
Object-Oriented Programming

Using Microsoft Visual C#

.NET

Using Classes and Objects

OOP in C# language

2

What is Class?

• The formal definition of class:

Definition by Google

Classes act as templates from which an

instance of an object is created at run

time. Classes define the properties of

the object and the methods used to

control the object's behavior.

3

Classes

• Classes provide the structure for objects

– Define their prototype, act as template

• Classes define:

– Set of attributes

• Represented by variables and properties

• Hold their state

– Set of actions (behavior)

• Represented by methods

• A class defines the methods and types of data

associated with an object

4

Classes – Example

Account

+Owner: Person
+Ammount: double

+Suspend()
+Deposit(sum:double)
+Withdraw(sum:double)

Class Name Attributes

(Properties

and Fields)

Operations

(Methods)

5

Objects

• An object is a concrete instance of a particular

class

• Creating an object from a class is called

instantiation

• Objects have

– State: Set of values associated to their attributes (Objects

store information)

– Identity: Objects are distinguishable from one another

– Behavior: Objects can perform tasks

6

Objects – Example

Account

+Owner: Person

+Ammount: double

+Suspend()

+Deposit(sum:double)

+Withdraw(sum:double)

Class bobAccount:Account

+Owner="Bob Smith"

+Ammount=5000.0

peterAccount:Account

+Owner="Peter Green"

+Ammount=1825.33

kateAccount:Account

+Owner="Kate Archer"

+Ammount=25.0

Object

Object

Object

7

Classes in C#

Using Classes and their Class Members

Classes in C#

• Basic units that compose programs

• Implementation is encapsulated (hidden)

• Classes in C# can contain:

– Fields (member variables)

– Properties

– Methods

– Constructors

– Inner types

– Etc. (events, indexers, operators, …)

9

Classes in C# – Examples

• Example of classes:

– System.Console

– System.String (string in C#)

– System.Int32 (int in C#)

– System.Array

– System.Math

– System.Random

10

Declaring Objects

• An instance of a class can be defined like any

other variable

• Instances cannot be used if they are

not initialized

11

Fields and Properties

Accessing Fields and Properties

Fields

• Fields are data members of a class

• Can be variables and constants

• Accessing a field doesn’t invoke any actions of

the object

• Example:

– String.Empty (the "" string)

13

Accessing Fields

• Constant fields can be only read

• Variable fields can be read and modified

• Usually properties are used instead of directly

accessing variable fields

14

Properties
• Properties look like fields (have name and type),

but they can contain code, executed when they

are accessed

• Usually used to control access to data

fields (wrappers), but can contain more complex

logic

• Can have two components (and at least one of

them) called accessors

– get for reading their value

– set for changing their value

15

Properties (2)

• According to the implemented accessors

properties can be:

– Read-only (get accessor only)

– Read and write (both get and set accessors)

– Write-only (set accessor only)

• Example of read-only property:

– String.Length

16

Instance and Static Members

Accessing Object and Class Members

Instance and Static Members

• Fields, properties and methods can be:

– Instance (or object members)

– Static (or class members)

• Instance members are specific for each object

– Example: different dogs have different name

• Static members are common for all instances of

a class

– Example: DateTime.MinValue is shared between all

instances of DateTime

18

Accessing Members – Syntax

• Accessing instance members

– The name of the instance, followed by the name of

the member (field or property), separated by dot (".")

• Accessing static members

– The name of the class, followed by the name of the

member

<instance_name>.<member_name>

<class_name>.<member_name>

19

Instance and Static

Members – Examples

• Example of instance member

– String.Length

• Each string object has different length

• Example of static member

– Console.ReadLine()

• The console is only one (global for the program)

• Reading from the console does not require to create an

instance of it

20

Methods

Calling Instance and Static Methods

Methods

• Methods manipulate the data of the object to

which they belong or perform other tasks

• Examples:

– Console.WriteLine(…)

– Console.ReadLine()

– String.Substring(index, length)

– Array.GetLength(index)

22

Instance Methods

• Instance methods manipulate the data of a

specified object or perform any other tasks

– If a value is returned, it depends on the particular

class instance

• Syntax:

– The name of the instance, followed by the name of

the method, separated by dot

<object_name>.<method_name>(<parameters>)

23

Static Methods

• Static methods are common for all instances of a

class (shared between all instances)

– Returned value depends only on the passed

parameters

– No particular class instance is available

• Syntax:

– The name of the class, followed by the name of the

method, separated by dot

<class_name>.<method_name>(<parameters>)

