Atomspektroszkópia alapjai

Ismétlés: A kölcsönhatás módozatai

EMISSZIÓ

anyag + (pl. kinetikus, hő) energia \rightarrow spontán emisszió

ABSZORPCIÓ

anyag + elektromágneses sugárzás → átengedett elektromágneses sugárzás

 I_0 – besugárzó fény intenzitása, I_T – áteresztett (transzmittált) fény intenzitása, $I_A = I_0 - I_T$ abszorbeált fény intenzitása, T = I_T / I_0 - transzmittancia (áteresztés hányada)

FLUORESZCENCIA

anyag + e.m.s. \rightarrow kibocsátott e.m.s. (fluoreszcencia)

REFLEXIÓ

anyag + e.m.s. \rightarrow reflektált e.m.s Abszorpció: $I_A = I_o + I_T + I_R$ kell: $I_R = 0$ Reflexió: $I_A = I_o + I_T + I_R$ kell: $I_T = 0$

Módszerek alkalmazási lehetőségei

Alkalmazági terület	Analízis	
AIKAIMAZASI CELUIEC	Kvalitatív	Kvantitatív
Atomspektroszkópia (UV, VIS) emisszió	++	++
abszorpció	+	++
fluoreszcencia	+	++
Molekulaspektroszkópia UV-VIS: abszorpció	_	++
IR: abszorpció	++	(+)
UV-VIS: reflexió	(+)	++
UV-VIS: fluoreszcencia	(+)	++

ATOMSPEKTROSZKÓPIA

- A méréshez atomokat kell előállítani, ami csak gáz fázisban lehetséges
- Kb. <u>70 elemre alkalmazható; szelektív módszer</u>
- Mérési tartomány:

ppm (egy a millióhoz hígításban) ppb (egy a billióhoz hígításban) •A módszerek csoportosítása az <u>atomizálás módja</u> szerint történik.

atomizálás	Т(°С)	alkalmazás	A módszer neve
Láng	1700- 3200	emisszió, abszorpció, fluoresszencia	AES - lángfotometria AAS - atom abszorpciós sp. AFS - atom fluoreszcens sp.
Elektrotermikus	1200- 3000	abszorpció, fluoresszencia	GF-AAS GF-AFS (GF: grafit-furnice)
Induktíve csatolt plazma	6000- 8000	emisszió, fluoresszencia	ICP
Direkt áramú plazma	6000- 10000	emisszió	DCP
Elektromos ív	4000- 5000	emisszió	ívgerjesztésű emissziós sp.
Elektromos szikra	10000	emisszió	szikragerjesztésű e. sp.

Lángatomizáción alapuló módszerek

Láng létrehozása:

	Lang lettenozasa.	
	<u>gázok</u>	
	$\begin{array}{lll} & \underbrace{\text{éghető (1)}}_{H_2} & \underbrace{\text{égést tápláló (2)}}_{O_2} \\ H_2 & + & O_2 \\ H_2 & + & \text{levegő} \\ \text{szénhidrogének + levegő} \\ C_2H_2 & + & O_2 \\ C_2H_2 & + & \text{levegő} \\ C_2H_2 & + & \text{levegő} \\ C_2H_2 & + & N_2O \end{array}$	Ezek arányától függően kaphatunk: oxidatív (2 sok) v. reduktív lángot (1 sok); Minél több az égést tápláló gáz aránya, annál magasabb hőmérséklet érhető el.
	Az oldatot porlasztással juttatják a la ami történhet - közvetlenül (egyszerűbb, de inh - ködkamrásan (monodiszperz, d A lángatomizáció folyamatát a láng meg szabályozzák (porlasztással elég jó a re	ángba, nomogén) e kevesebb minta jut be). felelő beállításával produkálhatóság).
A megfigyelés helyén a legkisebb a háttérsugárzás, ill. reduktív láng esetén itt a legkisebb mértékű az oxidok keletkezése.		

A lángatomizáció előnye hogy könnyen alakítható ki stacionárius állapot.

