II.45/ should be limited to 25tf on each side of the web. For 
cases a) and b) in Fig. II.13 ly should be obtained using: 

  21fsy mm1t2sl +++=  /II.47/ 

For case c) ly should be obtained by the smaller of equations /II.47/, /II.49/ and /II.50/. 
However ss in /II.48/ should be taken as zero if the loading device does not follow the change in 
slope of the girder end, see Fig. II.14. 
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Transverse stiffeners 

 
If the design resistance of an unstiffened web is insufficient transverse stiffeners should be 
provided. At a plastic hinge location in the beam, stiffeners should be provided if the relative 
local load 2 in 2.2 is larger than 0,5. 
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When checking the buckling resistance, the effective cross-section of a stiffener may be taken 
as including a width of web plate equal to 30tw, arranged with 15tw each side of the stiffener, 
see Fig. II.15. At the ends of the member (or openings in the web) the dimension of l5tw should 
be limited to the actual dimension available. If the stiffener itself is class 4, the effective section 
of 4.2.1 (3) should be used. 

 
 
 
 
 
 
 
 
 
 

Figure II.15 Effective cross-section of transverse stiffener. [Fig. 4.9] 

The out-of-plane buckling resistance should be determined from 5.5.1 of ENV 1993-1-1 
:1992, using buckling curve c and a buckling length l of not less than 0,75 hw, or more if 
appropriate for the conditions of restraint. Where single sided or other asymmetric stiffeners are 
used, the resulting eccentricity should be allowed for using 5.5.4 of ENV 1993-1-1:1992. 

In addition to checking the buckling resistance, the cross-section resistance of a load bearing 
stiffener should also be checked adjacent to the loaded flange. The width of web plate included in 
the effective cross-section should be limited to ly and allowance should be made for any openings 
cut in the stiffener to clear the web-to-flange welds. 

 
Flange induced buckling 

 
To prevent the possibility of the compression flange buckling in the plane of the web, the ratio 
hw/tw of the web should satisfy the following criterion: 

 ( ) fcwyf
w

w AAfEk
t
h

  /II.51/ 

where: 

Aw is the area of the web 
Afc is the area of the compression flange 

The value of the factor k should be taken as follows: 

– - Plastic rotation utilized 0,3 
– - Plastic moment resistance utilized 0,4 
– - Elastic moment resistance utilized 0,55 
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When the girder is curved in elevation, with the compression flange on the concave face, the 
following criterion should be checked in addition to 4.4.7( 1 ). 
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f r 3  Eh1

AA  fE  k
t
h

+
  /II.52/ 

in which r is the radius of curvature of the compression flange. 
If the girder has transverse or longitudinal web stiffeners, the limiting value of hw/tw may be 

increased. 
 
 

Annex A Buckling coefficients 

 
Al Buckling coefficient for plates with multiple stiffener loaded by direct stresses 

 
For stiffened plates with equidistant multiple longitudinal stiffeners the plate buckling coefficient 
k,p may be approximated by 
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with: 
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where: 
Ix is the second moment of area for bending in the longitudinal direction for the whole 

panel; 
Ip is the second moment of area for bending of the plate =  
As1 is the gross area of all longitudinal stiffeners (without plate); 
Ap is the gross area of the plate = bt; 
1 is the larger edge stress; 
2 is the smaller edge stress; 
a, b and t are as defined in Fig. II.7. 
 

A2 Critical stress for stiffener regarded as a fictitious column restrained by the plate 
 

In the case of one longitudinal stiffener only located in the compression zone and ignoring 
stiffeners in the tension zone, the elastic critical plate buckling stress is: 
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where: 
Is1 is the second moment of area of the gross cross-section of the fictitious column 

defined in 4.2.2.5(2) about an axis through its centroid and parallel to the plane of the 
plate; 

b1, b2 are the distances from longitudinal edges to the stiffener (b1 + b2 = b). 
 
In the case of two longitudinal stiffeners, both in compression, each stiffener is first 

considered assuming the other one to be rigid and the procedure for one stiffener is used. In a 
further step both stiffeners are considered as lumped together, with an area and a second moment 
of area equal to the sum of those of the individual stiffeners. The location of the lumped stiffener 
is the position of the resultant of the axial forces in the stiffeners. The elastic critical plate 
buckling stress is the lowest of the ones computed for the three cases. If one of the stiffeners is in 
tension the procedure will be conservative. 

 
A3 Shear buckling coefficient for stiffened panels 

 
For plates with rigid transverse stiffeners with or without longitudinal stiffeners in between, the 
shear buckling coefficient k is: 
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where 
a is the distance between transverse stiffeners (see Fig. II.12); 
Isl is the second moment of area of the longitudinal stiffener with regard to the z-axis, see 

Fig. II.12(b). For webs with two or more equal stiffeners, not necessarily equally 
spaced, Isl is the sum of the stiffness of the individual stiffeners. 
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Appendix III.  

Eurocode 3: Design of steel structures – Part 1.7 (EC3-1-7) 
Planar plated structural elements with transverse loading 
[prENV 1993-1-7:April 1998] 
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III.1 General 
Scope 

 
Part 1-7 of ENV 1993 provides principles and application rules for the structural design of thin 
unstiffened and stiffened plates which are loaded by out of plane actions. It is to be used in 
conjunction with EC3 - Part 1.1 and the relevant application standards. Any action consideration, 
such as: 

– definition of an action 
– combination of actions 
– partial safety factors on actions 

are to be taken from EC 1 as far as general rules are concerned, and the relevant parts of EC 3 
as far as specific application rules are concerned. 

This Part 1.7 is concerned with the requirements of an appropriate design against the ultimate 
limit state taking account of the following failure modes: 

– plastic collapse or tensile rupture 
– cyclic plasticity / low cycle fatigue 
– buckling 
– fatigue. 

The rules in this Part 1.7 refer to thin plate segments in plated structures which may be 
stiffened or unstiffened. These plate segments may be individual plates or parts of a plated 
structure. They are loaded by out of plane actions. The verification of unstiffened and stiffened 
plated structures loaded only by in-plane effects shall be carried out with the design rules given in 
ENV 1993-1-5. In ENV 1993-1-7 rules for the interaction between the effects of inplane and 
transverse loading are given. The temperature range within which the rules of this Part 1.7 are 
allowed to be applied are defined in the relevant EC 3 application parts. 

Wind loading and bulk solids flow may, in general, be treated as quasi-static actions. For 
fatigue, the dynamic effects must be taken into account according to the relevant application parts 
of EC3. The stress resultants arising from the dynamic behaviour are then treated in this part as 
quasi-static. 

 
Definitions 

 
Stress components 

 
Membrane stresses in rectangular plate 

mx is the membrane stress in the x-direction due to membrane forces nx. 
my is the membrane stress in the y-direction due to membrane forces ny. 
mxy is the membrane shear stress due to membrane forces nxy. 
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Figure III.1 Definition of membrane stresses. [Fig. 1.1] 

Normal and shear stresses in rectangular plates due to bending 
bx is the stress in the x-direction due to bending moment mx. 
by is the stress in the y-direction due to bending moment my. 
bxy is the shear stress due to the bending moment mxy. 
bxz is the shear stress due to shear forces qx. 
byz is the shear stress due to shear forces qy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.2 Definition of normal and shear stresses due to bending. [Fig. 1.2] 

Structural forms 

– Plated structure: A structure that is built up from nominally flat plates which are welded 
together. The plates may be stiffened or unstiffened, see Fig. III.3. 

– Plate segment: A plate segment is a flat plate, which may be unstiffened or stiffened. A 
plate segment may be regarded as an individual part of a plated structure. 
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– Stiffener: A plate or section attached to a plate with the purpose of preventing buckling 
of the plate or reinforcing it against local loads. A stiffener is denoted: 
– longitudinal if its direction is parallel to that of the member 
– transverse if its axis is perpendicular to that of the member. 

– Stiffened plate: Plate with transverse and/or longitudinal stiffeners. 
– Subpanel: Unstiffened plate surrounded by flanges or stiffeners. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.3 Components of a plated structures. [Fig. 1.3] 

Terminology 

– Plastic collapse: a failure mode in the ultimate limit state where the structure looses its 
ability to resist increased loading due to yielding of the material. 

– Tensile rupture: a failure mode in the ultimate limit state where the plate experiences 
failure due to tension. 

– Cyclic plasticity: Where repeated yielding is caused by cycles of loading and unloading. 
– Buckling: Where the structure suddenly looses its stability under compression and/or 

shear. 
– Fatigue: Where cyclic loading causes cracking or failure of the plate. 

Actions 
 

– Transverse loading: The load applies normal to the middle surface of a plate segment. 
– In-plane forces: Forces, which apply parallel to the middle surface of the plate segment. 

They are induced by in-plane effects (for example temperature and friction effects) or by 
global loads applied at the plated structure. 

 
 



 290 

Symbols 
 
Creek lower case letter 
 

a aspect ratio of a plate segment (a/b); 
 strain 
R load amplification factor 
 reduction factor for plate buckling; 
i Normal stress in the direction i; 
 Shear stress; 
M safety factor for resistance; 

 
Latin upper case letter 
 

E Modulus of elasticity 
 
Latin lower case Letter 
 

a length of a plate segment, see Fig.III.4 and III.5; 
b width of a plate segment, see Fig. III.4 and III.5; 
fy yield stress; 
ni membrane force in the direction i [kN/m]; 
m bending moment [kNm/m]; 
qi shear force in direction i [kN/m]; 
t thickness of a plate segment, see Fig. III.4 and III.5; 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure III.4 Dimensions and axes Figure III.5 Dimensions and axes of stiffened 
  of unstiffened plate segments. [Fig. 1.4] plate segments; stiffeners may 
  be trough or closed stiffeners [Fig. 1.5] 
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III.2 Basis of Design 
 

Ultimate limit state 

 
Plastic collapse or tensile rupture 

 
Plastic collapse is defined as the condition in which part of the structure develops excessive 
plastic deformations, associated with development of a plastic mechanism. The plastic collapse 
load is usually derived from a mechanism based on small deflection theory. Tensile rupture is 
defined as the condition in which the plated structure fails through tensile rupture, leading to 
separation of the two parts of the structure. Both failure modes involve loss of equilibrium 
between the imposed loadings and the maximum attainable internal resultants in the plate, and 
only equilibrium considerations are concerned. 