24

Calling Static Methods – Examples

using System;

double radius = 2.9;
double area = Math.PI * Math.Pow(radius, 2);
Console.WriteLine("Area: {0}", area);
// Area: 26,4207942166902

double precise = 8.7654321;
double round3 = Math.Round(precise, 3);
double round1 = Math.Round(precise, 1);
Console.WriteLine(

"{0}; {1}; {2}", precise, round3, round1);
// 8,7654321; 8,765; 8,8

Constant

field

Static

method

Static

method

Static

method

25

Combining Data and Methods

• Combine the data and methods in a single

capsule

• The capsule boundary forms an inside and an

outside

Withdraw()

Deposit()

balance

Withdraw()

Deposit()

balance

BankAccount ?BankAccount ?

26

Controlling Access Visibility

• Methods are public, accessible from the outside

• Data is private, accessible only from the inside

Withdraw()

Deposit()

balance

Withdraw()

Deposit()

balance

BankAccount ?BankAccount ?

27

Why Encapsulate?

• Allows control

– Use of the object

is solely through the

public methods

• Allows change

– Use of the object

is unaffected if

the private data

type changes

Withdraw()

Deposit()

dollars 12

Withdraw()

Deposit()

balance 12.56

cents 56

28

Object Data

• Object data describes information for individual

objects

– For example, each bank account has its own balance. If

two accounts have the same balance, it is only a

coincidence.

Withdraw()

Deposit()

balance 12.56

owner "Bert"

Withdraw()

Deposit()

balance 12.56

owner "Fred"

29

Using Static Data

• Static data describes information for all objects

of a class

– For example, suppose all accounts share the same

interest rate. Storing the interest rate in every

account would be a bad idea. Why?

Withdraw()

Deposit()

balance 12.56

interest 7%

Withdraw()

Deposit()

balance 99.12

interest 7%

30

Using Static Methods

• Static methods can only access static data

– A static method is called on the class, not the object

InterestRate()

interest 7%

Withdraw()

Deposit()

balance 99.12

owner "Fred"

An account objectThe account class

Classes contain static data and

static methods

Objects contain object data and

object methods

31

Defining Simple Classes

• Data and methods together inside a class

• Methods are public, data is private

class BankAccount

{

public void Withdraw(decimal amount)

{ ... }

public void Deposit(decimal amount)

{ ... }

private decimal balance;

private string name;

}

Public methods

describe

accessible

behaviour

Private fields

describe

inaccessible

state

32

Instantiating New Objects

• Declaring a class variable does not create an

object

– Use the new operator to create an object

class Program

{

static void Main()

{

Time now;

now.hour = 11;

BankAccount yours = new BankAccount();

yours.Deposit(999999M);

}

}

hour

minute

now

yours ...

...

new

BankAccount

object

33

Using the this Keyword

• The this keyword refers to the object used to call

the method

– Useful when identifiers from different scopes clash

class BankAccount

{

...

public void SetName(string name)

{

this.name = name;

}

private string name;

}

If this statement were

name = name;

What would happen?

34

Constructors

• Constructors are special methods used to

assign initial values of the fields in an object

– Executed when an object of a given type is being

created

– Have the same name as the class that holds them

– Do not return a value

• A class may have several constructors with

different set of parameters

35

Constructors (2)

• Constructor is invoked by the new operator

• Examples:

<instance_name> = new <class_name>(<parameters>)

DateTime dt = new DateTime(2009, 12, 30);

DateTime dt = new DateTime(2009, 12, 30, 12, 33, 59);

Int32 value = new Int32(1024);

36

Parameterless Constructors

• The constructor without parameters is called

default constructor

• Example:

– Creating an object for generating random numbers

with a default seed

using System;
...
Random randomGenerator = new Random();

The class System.Random provides generation

of pseudo-random numbers

Parameterless

constructor call

37

Constructor With Parameters

• Example

– Creating objects for generating random values with

specified initial seeds

using System;
...
Random randomGenerator1 = new Random(123);
Console.WriteLine(randomGenerator1.Next());
// 2114319875

Random randomGenerator2 = new Random(456);
Console.WriteLine(randomGenerator2.Next(50));
// 47

38

Namespaces

Organizing Classes Logically into

Namespaces

39

What is a Namespace?