Atom abszorpciós spektroszkópia (AAS)

- Elem (atom) szelektív analízis módszer
- A módszer az elemre jellemző hullámhosszúságú fény elnyelésén alapul
- Nyomelemzésre alkalmas módszer (10⁻³ – 10⁻¹⁵)
- Az elemek többségének meghatározására alkalmas

AA módszerrel mérhető elemek

A mérés pontossága a kimutatási határ közelében

Az AA alapelvei

- Minden atom képes diszkrét energiaadagokat felvenni elektromágneses sugárzás formájában
 - hőelnyelés infravörös sugárzás
 - fényelnyelés láthatótól az ultraibolya sugárzásig
 - nagyenergiájú sugárzás elnyelése röntgen-, kozmikus sugárzás
- Az elnyelt (abszorbeált) energia megváltoztatja az atom energiáját
 - megnöveli a mozgási energiáját
 - megnöveli az elektronok energiáját
 - megváltozatja az alkotórészeit

Az atomabszorpciós spektroszkópia csak a külső elektronoknak, a fényelnyelés miatt bekövetkező energiváltozásaival foglalkozik.

Az atomok és ionok jellemzése

Bohr-féle atommodell

- Atommag a központi mag
 - Protonok pozitív töltéssel
 - Neutronok semleges töltéssel
- Meghatározott energiájú pályákon az atommag körül
 - Elektronok negatív töltéssel
- Az összességében semleges töltésű atomokban egyenlő a protonok és az elektronok száma.

• Protonok • Elektronok

Az atom általi energiaelnyelés

Az atom általi energiaelnyelés

- A megengedett energiaszintek
 - véges értékűek
 - jól meghatározottak

Egy elektron átkerülhet más energiaszintre

- az energiaszintek különbsége = az elnyelt fény energiája
- az atomok "gerjesztődnek"
- az elektron magasabb energiaszintre kerül az alapállapotból E₀ → E₁, E₂, ... E_n

Az atomi spektrumok jellemzői

- Éles csúcsok (összehasonlítva az UV-Vis csúcsaival)
- A legjellemzőbb vonalak az alapállapotból származnak
 - rezonanciavonalak
 - a legintenzívebbek
 - a legfontosabbak az atomspektroszkópiában
 - Az egyik gerjesztett állapotból a másikba való áttérés esetén
 - nem-rezonancia vonalak
 - gyengébbek
 - általában NEM hasznosak az atomspektroszkópiában

Az energiaszintek ábrázolása (absz.)

Az elektronátmenetek energiái

 A rezonanciavonalak az alapállapotból (E_o) való átmenetekből származnak

Az atomi abszorpció folyamata

Az AA alapelvei

- Az elnyelt fény hullámhossza mindegyik elemre egyedi (specifikus)
 - PI.: a Ni- és Cu-tartalmú minta, "Ni-fénynek" van kitéve, csak a Ni atomok nyelik el ezt a fényt
- Az analátnak megfelelő hullámhosszon elnyelt fény mennyisége:
 - nő a fényútban lévő atomok számával
 - arányos az elnyelő atomok koncentrációjával
- A minta által elnyelt fény mennyiségét hasonlítják a standardok által elnyelt fény mennyiségéhez

Elnyelt fény vs Energiaszintek

- Az (elnyelt) fény hullámhossza fordítottan arányos az energiaszintek közötti távolsággal (λ = c/ΔE)
 nagyobb távolság = rövidebb hullámhossz
 - Az egyes átmenetekhez
 - különböző (szint)távolság
 - különböző energia
 - így különböző hullámhossz tartozik
- Az atomok emissziós vonalakkal is bírnak
 - a gerjesztett atom visszatér az alapállapotába (relaxál)
 - ugyanaz az energiaváltozás, mint az abszorpciónál 19
 - ugyanaz a hullámhossz, mint az abszorpciónál

Abszorpciós energiadiagram (néhány vonal/elem)

Emissziós energiadiagram (néhány vonal/elem)

Tipikus energiaszint-diagram

Kirchhoff és Bunsen (1) kísérlete 1859-ben

Kirchhoff és Bunsen (2) kísérlete 1859-ben

Kirchoff és Bunsen az izzásig hevített elemekből származó különböző színeket figyel meg.

Abszorpció vs Emisszió (elnyelés vs kibocsátás)

Pl.: Az ólom (Pb) energiaszintjei

AA spektroszkópia múltja

- A Techtron Appliances céget megalapítja 1938-ban Mr. Geoffrey Frew
- A Techtron kezdetben speciális elektronikai készüléket gyárt
 •nagy tételben nedvesség-meghatározókat

Az atomabszorpció kifejlesztése (CSIRO)

1952 – Dr. Alan Walsh felfedezi az atomabszorpciós technika, mint analitikai módszer lehetőségeit a CSIRO cégnél.