 
Cyclic plasticity /low cycle fatigue 

 
Cyclic plasticity / low cycle fatigue is defined as the limit condition for repeated cycles of 

loading and unloading produce yielding in tension or in compression or both at the same point, 
thus causing plastic work to be repeatedly done on the structure. This alternative yielding may 
lead to local cracking by exhaustion of the material's energy absorption capacity, and is thus a 
low cycle fatigue restriction. The stresses which are associated with this limit state develop under 
a combination of all actions and the compatibility conditions for the structure. 

 
Buckling 

 
Buckling is defined as the condition in which all or parts of the structure develop large 
displacements, caused by instability under compressive or shear stresses in the plate. It leads 
eventually to incapacity to sustain an increase in the stress resultants. 

 
Fatigue 

 
Fatigue is defined as the limit condition caused by the development and / or growth of cracks by 
repeated cycles of increasing and decreasing stresses. 

 
Serviceability limit states 

 
Out of plane deflection 

 
The limit value of the out of plane deflection w is defined as the condition in which the effective 
use of a plate segment is governed on its out of plane detlection w. It depends usually on the field 
of application and shall be given in the relevant standard. 
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Excessive vibrations (Resonance) 
 

Excessive vibrations is defined as the limit condition in which either the failure of a plated 
structure occurs by fatigue at adjacent connections caused by excessive vibrations of the plate or 
serviceability limits apply. The slenderness of a plate segment should be limited to avoid 
excessive vibrations. 

III.3 Modelling of structural analysis 
Calculations shall be carried out using appropriate design models involving all relevant variables. 
The models used shall be appropriate for predicting the structural behaviour and the limit states 
considered. If the boundary conditions can be conservatively defined a plated structure may be 
subdivided into individual plate segments that may be assumed independently. The overall 
stability of the complete structure shall be checked as defined in the relevant parts of Eurocode 3. 

 
Calculation of internal stresses or stress resultants 

 
The internal stresses or stress resultants of a plated structure shall be calculated for the 

relevant combination of actions. The calculation model and basic assumptions for determining 
internal stresses or stress resultants should represent the expected structural response in the 
ultimate limit state loading. 

The models shall be sufficiently precise to predict the plate behaviour, commensurate with the 
standard of workmanship likely to be achieved, and with the reliability of the information on 
which the design is based. Structural models may be simplified to the extent that it can be shown 
that the simplifications used will give conservative estimates of the effects of actions. 

If necessary, the calculation model shall be supplemented by tests involving all relevant 
variables. Elastic global analysis may generally be used for plated structures. Plastic global 
analysis should not be used where fatigue resistance is important. Possible deviations from the 
assumed directions or positions of actions shall be considered. 

 
Plate boundary conditions 

 
The plated structure shall be designed in such a way as to ensure that boundary conditions 
assumed in the design calculations are achieved in the construction. If a plated structure is 
subdivided into individual plate segments the boundary conditions e.g for stiffeners assumed for 
the individual plate segments in the design calculations shall be achieved in the drawings and 
execution. 

 
Design models for plated structures 

 
The internal stresses of a plate segment in a plated structure should be determined with one of 

the following design models: 

– standard formulas for plates, 
– global analysis, 
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– simplified models. 

The design models given above shall take into account a linear or non linear bending theory 
for plates. A linear bending theory is based on small-deflection assumptions and relates loads to 
deformations in a proportional manner. A non-linear bending theory is based on large-deflection 
assumptions and the effects of deformation on equilibrium are taken into account. 

The design models given above may be based on the types of analysis given in Table III.1. 

Table III.1 Types of analysis 

Type of analysis Bending theory Material law Plate geometry 
Linear elastic plate analysis (LA) linear linear perfect 
Geometrically non-linear elastic analysis 
(GNA) 

non-linear linear perfect 

Materially non-linear analysis (MNA) linear non-linear perfect 
Geometrically and materially non-linear 
analysis (GMNA) 

non-linear non-linear perfect 

Geometrically non-linear elastic analysis with 
imperfections (GNIA) 

non-linear linear imperfect 

Geometrically and materially non-linear 
analysis with imperfections (GMNIA) 

non-linear non-linear imperfect 

 
Design by standard formulas 

 
For an individual plate segment of a plated structure the internal stresses may be calculated for 
the relevant combination of design actions with appropriated design formulae based on the types 
of analysis given in Table III.1. 

In case of a two dimensional stress field resulting from a membrane theory analysis the 
equivalent v. Mises stress eq,Sd may be determined by 

 2
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In case of a two dimensional stress field resulting from an elastic plate theory the equivalent 
v. Mises stress eq,Sd may be determined, as follows: 
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and nx,Sd, ny,Sd, nxy,Sd, mx,Sd, my,Sd and mxy,Sd are defined above. 
 

Design by global analysis: numerical analysis 
 

If the internal stresses of a plated structure are determined by a numerical analysis which is based 
on a materially linear analysis, the highest equivalent v. Mises stress eq,Sd of the plated structure 
shall be calculated for the relevant combination of design actions. 

The equivalent v. Mises stress eq,Sd defined by the stress components which occurred at one 
point in the plated structure. 

 2
SdSd,ySd,x

2
Sd,y

2
Sd,xSd,eq 3+−+=  /III.3/ 

where x,Sd and y,Sd are positive in case of tension. 
If a numerical analysis is used for the verification of buckling, the effects of practically 

unavoidable imperfections shall be taken into account. These imperfection may be: 
(a) geometrical imperfections: 

– deviations from the nominal geometric shape of the plate (predeformation, out of 
plane deflections) 

– irregularities of welds (minor excentricities) 
– deviations from nominal thickness 

(b) material imperfections: 

– residual stresses because of rolling, pressing , welding, straightening 
– inhomogenities and anisotropies 

If no better method is known, the geometrical and material imperfections shall be taken into 
account by an initial equivalent geometric imperfection of the perfect plate. The shape of the 
initial equivalent geometric imperfection shall be derived from the relevant buckling mode. 

 
 
 
 
 
 
 
 

Figure III.6 Initial equivalent geometric bow imperfection e0 of a plate segment [Fig. 3.1] 

The amplitude of the initial equivalent geometric imperfection e0 of a rectangular plate 
segment may be derived by numerical calibrations with test results from test pieces that may be 
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considered as representative for fabricative from the plate buckling curve of Eurocode 3 - Part 
1.5, as follows: 
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where 
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and: 

 is the reduction factor for plate buckling, 
a,b are geometric properties of the plate, see Fig. III.4, 
t is the thickness of the plate, 
 is the aspect ratio a/b < 2 . 

As a conservative assumption the amplitude may be taken as e0 = a/250 where a   b. The 
pattern of the equivalent geometric imperfections shall, if relevant, be adapted to the 
constructional detailing and to imperfections expected from fabricating or manufacturing. In all 
cases the reliability of a finite element analysis shall be checked with known results from tests or 
compared analysis. 

 
Design by simplified design models 

 
The internal forces or stresses of a plated structure loaded by transverse loads and inplane loads 
may be calculated with a simplified design model, that gives conservative estimates. 

Therefore the plated structure may be subdivided into individual plate segments, which may 
be stiffened or unstiffened. The individual plate segments may be designed with the following 
design models: 

 
a) Unstiffened plate segments 

An unstiffened rectangular plate under transverse loads may be modelled as an equivalent 
beam in the direction of the dominate load distribution, if the following conditions are fulfilled: 

– the aspect ratio a/b of the plate is greater than 2; 
– the plate is loaded by a uniform distributed transverse load, which may be linear or 

constant; 
– the strength, stability and stiffness of the frame or beam on which the plate segment is 

supported fulfils the assumed boundary conditions of the equivalent beam. 

The internal forces and moments of the equivalent beam shall be determined with an elastic 
analysis as defined in ENV 1993-1-1. If the direction of the dominant load distribution is 
transverse to the direction of the inplane compression forces, the interaction between the effects 
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of inplane loads and out of plane loads may be neglected. If the direction of the dominant load 
distribution is parallel to the direction of the inplane compression forces, the interaction formula 
specified in Part 1-1 clause 5.5.4 may be applied to the equivalent beam. 
b) Stiffened plate segments 

A stiffened plate or a stiffened plate segment of a plated structure may be modelled as a 
grillage if it is regularly stiffened in the transverse and longitudinal direction. In determining the 
cross-sectional value Ai of the cooperating plate of an individual member i of the grillage the 
effects of shear lag shall taken into account by the reduction factor  according to ENV 1993-1.5. 
For a member i of the grillage which is arranged in parallel to the direction of inplane 
compression forces, the cross-sectional value Ai shall also be determined taking account of the 
effective width of the adjacent subpanels due to plate buckling according to ENV 1993-1.5. 

The interaction of shear lag effects and plate buckling effects, see Fig. III.7, should be 
considered by the effective area Ai from equation /III.5/. 
 ( )  +=     i,pani,pani,paneff,Lci tbAA  /III.5/ 

where 
AL.eff is the effective area of the stiffener due to local plate buckling of the stiffener; 
c is the reduction factor due to global plate buckling of the stiffened plate segment; 
pan.i is the reduction factor due to local plate buckling of the subpanel i; 
bpan.i is the width of the subpanel i; 
tpan,i is the thickness of the subpanel i; 
 is the effective width factor for the effect of shear lag. 
 is the ratio defined in 3.2(2) of ENV 1993 – 1.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.7 Definition of the cross-section Ai [Fig. 3.2] 

The verification of a member i of the grillage may be performed using the interaction formula 
in clause 5.5.4 of ENV 1993-1.1 taking into account the following loading conditions: 

– effects of transverse loadings 
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– equivalent axial force in the cross-section Ai due to normal stresses in the plate: 
= ixSd dAN  

– eccentricity e of the equivalent axial force NSd according to ENV 1993-1.5. 