• Namespaces are used to organize the source code

into more logical and manageable way

• Namespaces can contain

– Definitions of classes, structures, interfaces and other

types and other namespaces

• Namespaces can contain other namespaces

• For example:

– System namespace contains Data namespace

– The name of the nested namespace is System.Data

40

Full Class Names

• A full name of a class is the name of the class

preceded by the name of its namespace

• Example:

– Array class, defined in the System namespace

– The full name of the class is System.Array

<namespace_name>.<class_name>

41

Including Namespaces

• The using directive in C#:

• Allows using types in a namespace, without

specifying their full name

Example:

instead of

using <namespace_name>

using System;
DateTime date;

System.DateTime date;

42

ARRAYS AND COLLECTIONS

43

What Is an Array?

• An array is a sequence of elements

– All elements in an array have the same type

– Structs can have elements of different types

– Individual elements are accessed using integer

indexes

Integer index 0

(zero)
Integer index 4

(four)

44

Array Notation in C#

• You declare an array variable by specifying:

– The element type of the array

– The rank of the array

– The name of the variable

This specifies the rank of the array

This specifies the name of the array

variable

This specifies the element type of the array

type[] name;

45

Array Rank

• Rank is also known as the array dimension

• The number of indexes associated with each

element

Rank 1: One-dimensional

Single index associates with

each long element

Rank 2: Two-dimensional

Two indexes associate with

each int element

long[] row; int[,] grid;

46

Accessing Array Elements

• Supply an integer index for each rank

– Indexes are zero-based

3

2

1

long[] row;

...

row[3];

int[,] grid;

...

grid[1,2];

47

Checking Array Bounds

• All array access attempts are bounds checked

– A bad index throws an IndexOutOfRangeException

– Use the Length property and the GetLength method

row grid

row.GetLength(0)==6

row.Length==6

grid.GetLength(0)==2

grid.GetLength(1)==4

grid.Length==2*4

48

Comparing Arrays to Collections

• An array cannot resize itself when full

– A collection class, such as ArrayList, can resize

• An array is intended to store elements of one

type

– A collection is designed to store elements of different

types

• Elements of an array cannot have read-only

access

– A collection can have read-only access

• In general, arrays are faster but less flexible

– Collections are slightly slower but more flexible
49

• Creating Array Instances

• Initializing Array Elements

• Initializing Multidimensional Array

Elements

• Creating a Computed Size Array

• Copying Array Variables

 Creating Arrays

50

Creating Array Instances

• Declaring an array variable does not create an

array!

– You must use new to explicitly create the array

instance

– Array elements have an implicit default value of zero

row

0 0 0 0

grid

0 0 0

0 0 0

Variable Instanc

e

long[] row = new long[4];

int[,] grid = new int[2,3];

51

Initializing Array Elements

• The elements of an array can be explicitly

initialized

– You can use a convenient shorthand

row

0 1 2 3

Equivalent

long[] row = new long[4] {0, 1, 2, 3};

long[] row = {0, 1, 2, 3};

52

Initializing Multidimensional Array

Elements

• You can also initialize multidimensional array

elements

– All elements must be specified

grid

5 4 3

2 1 0

Implicitly a new int[2,3] array

int[,] grid = {

{5, 4, 3},

{2, 1, 0}

};

int[,] grid = {

{5, 4, 3},

{2, 1 }

};

53

Creating a Computed Size Array

• The array size does not need to be a

compile-time constant

– Any valid integer expression will work

– Accessing elements is equally fast in all cases

• Array size specified by compile-time integer

constant:

• Array size specified by run-time integer value:

long[] row = new long[4];

string s = Console.ReadLine();

int size = int.Parse(s);

long[] row = new long[size];
54

Copying Array Variables

• Copying an array variable copies the array variable only

– It does not copy the array instance

– Two array variables can refer to the same array instance

copy

row

0 0 0 0

Variabl

e

Instan

ce

long[] row = new long[4];

long[] copy = row;

...

row[0]++;

long value = copy[0];

Console.WriteLine(value);

55

• Array Properties

• Array Methods

• Returning Arrays from Methods

• Passing Arrays as Parameters

• Command-Line Arguments

• Demonstration: Arguments for Main

• Using Arrays with foreach

 Using Arrays

56

Array Properties

row

0 0 0 0

grid

0 0 0

0 0 0

row.Rank

row.Length

grid.Rank

grid.Length

long[] row = new long[4];

int[,] grid = new int[2,3];

2

4

1

6

57

Array Methods

• Commonly used methods

– Sort – sorts the elements in an array of rank 1

– Clear – sets a range of elements to zero or null

– Clone – creates a copy of the array

– GetLength – returns the length of a given dimension

– IndexOf – returns the index of the first occurrence of

a value

58

Working with the ArrayList Class

 The ArrayList is a class defined in the

System.Collections namespace.

 It represents a dynamically sized array of

objects.