CSIRO szabadalom, 1953

Az első teljesen ausztrál AAS készülék, 1964

(bemutatása a Pittsburgh Konferencián)

Tipikus AAS készülék felépítése

AAS készülék alapegységei

Fényforrás

Üregkatód-lámpa (vájtkatód lámpa)

cél: monokromatikus fény előállítása

A mért spektrum, folytonos-, és monokromatikus fénybesugárzás esetén.

Mivel az I_A kicsi, sokkal jobban detektálható, ha monokromatikus fényforrásból nyel el a minta.

<u>Üregkatód-lámpa</u> (vájtkatód lámpa) viszonylag nagy feszültséggel (~300 V) és kis áramerősséggel (5-10 mA) működő kisülési cső A lámpa csökkentett nyomású inert gázzal töltött (Ne, Ar) Katód: elemre jellemző fém Anód: wolfram "fokozott" kisülésű üregkatódlámpa: UltrAA lámpa

Modern készülékekben programozott lámpacsere, és kalibrációs görbe felvétel komponenstől függően

Üregkatód lámpa működési elve

 Begyújtáskor a katódból elektronok lépnek ki, melyek nagy sebességgel elindulnak az anód felé, közben nemesgázatomokkal ütköznek, melyekről elektronok szakadnak le, és így a nemesgázatomok pozitívan töltött ionokká alakulnak (pl.: Ar⁺).

•A pozitív részecskék a katód felé indulnak, és felgyorsulva ütköznek a katód falával, miközben fématomokat ütnek ki (M).

 A fématomok gerjesztett állapotba kerülnek (M*) és fényt sugároznak ki (hv). Az emittált fényt hullámhossza megegyezik a vizsgálandó minta által abszorbeált fény hullámhosszával, mivel minden vizsgálandó mintához a vele azonos minőségű lámpát használjuk.

 $M + (Ar^+) \rightarrow M^* \rightarrow M + h\nu$

A hv monokromatikus, csak az adott fémre jellemző

Minden fémre más-más lámpát kell használni; vannak kombinált lámpák is.

Atomizáló egység

- Láng L-AAS;
- grafitcső (kemence) GF-AAS
- kvarcküvetta (gőzképzőben)

 eredmény: vonalas abszorpció a monokromatikus fényből (hatalmas zaj háttérrel)
 A láng energiája elég az atomizáláshoz, de nem elég a gerjesztéshez.

Általában 5-10 cm hosszú (0,5 – 1 cm széles) lángot használnak, ezen vezetik végig a monokromatikus fényt, így növelik az abszorpciót. Ezáltal a fény több atommal találkozik. Egyébként az atom igen rövid ideig tartózkodik a fényútban, mivel a láng kiviszi onnan.

L-AAS

Porlasztó; láng

- <u>Cél:</u> a szabad és ionizálatlan atomokat tartalmazó atomos gőzök előállítása
- A finom permet adott hőmérsékleten a lángba porlasztjuk Elpárolog, kis szilárd szemcsék képződnek.
- Ezek megolvadnak és párolognak.
- A gőz olyan vegyületek keverékéből áll, amely hajlamos különálló atomokra bomlani.
- Szabad atomok csak átmenetileg léteznek.
- Egyes atomok ütközés révén energiát vesznek fel és gerjesztett ionizált állapotba kerülnek.
- Az ionizált állapot csökkenti a szabad atomok számát a lángban.

GF-AAS Elektrotermikus gerjesztés

A minta szárítása, elpárologtatása, atomizálása elektromos árammal fűtött grafitcsőben történik. Ez a cső, a grafitkályha, grafitkemence vagy grafit küvetta elnevezésű, sokféle felépítésben létezik.