If the stiffeners of a plate or a plate segment are only arranged in parallel to the direction of 
inplane compression forces, the stiffened plate may be modelled as an equivalent beam on elastic 
springs, see ENV 1993-2. If the stiffeners of a stiffened plate segment are positioned in the 
transverse direction to the compression forces, the interaction between the compression forces 
and bending moments in the unstiffened plate segments between the stiffeners should be verified. 

 

III.4 Serviceability limit states 
 

Plated steel structures should meet the serviceability limit state criteria in 4.1 of ENV 1993-1-1. 
The requirements for the out of plane deflection w of a plate segment in a plated structure 

shall be defined by the relevant application standard or by the competent authority, the designer 
or the client. The limit state of excessive vibrations shall be verified with the requirements given 
by the competent authority, the designer or the client. 

 

III.5 Ultimate limit state 
 

All parts of a plated structure shall be so proportioned that the basic design requirements for 
ultimate limit states are satisfied. The partial factor M for resistance of plated structures shall be 
taken from the relevant parts of EC 3 - Part l. For connections of plated structures the partial 
factor M shall be obtained from section 6 of ENV 1993-1-l. Members and connections subject to 
fatigue shall also satisfy the requirements given in section III. 

 
Plastic collapse or tensile rupture 

 
General 

 
In an elastic design the resistance of a plate segment in a plated structure against plastic collapse 
or tensile rupture under combined axial forces and bending is defined by the v. Mises equivalent 
stress eq,Rd as: 

 0MyRd,eq f0,1 =  /III.6/ 

At every point in a plated structure the design stress eq,Sd shall satisfy the condition: 

 eq,Sd   eq,Rd /III.7/ 

where eq,Sd is the largest value of v. Mises equivalent stress. 
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Supplementary rules for the design by global analysis 
 

If a numerical analysis is based on materially linear analysis the resistance against plastic collapse 
or tensile rupture shall be checked for the requirement given in /III.7/. 

If a materially nonlinear analysis is based on a design stress-strain relationship with fyd, the 
plated structure shall be subject to a load arrangement F that may be taken from the design values 
of actions FSd, and the load may be incrementally increased to determine the load amplification 
factor R of the plastic limit state FRd. 

The result of the numerical analysis shall satisfy the condition: 

 FSd   FRd /III.8/ 

where FSd =R×F and R is the load amplification factor. 
 

Supplementary rules for the design by simplified design models 
 

If an unstiffened plate is designed as an equivalent beam, the cross-section resistance of the 
equivalent beam shall be checked for the combination of inplane loading and out of plane loading 
effects with the design rules given in ENV 1993-1-1. 

If a stiffened plate segment is modelled as a grillage as described above the cross-section 
resistance and the buckling resistance of the individual members i of the grillage shall be checked 
for the combination of inplane and out of plane loading effects using the interaction formula in 
clause 5.5.4 of ENV 1993-1.1. 

If a stiffened plate segment is designed as a an equivalent beam as described above the cross-
section resistance and the buckling resistance of the equivalent beam shall be checked for the 
combination of inplane and out of plane loading effects using the interaction formula in clause 
5.5.4 of ENV 1993-1.1. 

 
Cyclic plasticity / low cycle fatigue 

 
In a materially linear design the resistance of a plate segment in a plated structure against cyclic 
plasticity / low cycle fatigue may be verified by the v. Mises stress range limitation  Rd. 

 0MyRd f0,2 =  /III.9/ 

At every point in a plated structure the design stress range  Rd shall satisfy the condition: 

  Sd    Rd /III.10/ 

where  Sd is the largest value of the v. Mises equivalent stress range at the relevant point of 
the plate segment due to the relevant combination of design actions. 

Where a materially nonlinear computer analysis is performed, the plate shall be subject to the 
design values of the varying and fixed actions. The largest change in the v. Mises plastic strain 
during one load cycle at any point in the structure shall be used as design value of the plastic 
strain range  Sd. 
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Unless a more sophisticated low cycle fatigue assessment is performed, the design value of 
the plastic strain range shall satisfy the condition: 

 0MySd Ef0,2 =  /III.11/ 

Buckling resistance 

 
If a plate segment of a plated structure is loaded by in-plane effects, its resistance to plate 
buckling shall be verified with the design rules given in ENV 1993-1-5. The shear buckling 
resistance of a plate segment shall be verified with the design rules given in ENV 1993-1-5. For 
the interaction between the effects of inplane and out of plane loading, see section Modelling of 

structural analysis. 
 
If the plate buckling resistance for combined in plane and out of plane loading is checked by a 

numerical analysis, the design actions FSd shall satisfy the condition: 

 FSd   FRd /III.12/ 

The plate buckling resistance FRk of a plated structure is defined as: 

 FRd = k FRk/M1 /III.13/ 

where 

FRk is the characteristic buckling resistance of the plated structure 
k is the calibration factor. 

The characteristic buckling resistance FRk shall be derived from a load-deformation curve 
which is calculated for the relevant point of the structure taking into account the relevant 
combination of design actions FSd. In addition, the analysis shall taken into account the 
imperfections. The characteristic buckling resistance FRk is defined by either of the three 
following criterion: 

– maximum load of the load-deformation-curve (limit load); 
– bifurcation load if occurring during the loading path before reaching the limit point of the 

load-deformation-curve; 
– largest tolerable deformation if occurring the loading path before reaching the bifurcation 

load or the limit load. 

The reliability of the numerically determined critical buckling resistance shall be checked: 

(a) either by calculating other plate buckling cases, for which characteristic buckling 
resistance values Fk.known are known, with the same program basically similar 
imperfection assumptions. The check cases should be similar in their buckling 
controlling parameters (e.g non-dimensional plate slenderness, post buckling 
behaviour, imperfection-sensitivity, material behaviour) 

(b) or by comparison of calculated values with test results Fk,known. Regarding the 
similarity of the check cases, the same statements as made above are valid. 
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Depending on the results of the reliability checks a calibration factor k shall be evaluated 
from: 

 k = Fk,known,check / FRk,check /III.14/ 

where Fk,known,check are results from prior knowledge and FRk,check are the results of the 
numerical calculations. 

If a stiffened plate segment is subdivided into subpanels and equivalent effective stiffeners the 
buckling resistance of the stiffened plate segment shall be checked with the design rules given in 
ENV 1993-1-5, neglecting the bending effects due to the transverse loads which applied at the 
plate segments. Further, the buckling resistance of the equivalent effective stiffener of the plate 
shall be checked with the design rules given in ENV 1993-1-l. 

 
Fatigue 

 
For plated structures the requirements for fatigue shall be obtained from the relevant application 
parts of Eurocode 3. If no other requirements are given by the application parts of Eurocode 3 or 
by the competent authority, the client or the designer no fatigue assessment is required for up to 
10000 cycles. 

 

III. Annex A: Types of analysis for the design of plated structures 
The internal stresses of stiffened and unstiffened plates may be determined with the following 
types of analysis: 

- LA: Linear elastic analysis; 
- GNA: Geometrically nonlinear analysis; 
- MNA: Materially nonlinear analysis; 
- GMNA: Geometrically and materially nonlinear analysis; 
- GNIA: Geometrically nonlinear analysis elastic with imperfections included; 
- GMNIA: Geometrically and materially nonlinear analysis with imperfections 

included. 
 

Linear elastic plate analysis (LA) 

 
The linear elastic analysis models the behaviour of thin plate structures on the basis of the plate 
bending theory, related to the perfect geometry of the plate. The linearity of the theory results 
from the assumptions of the linear elastic material law and the linear small deflection theory. 

The LA analysis satisfies the equilibrium as well as the compatibility of the deflections. The 
stresses and deformations varies linear with the transverse loading. As an example for the LA 
analysis the following fourth-order partial differential equation is given for an isotropic thin plate 
that subject only to a transverse load p(x,y): 
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where ( )2
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EtD

−
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Geometrically nonlinear analysis (GNA) 

 
The geometrically nonlinear elastic analysis is based on the principles of the plate bending theory 
of the perfect structure using the linear elastic material law and the nonlinear, large deflection 
theory. 

The GNA analysis satisfies the equilibrium as well as the compatibility of the deflections 
under consideration of the deformation of the structure. The large deflection theory takes into 
account the interaction between flexural and membrane actions. The deflections and stresses 
varies in a non linear manner with the magnitude of the transverse pressure. As an example for 
the GNA analysis the following fourth-order partial differential equation system is given for an 
isotropic thin plate that subject only to a transverse load p(x,y). 
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where f is the Airy's stress function, and 

( )2

3

112
EtD

−
= . 

 
Materially nonlinear analysis (MNA) 

 
The materially nonlinear analysis is based on the plate bending theory of the perfect structure 
with the assumption of small deflections – like in Linear elastic plate analysis (LA) – however, it 
takes into account the nonlinear behaviour of the material. 

 
Geometrically and materially nonlinear analysis (GMNA) 

 
The geometrically and materially nonlinear analysis is based on the plate bending theory of the 
perfect structure with the assumptions of the nonlinear, large deflection theory and the nonlinear, 
elasto-plastic material law. 

 
Geometrically nonlinear analysis elastic with imperfections included (GNIA) 
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The geometrically nonlinear analysis with imperfections included is equivalent to the GNA 
analysis defined in Geometrically nonlinear analysis (GNA), however, the geometrical model 
used the geometrically imperfect structure, for instance a pre-deformation applies at the plate 
which is governed by the relevant buckling mode. 

The GNIA analysis is used in cases of dominating compression or shear stresses in some of 
the plated structures due to in-plane effects. It delivers the elastic buckling loads of the "real" 
imperfect plated structure. 