 Features of ArrayList class:

• Allows you to add, remove, insert, and sort the

items in it.

• Contains items in the order of addition.

59

Working with the ArrayList Class

 Consists of an index identifier assigned to its items.

 Enables you to retrieve items in any order by means of

their associated index numbers.

60

Introducing Generics

Benefits of using Generics:

 Allows you to work with any data type.

 Provides many of the advantages of the strongly

typed collections.

 Increases code performance by reducing the number

of required casting operations.

61

Introducing Generics

Generic Class Nongeneric Class Description

List<T> ArrayList,

StringCollection

A dynamically

resizable list of items

Dictionary<T,U> HashTable,

ListDictionary,

HybridDictionary,

OrderedDictionary,

NameValueCollection,

StringDictionary

A generic collection

of name-value pairs

Queue<T> Queue A generic

implementation of a

FIFO list

62

Introducing Generics

Generic Class Nongeneric

Class

Description

Stack<T> Stack A generic

implementation of a

LIFO list

SortedList<T,U> SortedList A generic

implementation of a

sorted list of generic

name/value pairs

Comparer<T> Comparer Compares two generic

objects for equality

63

Introducing Generics

Generic Class Nongeneric Class Description

LinkedList<T> N/A A generic

implementation of a

doubly linked list

Collection<T> CollectionBase Provides the basis

for a generic

collection

ReadOnlyCollection<T

>

ReadOnlyCollectionBa

se

A generic

implementation of a

set of read-only

items

64

Lists

• The most common sort of collection is a List<T>. Once

you create a List<T> object, it’s easy to add an item,

remove an item from any location in the list, peek at an

item, and even move an item from one place in the list to

another.

• Here’s how a list works:

– First you create a new instance of List<T>

– You need to specify the type of object or value that the list will

hold by putting it in angle brackets <> when you use the new

keyword to create it.

– List<Card> cards = new List<Card>();

• The <T> at the end of List<T> means it’s generic.

• The T gets replaced with a type—so List<int> just means a List of

ints.

65

Lists

• A List resizes dynamically to whatever size is needed.

• To put something into a List, use Add().

• To remove something from a List, use Remove().

• You can remove objects using their index number using

RemoveAt().

• To find out where something is (and if it is) in a List, use

IndexOf().

• To get the number of elements in a List, use the Count

property.

• You can use the Contains() method to find out if a

particular object is in a List.

66

67

Files

• Contain a sequence of bytes that represent

information

• Persisting objects to files is important because

– It eliminates need to reenter data

– It allows information to be shared between people, or

applications

• File format

– Describes how file is organized

– Determined by software used to create the file

68

Files (continued)

• File extension

– Does not dictate what is contained within the file

• To identify a file’s location, you need

– The drive letter of the disk

– The folders and subfolders in which the file is

contained

– The filename

– The file extension

69

The .NET System.IO Namespace

• Classes can be grouped into two functions

– Classes that manipulate the file system

– Classes for saving and retrieving data to and from

external storage devices

70

System.IO.Directory

• Directory class

– Exposes methods that can be used to create, delete,

move, and list subfolders and files

• Because methods are defined as static

– They must be called using class name and not using

an instance variable name

71

System.IO.File

• File class

– Exposes methods that can be used to copy, delete,

and move files

• File methods

– Defined as static

– Must be called using the class name and not using an

instance variable name

72

System.IO.Path

• Methods in the Path class

– Do not actually manipulate folders and files

– Can be used to manipulate the strings that define a

folder’s or file’s path

73

Types of Files

• Data

– Can be stored in a file as plain-text strings or as

binary data

• Text files

– Usually have a file extension of .txt

• Saving data to a binary data file

– Executes more efficiently than saving data to a text

file

74

Persistence Using Sequential Text

Files

• .NET StreamReader and StreamWriter classes

– Used to read and write sequential text files with C#

• Hard-coded paths

– Not a good idea because a path that exists on your

computer might not another computer

– Can result in exceptions

75

Fixed-Width Text Files

• Format

– File contains zero or many records

– Each record contains information about a single entity

– Each record normally is terminated by a CRLF

• Contents of each field in each record is always

the same number of characters

• Nothing in the file delimits where a field begins

and ends

76

Fixed-Width Text Files (continued)

• Processing

– First open the file

– For reading or writing records

• Use the ReadLine method of the StreamReader class

or the WriteLine method of the StreamWriter class

– File is closed when you are finished using it

• Parsing input records and formatting output

records

– Requires more tedious coding than with tab-delimited

records

Example

77