Két különböző kiépítésű grafitkályha

Grafitkemence

- 4-8 cm hosszú cső, 4-8 mm belső átmérővel
- a grafitot inert gázzal (Ar, N₂) történő hűtés óvja meg az elégéstől
- 5-20 μl minta, oldott formájában (10⁻¹⁰-10⁻¹³ g)
- 2-15 V feszültség, kb. 400 A áramerősség
- A készülék fűtése programozott
 - lassú szárítás 100°C-on, kb. fél percig; az oldószer elpárolog
 - hamvasztás 500-1000°C-en, az idő és a pontos hőmérséklet az anyagi minőség függvénye; szerves vegyületek is vizsgálhatók
 - atomizálás 1800-2600°C-on, 1 3 mp-ig; ez idő alatt veszik fel a spektrumot
- Újabb mérés előtt a szükséges a küvetta tisztítása 40

Lánggerjesztéses AAS jellegzetes adatai

F	Elem	Hullámhossz (nm)	Kimutatási határok (µg/l)	
	Al	309,3	20	
	Cd	228.8	1.5	
	Cr	357.9	5	
	Cr	425.4	237	
	Pb	217.0	14	
	Pb	283.3	15	
	As	193.7	42	
	As	197.2	60	
	As	189.0	74	
	Hg	253.7	/	
	Bi	227.7	64	

Grafitkályhás gerjesztés jellegzetes adatai

Elem	Hullámhossz (nm)	Kimutatási határok (µg/l)
As	193.7	0.03
As	197.2	0.035
As	189.0	0.04
Bi	223.1	0.05
Hg	253.7	/
Sb	206.8	0.20
Se	196.0	0.10
Sn	286.3	0.15
Te	214.3	0.10

- Az áramló minta tömény savval és nátrium-borohidriddel (redukálószer) keveredik mielőtt a reakcióspirálba jutna.
- Illékony hidridek keletkeznek számos elemből, s ezeket a hidrideket az oldatok áramlásától gáz-folyadék leválasztó különíti el.
 - A gáznemű hidridek azután keresztülhaladnak a fényútba helyezett fűtött kvarcküvettán.
- A kvarcküvettát általában levegő/acetilén láng fűti.
- A hidrid atomizálódik a küvettában, azaz szétbomlik analát(atomra) és hidrogénre. Így lehetővé válik az analát atomabszorpciójának mérése.
- Higany meghatározás esetében nem hidrid, hanem atomos higanygőz keletkezik
- ppb nagyságrend

További készülék részek

- Optikai rendszer
 - monokromátor
 - fényérzékeny detektor
 - Fotoelektronsokszorozó cső (PMT)
- A detektor válaszjelét mérő elektronika
- A válaszjelet értelmezhető analitikai eredménnyé átalakító elektronika
 - digitális kijelző
 - számítógép

Általános analitikai eljárás

- A minta oldatba vitele
- Oldatok készítése, melyek nem tartalmazzák az analátot
 CAL ZERO, REAGENT BLANK oldatok
- Oldatok készítése, melyek ismert és változó mennyiségben tartalmazzák az analátot
 - STANDARD oldatok
- A CAL ZERO és a STANDARD oldatok atomizálása
 - mindegyik válaszjelének megmérése
 - kalibrációs görbe felvétele a koncentráció/abszorbancia összefüggés megállapítására

A Beer-Lambert törvény az AAS mérésben

- Az abszorbeált energia mennyisége arányos az atomizálóban lévő fényút hosszával és az ott lévő atomok koncentrációjával.
- \blacksquare log₁₀ l₀ / l_t = Abszorbancia = a x b x c
- Egy adott kialakításban
 - a = állandó
 - b = állandó
 - 100 mm a levegő/acetilén égőben
 - 60 mm a dinitrogén-oxid/acetilén égőben
 - 170 mm a gőzképző kvarcküvettájában
 - 25 mm a grafitcsőben

A Beer törvénynek megfelelő vs a tényleges kalibrációs görbe

Az Abs./Konc. összefüggés akkor érvényes, ha:

- az atomok a rezonanciavonalakon abszorbeálnak
- ionok nincsenek jelen
- nem–rezonancia abszorpció nem fordul elő
- a lángból vagy a lámpából származó egyéb emisszió nem ér a detektorba
- Befolyásoló:
 - Az atomoknak a fényútban való tartózkodási ideje
 - Hosszabb tartózkodási idő = nagyobb abszorbancia
 - Az atomkoncentrátorcső növeli a tartózkodási időt
 - A kimutatási határt a jel-zaj arány szabja meg.
 - A jel-zaj arányt befolyásoló tényezők
 - a készülék optikai kialakítása
 - a vakminta mérésének standard szórása
 - a mérés érzékenysége

Köszönöm a figyelmet!