 
Geometrically and materially nonlinear analysis with imperfections included (GMNIA) 

 
The geometrically and materially nonlinear analysis with imperfections included is equivalent to 
the GMNA analysis defined in Geometrically and materially nonlinear analysis (GMNA), 
however, the geometrical model used the geometrically imperfect structure, for instance a pre-
deformation applies at the plate which is governed by the relevant buckling mode. 

The GMNIA analysis is used in cases of dominating compression or shear stresses in a plate 
due to inplane effects. It delivers the elasto-plastic buckling loads of the "real" imperfect 
structure. 

 

III. Annex B: Internal stresses of unstiffened rectangular plates (Small 
deflection theory) 
This annex provides design formulas for the calculation of internal stresses of unstiffened 
rectangular plates based on the small deflection theory for plates. Therefore the effects of 
membrane forces are not taken into account in the design formulas given in this annex. 

Design formulas are provided for the following load cases: 

– uniformly distributed loading on the entire plate 
– central patch loading distributed uniformly over a patch area 

The deflection w of a plate segment and the bending stresses bx and by in a plate segment 
may be calculated with the coefficients given in the tables of following sections. The coefficients 
take into account a poisson's ratio  of 0.3. 

 
Definitions 

 
qSd is the design value of the distributed load 
pSd is the design value of the patch loading 
a is the smaller side of the plate 
b is the longer side of the plate 
t is the thickness of the plate 
E is the Elastic modulus 
kw is the coefficient for the deflection of the plate given in dependence of the boundary 

conditions of the plate in the data tables. 
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kbx is the coefficient for the bending stress bx of the plate given in dependence of the 
boundary conditions of the plate in the data tables. 

kby is the coefficient for the bending stress by of the plate given in dependence of the 
boundary conditions of the plate in the data tables. 

 
 

Uniformly distributed loading 

 
Out of plane deflection 

 
The deflection w of a plate segment which is loaded by uniformly distributed loading may be 
calculated as follows: 

 3

4
Sd

w Et
aq

kw =  /III.17/ 

In comparison to the thickness of the plate segment the deflection w shall be small, because 
the design formulas base on small deflection theory. 

 
Internal stresses 

 
The bending stresses bx and by in a plate segment may be determined with the following 
equations: 

 2

2
Sd

bxSd,bx t
aq

k=  /III.18/ 

 2

2
Sd

bySd,by t
aq

k=  /III.19/ 

 
For a plate segment the equivalent stress may be calculated with the bending stresses given in 

above as follows: 

 Sd,bySd,bx
2

Sd,by
2

Sd,bxSd,eq −+=  /III.20/ 

 
The points for which the state of stress are defined in the data tables are located either on the 

centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, 
the bending shear stresses b are zero. 
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Coefficients k for uniformly distributed loadings 
 

Table III.2 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- All edges are rigidly supported and 
rotationally free 

b/a kw1 kbxl kbyl 

1.0 0.04434 0.286 0.286 

1.5 0.08438 0.486 0.299 

2.0 0.11070 0.609 0.278 

3.0 0.13420 0.712 0.244 
 
 

Table III.3 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- All edges are rigidly supported and 
rotationally fixed. 

b/a kw1 kbxl kbyl kbx2 

1.0 0.01375 0.1360 0.1360 - 0.308 

1.5 0.02393 0.2180 0.1210 - 0.454 

2.0 0.02763 0.2450 0.0945 - 0.498 
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3.0 0.02870 0.2480 0.0754 - 0.505 

Table III.4 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- Three edges are rigidly supported 
and rotationally free and one edge 
is rigidly supported and rotationally 
fixed. 

b/a kw1 kbxl kbyl  kbx4 

1.5 0.04894 0.330 0.177 - 0.639 

2.0 0.05650 0.368 0.146 - 0.705 
 
 
 
 

Table III.5 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- Two edges are rigidly supported and 
rotationally free and two edges are 
rigidly supported and rotationally 
fixed. 

b/a kw1 kbxl kbyl  kbx4 

1.0 0.02449 0.185 0.185 - 0.375 

1.5 0.04411 0.302 0.180 - 0.588 

2.0 0.05421 0.355 0.152 - 0.683 
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Table III.6 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- Two edges are rigidly supported and 
rotationally free and two edges are 
rigidly supported and rotationally 
fixed. 

b/a kw1 kbxl kbyl kby3 

1.0 0.02089 0.145 0.197 - 0.420 

1.5 0.05803 0.348 0.274 - 0.630 

2.0 0.09222 0.519 0.284 - 0.717 
 
 
 

Table III.7 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 

 

- Two edges are rigidly supported and 
rotationally free and two edges are 
rigidly supported and rotationally 
fixed. 

b/a kw1 kbxl kbyl  kbx2 

1.5 0.02706 0.240 0.106 - 0.495 

2.0 0.02852 0.250 0.0848 - 0.507 
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Central patch loading 

 
Out of plane deflection 

 
The deflection w of a plate segment which is loaded by a central patch loading may be calculated 
as follows: 

 
3

2
Sd

w
Et

ap
kw =  /III.21/ 

Internal stresses 
 

The bending stresses bx and by in a plate segment may be determined by the following 
formulas: 

 
2
Sd

bxSd,bx
t

p
k=  /III.22/ 

 
2
Sd

bySd,by
t

p
k=  /III.23/ 

For a plate segment the equivalent stress may be calculated with the bending stresses given 
above as follows: 

 Sd,bySd,bx
2

Sd,by
2

Sd,bxSd,eq −+=  /III.24/ 
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Coefficients k for patch loading 

Table III.8 Coefficients k 

Loading: Central patch loading 

 

Boundary conditions: 

- All edges are rigidly supported and 
rotationally free. 

Parameters: 

 = u/a,  = v/a 

b/a × kw1 kbxl kbyl 

1 0.1×0.1 0.1254 1.72 1.72 

 0.2×0.2 0.1210 1.32 1.32 

 0.3×0.3 0.1126 1.04 1.04 

 0.2×0.3 0.1167 1.20 1.12 

 0.2×0.4 0.1117 1.10 0.978 

1.5 0.1×0.1 0.1664 1.92 1.70 

 0.2×0.2 0.1616 1.51 1.29 

 0.3×0.3 0.1528 1.22 1.01 

 0.2×0.3 0.1577 1.39 1.09 

 0.2×0.4 0.1532 1.29 0.953 

2.0 0.1×0.1 0.1795 1.97 1.67 

 0.2×0.2 0.1746 1.56 1.26 

 0.3×0.3 0.1657 1.28 0.985 

 0.2×0.3 0.1708 1.45 1.07 

 0.2×0.4 0.1665 1.35 0.929 

3.0 0.1×0.1 0.184 1.99 1.66 

 0.2×0.2 0.1791 1.58 1.25 

 0.3×0.3 0.1701 1.30 0.975 
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 0.2×0.3 0.1753 1.47 1.06 

 0.2×0.4 0.1711 1.37 0.918 

III. Annex C: Internal stresses of unstiffened rectangular plates (Large 
deflection theory) 

 
This annex provides design formulas for the calculation of internal stresses of unstiffened 
rectangular plates based on the large deflection theory for plates. The following loading 
conditions are considered: 

– uniformly distributed loading on the entire plate 
– central patch loading distributed uniformly over the patch area 

The bending and membrane stresses in a plate and the deflection w of a plate may be 
calculated with the coefficients given in the tables of the following sections. The coefficients take 
into account a poisson's ratio  of 0.3. 

 
Definitions 

 
qSd the design value of the distributed load. 
pSd the design value of the patch loading. 
a the smaller side of the plate. 
b the longer side of the plate. 
t the thickness of the plate. 
E the Elastic modulus. 
kw the coefficient for the deflection of the plate given in dependence of the boundary 

conditions of the plate in the data tables. 
kbx the coefficient for the bending stress bx of the plate given in dependence of the 

boundary conditions of the plate in the data tables. 
kby the coefficient for the bending stress by of the plate given in dependence of the 

boundary conditions of the plate in the data tables. 
kmx the coefficient for the membrane stress mx of the plate given in dependence of the 

boundary conditions of the plate in the data tables. 
kmy the coefficient for the membrane stress my of the plate given in dependence of the 

boundary conditions of the plate in the data tables. 
 

Uniformly distributed loading 

 
Out of plane deflection 

 
The deflection w of a plate segment which is loaded by uniformly distributed loading may be 
calculated as follows: 
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3

4
Sd

w
Et

aq
kw =  /III.25/ 

 
 

Internal stresses 
 

The bending stresses bx and by in a plate segment may be determined with the following 
equations: 

 
2

2
Sd

bxSd,bx
t

aq
k=  /III.26/ 

 
2

2
Sd

bySd,by
t

aq
k=  /III.27/ 

The membrane stresses mx and my in a plate segment may be determined as follows: 

 
2

2
Sd

mxSd,mx
t

aq
k=  /III.28/ 

 
2

2
Sd

mySd,my
t

aq
k=  /III.29/ 

At the loaded surface of a plate the total stresses are calculated with the above mentioned 
bending and membrane stresses as follows: 
 Sd,mxSd,bxSd,x +−=  /III.30/ 

 Sd,mySd,bySd,y +−=  /III.31/ 

At the no-loaded surface of a plate the total stresses are determined with the bending and 
membrane stresses as follows: 
 Sd,mxSd,bxSd,x +=  /III.32/ 

 Sd,mySd,bySd,y +=  /III.33/ 

For a plate the equivalent stress eq,Sd may be calculated with the stresses given above as 
follows: 

 Sd,ySd,x
2

Sd,y
2

Sd,xSd,eq −+=  /III.34/ 

The points for which the state of stress are defined in the data tables are located either on the 
centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, 
membrane shearing stresses m as well as bending shear stresses b are zero. The algebraic sum of 
the appropriate bending and membrane stresses at the points considered in the data tables gives 
the values of maximum and minimum surface stresses at these points. 
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Coefficients k for uniformly distributed loadings 

Table III.9 Coefficients k 

Loading: Uniformly distributed loading 
 

 

Boundary conditions: 
 
FBC: All edges are rigidly supported and 

rotationally free. 
 
MBC: Zero direct stresses, zero shear stresses 
Parameters: 

4

4
Sd

Et
aq

Q =  

b/a Q kw1 kbxl kbyl kmxl kmyl kmy2 
1.0 20 0.0396 0.2431 0.2431 0.0302 0.0302 - 0.0589 

 40 0.0334 0.1893 0.1893 0.0403 0.0403 - 0.0841 
 120 0.0214 0.0961 0.0961 0.0411 0.0411 -0.1024 

 200 0.0166 0.0658 0.0658 0.0372 0.0372 - 0.1004 
 300 0.0135 0.0480 0.0480 0.0335 0.0335 - 0.0958 

 400 0.0116 0.0383 0.0383 0.0306 0.0306 - 0.0915 
1.5 20 0.0685 0.3713 0.2156 0.0243 0.0694 -0.1244 

 40 0.0546 0.2770 0.1546 0.0238 0.0822 - 0.1492 
 120 0.0332 0.1448 0.0807 0.0170 0.0789 - 0.1468 

 200 0.0257 0.1001 0.0583 0.0141 0.0715 - 0.1363 
 300 0.0207 0.0724 0.0440 0.0126 0.0646 - 0.1271 

 400 0.0176 0.0569 0.0359 0.0117 0.0595 - 0.1205 
2.0 20 0.0921 0.4909 0.2166 0.0085 0.0801 - 0.1346 

 40 0.0746 0.3837 0.1687 0.0079 0.0984 - 0.1657 
 120 0.0462 0.2138 0.0959 0.0073 0.0992 - 0.1707 
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 200 0.0356 0.1516 0.0695 0.0067 0.0914 - 0.1610 
 300 0.0287 0.1121 0.0528 0.0061 0.0840 - 0.1510 

 400 0.0245 0.0883 0.0428 0.0061 0.0781 - 0.1434 
 

Table III.10 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

free. 
MBC: All edges remains straight. Zero average direct 

stresses, zero shear stresses 

Parameters: 
4

4
Sd

Et
aq

Q =  

b/a Q kw1 kbxl kbyl kmxl kmyl kmx2 kmy2 
1 20 0.0369 0.2291 0.2291 0.0315 0.0315 0.0352 - 0.0343 
 40 0.0293 0.1727 0.1727 0.0383 0.0383 0.0455 - 0.0429 
 120 0.0170 0.0887 0.0887 0.0360 0.0360 0.0478 - 0.0423 
 200 0.0126 0.0621 0.0621 0.0317 0.0317 0.0443 - 0.0380 
 300 0.0099 0.0466 0.0466 0.0280 0.0280 0.0403 - 0.0337 
 400 0.0082 0.0383 0.0383 0.0255 0.0255 0.0372 - 0.0309 

1.5 20 0.0554 0.3023 0.1612 0.0617 0.0287 0.0705 - 0.0296 
 40 0.0400 0.2114 0.1002 0.0583 0.0284 0.0710 - 0.0293 
 120 0.0214 0.1079 0.0428 0.0418 0.0224 0.0559 - 0.0224 
 200 0.0157 0.0778 0.0296 0.0345 0.0191 0.0471 - 0.0188 
 300 0.0122 0.0603 0.0224 0.0296 0.0167 0.0408 - 0.0161 
 400 0.0103 0.0505 0.0188 0.0267 0.0152 0.0369 - 0.0147 
2 20 0.0621 0.3234 0.1109 0.0627 0.0142 0.0719 - 0.0142 
 40 0.0438 0.2229 0.0689 0.0530 0.0120 0.0639 - 0.0120 
 120 0.0234 0.1163 0.0336 0.0365 0.0086 0.0457 - 0.0083 
 200 0.0172 0.0847 0.0247 0.0305 0.0075 0.0384 - 0.0067 
 300 0.0135 0.0658 0.0195 0.0268 0.0067 0.0335 - 0.0058 
 400 0.0113 0.0548 0.0164 0.0244 0.0064 0.0305 - 0.0050 
3 20 0.0686 0.3510 0.1022 0.0477 0.0020 0.0506 - 0.0007 
 40 0.0490 0.2471 0.0725 0.0420 0.0020 0.0441 0.0000 
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 120 0.0267 0.1317 0.0390 0.0320 0.0027 0.0335 0.0010 
 200 0.0196 0.0954 0.0283 0.0271 0.0044 0.0285 0.0027 
 300 0.0153 0.0733 0.0217 0.0242 0.0059 0.0256 0.0044 
 400 0.0127 0.0605 0.0178 0.0221 0.0066 0.0235 0.0051 

Table III.11 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

fixed. 
MBC: Zero direct stresses, zero shear stresses 

Parameters: 
4

4
Sd

Et
aq

Q =  

b/a Q kw1 kbxl kbyl kmxl kmyl kbx2 kmy2 
1 20 0.0136 0.1336 0.1336 0.0061 0.0061 - 0.3062 - 0.0073 

 40 0.0131 0.1268 0.1268 0.0113 0.0113 - 0.3006 - 0.0137 
 120 0.0108 0.0933 0.0933 0.0212 0.0212 - 0.2720 - 0.0286 

 200 0.0092 0.0711 0.0711 0.0233 0.0233 - 0.2486 - 0.0347 
 300 0.0078 0.0547 0.0547 0.0233 0.0233 - 0.2273 - 0.0383 

 400 0.0069 0.0446 0.0446 0.0226 0.0226 - 0.2113 - 0.0399 
1.5 20 0.0234 0.2117 0.1162 0.0061 0.0133 - 0.4472 - 0.0181 

 40 0.0222 0.1964 0.1050 0.0098 0.0234 - 0.4299 - 0.0322 
 120 0.0173 0.1406 0.0696 0.0124 0.0385 - 0.3591 - 0.0559 

 200 0.0144 0.1103 0.0537 0.0116 0.0415 - 0.3160 - 0.0620 
 300 0.0122 0.0879 0.0430 0.0105 0.0416 - 0.2815 - 0.0636 

 400 0.0107 0.0737 0.0364 0.0098 0.0409 - 0.2583 - 0.0635 
2 20 0.0273 0.2418 0.0932 0.0010 0.0108 - 0.4935 - 0.0150 

 40 0.0265 0.2330 0.0897 0.0017 0.0198 - 0.4816 - 0.0277 
 120 0.0223 0.1901 0.0740 0.0032 0.0392 - 0.4223 - 0.0551 

 200 0.0192 0.1578 0.0621 0.0039 0.0456 - 0.3780 - 0.0647 
 300 0.0165 0.1306 0.0518 0.0042 0.0483 - 0.3396 - 0.0690 

 400 0.0147 0.1120 0.0446 0.0044 0.0487 - 0.3132 - 0.0702 
3 20 0.0288 0.2492 0.0767 - 0.0015 0.0027 - 0.5065 - 0.0033 
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 40 0.0290 0.2517 0.0795 - 0.0022 0.0066 - 0.5095 - 0.0084 
 120 0.0281 0.2440 0.0812 - 0.0010 0.0247 - 0.4984 - 0.0331 

 200 0.0260 0.2230 0.0750 0.0000 0.0368 - 0.4702 - 0.0497 
 250 0.0247 0.2096 0.0707 0.0002  0.0415 - 0.4520 - 0.0564 

Table III.12 Coefficients k 

Loading: Uniformly distributed loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and 

rotationally fixed. 
MBC: All edges remains straight. Zero average 

direct stresses, zero shear stresses 

Parameters: 
4

4
Sd

Et
aq

Q =  

b/a Q kw1 kbxl kbyl kmxl kmyl kbx2 kmx2  kmy2 
1 20 0.0136 0.1333 0.1333 0.0065 0.0065 - 0.3058 0.0031 - 0.0055 
 40 0.0130 0.1258 0.1258 0.0118 0.0118 - 0.3000 0.0059 - 0.0103 
 120 0.0105 0.0908 0.0908 0.0216 0.0216 -0.2704 0.0123 - 0.0202 
 200 0.0087 0.0688 0.0688 0.0234 0.0234 - 0.2473 0.0151 - 0.0233 
 300 0.0073 0.0528 0.0528 0.0231 0.0231 - 0.2267 0.0169 - 0.0244 
 400 0.0063 0.0430 0.0430 0.0223 0.0223 - 0.2119 0.0176 - 0.0246 

1.5 20 0.0230 0.2064 0.1125 0.0137 0.0097 - 0.4431 0.0118 - 0.0082 
 40 0.0210 0.1833 0.0957 0.0218 0.0155 - 0.4195 0.0200 - 0.0133 
 120 0.0149 0.1175 0.0532 0.0275 0.0202 - 0.3441 0.0295 - 0.0185 
 200 0.0118 0.0876 0.0369 0.0259 0.0195 - 0.3028 0.0304 - 0.0182 
 300 0.0096 0.0678 0.0275 0.0238 0.0180 - 0.2710 0.0300 - 0.0173 
 400 0.0083 0.0562 0.0221 0.0220 0.0168 - 0.2492 0.0291 - 0.0163 
2 20 0.0262 0.2288 0.0853 0.0140 0.0060 - 0.4811 0.0149 - 0.0052 
 40 0.0234 0.1994 0.0701 0.0206 0.0086 - 0.4492 0.0234 - 0.0077 
 120 0.0162 0.1276 0.0404 0.0238 0.0094 - 0.3611 0.0299 - 0.0086 
 200 0.0129 0.0963 0.0296 0.0223 0.0085 - 0.3162 0.0289 - 0.0079 
 300 0.0105 0.0752 0.0230 0.0208 0.0077 - 0.2824 0.0274 - 0.0072 
 400 0.0090 0.0627 0.0190 0.0196 0.0071 - 0.2600 0.0259 - 0.0066 
3 20 0.0272 0.2331 0.0700 0.0102 0.0010 - 0.4878 0.0111 - 0.0008 
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 40 0.0247 0.2071 0.0615 0.0149 0.0011 - 0.4575 0.0167 - 0.0009 
 120 0.0177 0.1396 0.0413 0.0186 0.0009 - 0.3727 0.0202 - 0.0005 
 200 0.0143 0.1074 0.0319 0.0184 0.0009 - 0.3272 0.0197 - 0.0003 
 300 0.0117 0.0848 0.0251 0.0176 0.0008 - 0.2924 0.0192 - 0.0002 
 400 0.0101 0.0709 0.0210 0.0169 0.0008 - 0.2687 0.0182 0.0000 

Central patch loading 

 
Out of plane deflection 

 
The deflection w and the stresses shall be determined with the formulas provided calculated of a 
plate which is loaded by a central patch loading may be calculated as follows: 

 
3

4
Sd

w
Et

ap
kw =  /III.35/ 

Internal stresses 
 

The bending stresses bx and by in a plate segment may be determined with the following 
equations: 

 
2

2
Sd

bxSd,bx
t

ap
k=  /III.36/ 

 
2

2
Sd

bySd,by
t

ap
k=  /III.37/ 

The membrane stresses mx and my in a plate segment may be determined as follows: 

 
2

2
Sd

mxSd,mx
t

ap
k=  /III.38/ 

 
2

2
Sd

mySd,my
t

ap
k=  /III.39/ 

At the loaded surface of a plate the total stresses are calculated with the above mentioned 
bending and membrane stresses as follows: 
 Sd,mxSd,bxSd,x +−=  /III.43/ 
 Sd,mySd,bySd,y +−=  /III.41/ 

At the no-loaded surface of a plate the total stresses are determined with the bending and 
membrane stresses as follows: 
 Sd,mxSd,bxSd,x +=  /III.42/ 
 Sd,mySd,bySd,y +=  /III.43/ 

For a plate the equivalent stress eq,Sd may be calculated with the stresses given above as 
follows: 

 Sd,ySd,x
2

Sd,y
2

Sd,xSd,eq −+=  /III.44/ 
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The points for which the state of stress are defined in the data tables are located either on the 
centre lines or on the boundaries, so that due to symmetry or the postulated boundary conditions, 
membrane shearing stresses m as well as bending shear stresses b are zero. The algebraic sum of 
the appropriate bending and membrane stresses at the points considered in the data tables gives 
the values of maximum and minimum surface stresses at these points. 

 
Coefficients k for uniformly distributed loadings 

Table III.13 Coefficients k 

Loading: Central patch loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

free. 
MBC: Zero direct stresses, zero shear stresses 

Parameters:  = u/a;  = v/a, b/a = 1 

× P kw1 kbxl kbyl kmxl kmyl 
0.1×0.1 10 0.1021 1.4586 1.4586 0.1548 0.1548 

 20 0.0808 1.2143 1.2143 0.1926 0.1926 
 60 0.0485 0.8273 0.8273 0.2047 0.2047 
 100 0.0372 0.6742 0.6742 0.1978 0.1978 
 150 0.0298 0.5693 0.5693 0.1892 0.1892 
 200 0.0255 0.5005 0.5005 0.1823 0.1823 

0.2×0.2 10 0.0998 1.0850 1.0850 0.1399 0.1399 
 20 0.0795 0.8593 0.8593 0.1729 0.1729 
 60 0.0478 0.5108 0.5108 0.1756 0.1756 
 100 0.0364 0.3881 0.3881 0.1624 0.1624 
 150 0.0293 0.3089 0.3089 0.1505 0.1505 
 200 0.0249 0.2614 0.2614 0.1412 0.1412 

0.3×0.3 10 0.0945 0.8507 0.8507 0.1144 0.1144 
 20 0.0759 0.6614 0.6614 0.1425 0.1425 
 60 0.0459 0.3702 0.3702 0.1425 0.1425 
 100 0.0351 0.2704  0.2704 0.1300 0.1300 
 150 0.0282 0.2101 0.2101 0.1186 0.1186 
 200 0.0240 0.1747 0.1747 0.1102 0.1102 

0.2×0.3 10 0.0971 0.9888 0.9128 0.1224 0.1288 
 20 0.0776 0.7800 0.7101 0.1512 0.1602 
 60 0.0468 0.4596 0.4021 0.1488 0.1624 
 100 0.0358 0.3468 0.2957 0.1368 0.1512 
 150 0.0287 0.2760 0.2307 0.1248 0.1389 
 200 0.0245 0.2340 0.1926 0.1152 0.1310 
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0.2×0.4 10 0.0939 0.9119 0.7961 0.1078 0.1183 
 20 0.0755 0.7216 0.6142 0.1320 0.1487 
 60 0.0457 0.4235 0.3355 0.1287 0.1516 
 100 0.0350 0.3201 0.2435 0.1166 0.1408 
 150 0.0280 0.2541 0.1868 0.1045 0.1301 
 200 0.0239 0.2156 0.1545 0.0968 0.1213 

Table III.14 Coefficients k 

Loading: Central patch loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

free. 
MBC: Zero direct stresses, zero shear stresses 

Parameters:  = u/a;  = v/a, b/a = 1.5 

× P kw1 kbxl kbyl kmxl kmyl 
0.l×0.1 10 0.1303 1.5782 1.3855 0.1517 0.1921 

 20 0.1018 1.3056 1.1373 0.1786 0.2295 
 60 0.0612 0.8986 0.7701 0.1824 0.2380 
 100 0.0469 0.7411 0.6273 0.1747 0.2295 
 150 0.0378 0.6298 0.5287 0.1670 0.2193 
 200 0.0323 0.5568 0.4641 0.1594 0.2125 

0.2×0.2 10 0.1281 1.1974 1.0049 0.1344 0.1780 
 20 0.1007 0.9453 0.7766 0.1555 0.2116 
 60 0.0605 0.5783 0.4554 0.1465 0.2103 
 100 0.0462 0.4485 0.3457 0.1329 0.1974 
 150 0.0372 0.3624 0.2748 0.1208 0.1845 
 200 0.0317 0.3111 0.2322 0.1133 0.1742 

0.3×0.3 10 0.1229 0.9589 0.7737 0.1074 0.1525 
 20 0.0972 0.7405 0.5828 0.1232 0.1818 
 60 0.0585 0.4282 0.3161 0.1110 0.1788 
 100 0.0449 0.3221 0.2353 0.0988 0.1667 
 150 0.0361 0.2550 0.1828 0.0878 0.1535 
 200 0.0309 0.2147 0.1525 0.0805 0.1444 

0.2×0.3 10 0.1260 1.1037 0.8360 0.1154 0.1657 
 20 0.0994 0.8688 0.6322 0.1321 0.1984 
 60 0.0598 0.5296 0.3553 0.1168 0.1973 
 100 0.0459 0.4114 0.2649 0.1043 0.1853 
 150 0.0369 0.3336 0.2082 0.0931 0.1722 
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 200 0.0314 0.2877 0.1755 0.0848 0.1624 
0.2×0.4 10 0.1235 1.0294 0.7271 0.0993 0.1563 

 20 0.0977 0.8101 0.5432 0.1109 0.1877 
 60 0.0590 0.4954 0.2983 0.0955 0.1877 
 100 0.0453 0.3857 0.2220 0.0826 0.1754 
 150 0.0365 0.3148 0.1744 0.0722 0.1630 
 200 0.0311 0.2722 0.1468 0.0658 0.1544 

Table III.15 Coefficients k 

Loading: Central patch loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

free. 
MBC: Zero direct stresses, zero shear stresses 

Parameters:  = u/a;  = v/a, b/a = 2 

× P kw1 kbxl kbyl kmxl kmyl 
0.1×0.1 10 0.1438 1.6351 1.3560 0.1517 0.1904 

 20 0.1154 1.3692 1.1106 0.1773 0.2288 
 60 0.0725 0.9633 0.7498 0.1753 0.2438 
 100 0.0564 0.7979 0.6112 0.1675 0.2355 
 150 0.0456 0.6797 0.5127 0.1596 0.2271 
 200 0.0390 0.6028 0.4492 0.1517 0.2188 

0.2×0.2 10 0.1414 1.2542 0.9752 0.1326 0.1751 
 20 0.1138 1.0078 0.7510 0.1513 0.2104 
 60 0.0716 0.6427 0.4410 0.1373 0.2167 
 100 0.0555 0.5054 0.3339 0.1232 0.2054 
 150 0.0449 0.4134 0.2646 0.1108 0.1928 
 200 0.0384 0.3572 0.2230 0.1030 0.1827 

0.3×0.3 10 0.1362 1.0227 0.7506 0.1062 0.1517 
 20 0.1104 0.8090 0.5615 0.1190 0.1822 
 60 0.0698 0.4941 0.3093 0.1024 0.1862 
 100 0.0542 0.3789 0.2275 0.0883 0.1753 
 150 0.0421 0.3046 0.1783 0.0794 0.1645 
 200 0.0374 0.2586 0.1487 0.0717 0.1546 

0.2×0.3 10 0.1395 1.1702 0.8164 0.1146 0.1231 
 20 0.1129 0.9396 0.6153 0.1262 0.1990 
 60 0.0712 0.6003 0.3488 0.1088 0.2044 
 100 0.0553 0.4742 0.2611 0.0943 0.1947 
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 150 0.0447 0.3901 0.2065 0.0841 0.1830 
 200 0.0383 0.3379 0.1744 0.0754 0.1733 

0.2×0.4 10 0.1375 1.0976 0.7051 0.0959 0.1551 
 20 0.1117 0.8829 0.5267 0.1053 0.1886 
 60 0.0706 0.5670 0.2945 0.0851 0.1942 
 100 0.0549 0.4496 0.2220 0.0729 0.1849 
 150 0.0445 0.3713 0.1765 0.0635 0.1737 
 200 0.0381 0.3227 0.1496 0.0554 0.1644 

Table III.16 Coefficients k 

Loading: Central patch loading 

 

Boundary conditions: 
FBC: All edges are rigidly supported and rotationally 

free. 
MBC: Zero direct stresses, zero shear stresses 

Parameters:  = u/a;  = v/a, b/a = 2.5 

× P kw1 kbxl kbyl kmxl kmyl 

0.1×0.1 10 0.1496 1.6636 1.3463 0.1552 0.1826 
 20 0.1235 1.4109 1.1006 0.1811 0.2175 

 60 0.0861 1.0428 0.7453 0.1811 0.2374 
0.2×0.2 10 0.1470 1.2814 0.9650 0.1359 0.1688 

 20 0.1218 1.0491 0.7400 0.1548 0.2000 
 60 0.0849 0.7205 0.4363 0.1390 0.2088 

0.3×0.3 10 0.1419 1.0504 0.7410 0.1092 0.1443 
 20 0.1182 0.8489 0.5519 0.1222 0.1726 

 60 0.0827 0.5681 0.3052 0.1014 0.1775 
0.2×0.3 10 0.1455 1.1981 0.8056 0.1161 0.1579 

 20 0.1210 0.9820 0.6053 0.1294 0.1876 
 60 0.0847 0.6806 0.3487 0.1088 0.1982 

0.2×0.4 10 0.1434  0.6949 0.0986 0.1469 
 20 0.1199 0.9261 0.5168 0.1069 0.1763 

 60 0.0844 0.6480 0.2993 0.0849 0.1873 
 
 
 



 320 

References 
 
 
Adotte, G.D. (1967). Second–Order Theory in Orthotropic Plates. Journal of the Structural Division, Proc. 

ASCE, 93 (October 1967), pp. 343-362. 
Bancila, R.: "Noile norme Europeene: EC 3/2 extras selectiv" Al II-lea Seminar de Poduri "Directii actuale 

in calculul si prosecturea podurilor", Universitatea "Politehnica" Timisoara, martie 1996, pp. 97-149 
Bares, R. and Massonnet, C. (1968). Analysis of beam grids and orthotropic plates by the Guyon-

Massonnet-Bares, SNTL, Prague, 1968 and Crosby-Lockwood, London, 1968 
Bittner, E. (1938). Momententafeln und Einflussflachen fur Kreuzweise Bewehrte Eisenbetonplatten, 

Springer, Wien 
Boobnov, I.G. (1902). On the Stresses in a Ship’s Bottom Plating Due to Water pressure, Transactions of the 

Institutions of Naval Architects, London, Vol. 44 
Boussinesq, J.V. (1879). Complements a une etude sur la theorie de l’equilibre et du mouvement des solides 

elastiques don’t certaines dimensions sont tres-petites par rapport a l’autre, Journal de Mathematiques, 
T-5, Paris 

Bölcskei, E. (1968). Beton- vasbeton és feszítettbeton hidak (in Hungarian), Tankönyvkiadó, Budapest 
BS 5400 (1982). Steel, concrete and composite bridges, Part 3. 
Cartledge, P. (1973). Steel box girder bridges. Proceedings of the International Conference, The Institution 

of Civil Engineers, London, p. 315. 
Catalogue. Bridges on the Danube CD-ROM (1998). International Conference, Regensburg. Editor-in-

Chief: Prof. M. Iványi. 
Cauchy, A.L. (1828). De la pression dans un systeme de point materiels, Excersices de Mathematique, Paris 
Cheung, Y.K. (1968). The Finite Strip Method in the Analysis of Elastic Plates With Two Simply Supported 

Ends. Proc. ICE, 40, December 1968, p.1 
Cornelius, W. (1952). Die Berechnung der ebenen Flächentragwerke mit Hilfe der Theorie der Orthogonal-

anisotropen Platte, Der Stahlbau, Vol. 2, pp. 21-26, Vol. 3, pp. 43-48, Vol. 4, pp. 60-64. 
Domanovszky, S. (1984). Manufacturing and erection of steel structures (in Hungarian), Mérnöki kézikönyv 

Vol. II (Palotás, L. editor) Steel structures, Műszaki Könyvkiadó, Budapest 
Dörnen, A. (1955). Stahlüberbau der Weserbrücke Porta, Der Stahlbau, p. 97. 
ECCS (1985). <<Recommendation for the Fatigue Design of Steel Structures.>> European Convention for 

Constructional Steelwork, Brussels, Publication No.43. 
Eibl, J. (1983). Bericht des Ad-Hoc-Ausschusses "Mitwirkende Plattenbreite", Bonn. 
Eisel, H., Müller, C. and Sedlacek, G.: Worked examples to demonstrate the use of design rules of 

Eurocode 3 – Part 2., Institute of Steel Construction, RWTH Aachen, 1995.  
ENV 1993-1-7:April 1998. Eurocode 3: Design of steel structures – Part 1-7: Supplementary rules for planar 

plated structural elements with transverse loading 
ESDEP (1994). European Steel Design Education Programme Vol. 10. Plates and Shells, British Steel, 

administered by the Steel Construction Institute 
Eurocode 1, Part 3.2 (1992). Traffic Loads on Road Bridges, Draft July 1992, CEN Bruxelles. 
Faltus, F. (1927). Lastverteilende Querverbindungen, II. Int. Tagung für Brückenbau und Hochbau, Wien, 

pp. 200-203 



 321 

Geckeler, J.W. (1928). Elastiuzitastheorie anisotroper Körper, Handbuch der Physik, Band VI, Berlin 
Gehring, F. (1860). De acquationibus differentialibus quibus aequilibrium et motus laminae crystallinac 

definitur, Berlin 
Guyon, Y. (1946a). Calcul des Ponts Larges a pouters Multiples Solidarisees par des Entretoises, Annales 

des Ponts et Chaussees, No. V, Septembre-Octobre 1946, pp. 553-612. 
Guyon, Y. (1946b). Calcul des Ponts-Dalles, Annales des Ponts et Chaussees, Vol. 36., pp. 683-718. 
Günther, G.H. (1985). Beanspruchung von Stahlbrücken beim Einbau bituminöser Fahrbahnbeläge aufgrund 

gemessener Temperaturverteilungen, BAST, B 3.1-3440. 
Günther, G.H., Bild, S. and Sedlacek, G. (1987). Durability of asphaltic pavements on orthotropic decks of 

steel bridges. J. Constr. Steel Res., 85. 
Halász, O., Hunyadi, F. (1959). Ortotrop pályalemezes hidak szerkezeti és számítási kérdései (in Hungarian), 

Mérnöki Továbbképző Intézet kiadványa, Felsőoktatási Jegyzetellátó Vállalat, Budapest 
Hawranek, H. and Steinhardt, O. (1958). Theorie und Berechnung der Stahlbrücken, Springer, Berlin 
Huber, M.T. (1914). Die Grundlagen einer Rationellen Berechnung der Kreuzwiese Bewehrten 

Eisenbetonplatten. Zeitschrift des Osterreichischen Ingenieur-u. Architeken-Vereines, Vol. 66, No. 30 
Huber, M.T. (1922). Teorya Plyt, Lvov 
Huber, M.T. (1923). Die Theorie der Kreuzweise bewehrten Eisenbetonplatten. Der Bauingenieur, Nos. 12, 

13 
Huber, M.T. (1929). Problems der Statik technish wichtiger orthotropen Platten, Warsaw 
Huber, M.T. (1950). Theorie de L’elasticite, (in Polish), Cracow, Vol. I,1948, Vol. II. 1950) 
Huber, M.T. (1956). Pisma, Tom II., Polska Akademia Nauk, Warszawa 
Huber, M.T. (1957). Pisma, Tom III., Polska Akademia Nauk, Warszawa 
Iványi, M. (2002). Refurbishment of Steel Bridges, in Mazzolani, F.M. and Iványi, M., editors: 

Refurbishment of Buildings and Bridges, Springer Wien New York, CISM Courses No. 435, pp. 61-150. 
Iványi, M., Agócs, Z. Balaz, I. (1990). Torsion of Steel Beams (in Hungarian), Budapest-Bratislava, 

Mérnöki Továbbképző Intézet, BME. 
Johansson, B., Maquoi, R., Sedlacek, G., Müller, C. and Schneider, R.: Die Behandlung des Beulens bei 

dünnewardingen, Stahlkonstructionen in ENV 1993-Teil 1,5. (Eurocode 3-1-5), Stahlbau 68 (1999), Heft 
11.  

Johansson, B., Maquoi, R., and Sedlacek, G.: New design rules for plated structures in Eurocode 3, Journal 
of Constructional Steel Research, Vol.57, No.3, March 2001, pp. 279-311.  

Kahmann, R. (1973). Schweißverfahren bei der Jegsttalbrücke, Der Bauingenieur, p. 269. 
Karman, Th. (1910). Festigkeitsprobleme in Maschinenbau; Encyklopädie der mathematischen 

Wissenschaften, Teilband IV. 4, Teubner, Leipzig, p. 348-350. 
Koller, I. (2001). Main data of the Danube bridge Szekszárd (In Hungarian) UVATERV. 
Köppel, K. and Yamada, M. (1960). Anisotrope Flussbedingung, Der Stahlbau, No. 6, June 1960, pp. 173-

179. 
Kunert, K. (1967). Einige Überlegungen zur Projektierung von Stahlbrücken am Beispiel der Mainbrücke 

Hocheim, Der Bauingenieur, p. 313. 
Lechnitsky, S.G. (1947). Anisotropic Plates, 2nd Edition, Moscow (In Russian) 
Lechnitsky, S.G. (1963). Theory of Elasticity of an Anisotropic Body, Holden-Day Inc., San Francisco 
Leonhardt, F. (1938). Die vereinfachte Berechnung zweiseitig gelagerter Trägerroste, Die Bautechnik, pp. 

535-557, 648. 
Levy, M. (1899). Comptes rendus, Vol.129, pp- 535-539 



 322 

Lindner, J. and Bamm, D. (1982). Berechnung von orthotropen Platten und Trägerrosten, Stahlbau 
Handbuch, Band 1, Köln, pp. 217-240. 

Massonnet, Ch. (1950a). Contribution au calcul des ponts a poutres multiples, Annales des Travaux, Publics 
de Belgique, Juin, Octobre, Decembre. 

Massonnet, Ch. (1950b). Methods de calcul des ponts á poutres multiples tenant compte de leur résistance á 
la torsion, Publications International Association for Bridge and Structural Engineering, Vol. 10. 

Massonnet, Ch. (1950c). Methods de calcul des ponts á poutres multiples tenant compte de leur résistance á 
la torsion, Mémoires AIPC X, Zurich, pp. 147-182. 

Massonnet, Ch. (1955). Le Dimensionnement Pratique Des Ponts a Poutres Multiples et Des Ponts-Dalles en 
Tenant Compte de Leur Rigidite Torsionelle, Construczioni in Cemento Armato, No. 7, Rendiconti e 
Publicazioni, Milano, pp. 77-114. 

Massonnet Ch. (1968). Thin-walled deep plate girders. Proc. of 8th Congress of the IABSE, New York, pp. 
194-209. 

Massonnet Ch. and Maquoi, R. (1973). New theory and tests on the ultimate strength of stiffened box girders 
in Proceedings, Steel box girder bridges International Conference. The Institute of Civil Engineers, 
London, pp. 131-143. 

Maquoi, R. (1971). Measurement of the initial deflections of stiffened panels of large box girders (in 
French). IABSE Publications, 31, Part 2, 141-151. 

Maquoi, R. and Massonnet Ch. (1971). Non-linear theory of post-buckling resistance of large stiffened box 
girders (in French). IABSE Publications, Zürich 

Maquoi, R. and Massonnet Ch. (1972). Design of plate and box girders for ultimate strength. Proc. of IABSE 
Colloquium, London, March 1971, Leemann, Zürich 

Maquoi, R. and Massonnet Ch. (1982). Une evaluation simple de la largeur efficace due au traînage de 
cisaillement, Constrùction Métallique, No. 2. 

Nakai, H. and Yoo, C.H. (1988). Analysis and Design of Curved Steel Bridges. McGraw-Hill Book 
Company 

Nather F. (1991). Rehabilitation and Strengthening of Steel Road Bridges. In Structural Engineering 
International, Volume 1, No.3, 24-30. 

Patentschrift No. 847014 (1948). Dr. Cornelius/MAN. Straßenbrücke mit Flachblech. 
Pelikan, W. and Esslinger, M. (1957). Die Stahlfahrbahn – Berchnung und Konstruktion, MAN 

Forschungsheft, No. 7. 
Pflüger, A. (1947). About the buckling problem of the anisotropic rectangular plate (in German), Ing. Arch. 

Vol. 16, pp 111-120. 
prENV 1993-2:1997. Eurocode 3: Design of steel structures – Part 2: Steel bridges 
prENV 1993-1-5:1997. Eurocode 3: Design of steel structures – Part 1-5: General rules – Supplementary 

rules for planar plated structures without transverse loading 
prENV 1993-1-7:1998. Eurocode 3: Design of steel structures – Part 1-7: General rules – Supplementary 

rules for planar plated structural elements with transverse loading 
Pucher, A. (1938). Die Momenteneinflussfelder rechteckiger Platten, No. 90 der Reihe “Deutscher 

Ausschussfur Eisenbetonbau“, Wilhelm Ernst u. Sohn, Berlin 
Roloff, M. (1942). Erfahrungen mit Leichtfahrbahnen strählerner Reichsautobahnbrücken, Die Bautechnik, 

p. 433. 
Roik, K. and Sedlacek, G. (1970). Erweiterung der technischen Biege- und Verdrehtheorie unter 

Berücksichtung von Schubverformungen, Die Bautechnik, 47. 



 323 

Rostovtsev, G.G. (1940). Calculation of a thin plate sheeting supported by rods (in Russian) Tondy, 
Leningrad, Inst. Juzkererov, Grazhdanskogo Vasdaghnogo Flota, No. 20. 

Rostovtsev, G.G. (1968). in Anisitropic plates by Leknitskii, S.G., Gordon and Breach, p. 291. 
Schaechterle and Leonhardt (1936). Leichte Fahrbahndecken auf stählernen Straßenbrücken, Die 

Bautechnik, p. 246. 
Sedlacek, G. (1972). Bemerkenswerte Straßenbrücken aus Stahl der letzten 10 Jahre, Technishe Mitteilungen 

Krupp, p. S. 53. 
Sedlacek, G. (1982). Zweiachsige Biegung und Torsion, Stahlbau Handbuch Band 1, Köln. 
Sedlacek, G. (1992). Orthotropic Plate Bridge Decks, In Dowling, P.J., Harding, J.E. and Bjorhovde, R., 

editors: Construction Steel Design. An International Guide, Elsevier Applied Science, London and New 
York. 

Sedlacek, G. and Bild, S. (1984). Simplified rules for the determination of the effective width of bridge 
decks caused by shear lag Verba volant, scripta manent Imprimeries Cérés s.p.r.-Liége, pp. 333-348. 

Sedlacek, G. and Merzenich, G. (1991). Gutachten zu den Lastannahmen für die Verbreiterung der 
Rheinbrücke Mainz-Weisenau, RWTH Aachen (unpublished). 

Skaloud, M. and Novotny, R. (1965). Post-critical behaviour ofan initially curved uniformly compressed 
panel, reinforced in its middle by longitudinal stiffener (in German), Acta Tech., ČSAV, No. 2 

Skaloud, M. (1970). Post-buckled behaviour of stiffened webs, Academia Nakladatelstoi Ceskoslovenske 
Akademie VED, Prague 

Szabó, J. and Visontai, J. (1962). Válogatott fejezetek a tartók sztatikája köréből (in Hungarian), 
Tankönyvkiadó, Budapest. 

Tesar, A. (1977), Kovové konštrukcie a mosty, Moderné ocel’ové mosty, II. čast’ (in Slovak), ES SVŠT, 
Bratislava. 

Troitsky, M.S. (1976). Stiffened Plates: Bending, Stability and Vibrations, Elsevier Scientific Publishing 
Company, Amsterdam-Oxford-New York, pp. 114-122. 

Troitsky, M.S. (1987). Orthotropic Bridges. Theory and Design, The James F. Lincoln Arc Weld Found, 
Cleveland, Ohio. 

Visontai, J. (1965). V. Ortotrop lemezek számításának menete (in Hungarian) (Dénes E., Korányi I., Tóth B., 
Visontai J.: Acélhidak), Mérnöki Továbbképző Intézet Kiadványa, Tankönyvkiadó, Budapest, pp. 145-
170. 

Weitz, F.-R. (1966). Entwicklungstendenzen des Stahlbrückenbaus am Beispiel der Rheinbrücke 
Wiesbaden-Schierstein, Der Stahlbau, Vol. 35, No. 10, pp. 289-301, Vol. 12. pp. 357-365. 

Weitz, F.-R. (1974). Neuzeitliche Gesichtspunkte im schweiβenden Brückenbau, Der Stahlbau, Vol. 43, No. 
3, pp. 73-81. 

Weitz, F.-R. (1975). Entwurfsgrundlangen und Entscheidungskriterien für Konstruktionssysteme im 
Groβbrückenbau unter besonderer Berücksichtigung der Fertigung, Dissertation, Darmstadt. 

Voigt, W. (1910). Lehrbuch der Kristallphysik, Lepzig 
Wolchuk, R. (1990). Lessons from weld cracks in orthotropic decks on three European bridges. Journal of 

Structural. Engineering, 75. 
Wolmir, A.S. (1962). Flexibile plates and shells (in German), VEB für Bauwesen, Berlin 
Zienkiewicz, O.C. and Cheung, Y.K. (1964). The Finite Element Method for Analysis of Elastic Isotropic 

and Orthotropic Slabs, Proc. Int. Civ. Eng., London, Vol. 28, August 1964. 
 


	Orthotropic1
	Orthotropic2
	Orthotropic3_1
	3 Limit States and Modelling of Orthotropic Plate
	3.1 Collapses of Plate and Box Girder Bridges
	3.2 Design Criteria for the Different Substructures [Sedlacek, 1992]
	3.2.1 Analytical model for substructures S1
	3.2.2 Analytical model for substructures S2
	3.2.2.1 Transverse stiffness of the orthotropic plate (Dx)
	3.2.2.2 Longitudinal stiffness of the orthotropic plate (Dy)
	3.2.2.3 The torsion stiffness of the orthotropic plate (H)

	3.2.3 Analytical model for substructures S3
	3.2.3.1 The determination of the loading of the longitudinal beams
	3.2.3.2 Determination of bearing forces, considering rigid crossbeams
	3.2.3.3 The effect of the elasticity of the crossbeam
	3.2.3.4 Calculation of orthotropic plates in case of longitudinal beams with torsion stiffness
	3.2.3.5 Stresses in the floor slab from direct loading (tertiary stresses)




	Orthotropic3_2
	3.2.3.6 Calculation of gridworks
	3.2.3.6.1 Introduction
	3.2.3.6.2 Analysis of a straight gridwork with one cross-girder with compatibility method [Szabó, Visontai, 1962]
	3.2.3.6.3 Approximate calculation of gridworks by substituting them with orthotropic plate
	3.2.4 Analytical model for substructures S4

	Orthotropic3_3
	Orthotropic4
	Orthotropic4_2_1
	Orthotropic4_2_2
	Orthotropic4_2_3
	Orthotropic4_2_4
	Orthotropic4_2_5
	Orthotropic5
	Orthotropic6
	References
	Orthotropic_App_I
	Orthotropic_App_II
	Orthotropic_App_III
	References

