
Object-Oriented Programming

Using Microsoft Visual C#

.NET

Using Classes and Objects

Classes in OOP

• Classes model real-world objects and define

– Attributes (state, properties, fields)

– Behavior (methods, operations)

• Classes describe structure of objects

– Objects describe particular instance of a class

• Properties hold information about the modeled

object relevant to the problem

• Operations implement object behavior

2

Object-Oriented Programming

Fundamental Principles

- Encapsulation
It is also called "information hiding". An object has to provide its users

only with the essential information for manipulation, without the internal

details.

- Inheritance
Inheritance is a fundamental principle of object-oriented programming. It allows a

class to "inherit" (behavior or characteristics) of another, more general class.

- Abstraction
Abstraction means working with something we know how to use without knowing

how it works internally. To deal with objects considering their important

characteristics and ignore all other details.

- Polymorphism
To work in the same manner with different objects, which define a specific

implementation of some abstract behavior.
3

Classes in C#

• Classes in C# could have following members:

– Fields, constants, methods, properties, indexers,

events, operators, constructors, destructors

– Inner types (inner classes, structures, interfaces,

delegates, ...)

• Members can have access modifiers (scope)

– public, private, protected, internal

• Members can be

– static (common) or specific for a given object

4

Simple Class Definition

5

public class Cat
{

private string name;
private string owner;

public Cat(string name, string owner)
{

this.name = name;
this.owner = owner;

}

public string Name
{

get { return name; }
set { name = value; }

}

Fields

Begin of class definition

Constructor

Property

Simple Class Definition (2)

public string Owner
{

get { return owner;}
set { owner = value; }

}

public void SayMiau()
{

Console.WriteLine("Miauuuuuuu!");
}

}

6

Method

End of class
definition

Class Definition and Members

• Class definition consists of:

– Class declaration

– Inherited class or implemented interfaces

– Fields (static or not)

– Constructors (static or not)

– Properties (static or not)

– Methods (static or not)

– Events, inner types, etc.

Access Modifiers
Public, Private, Protected, Internal

Access Modifiers

• Class members can have access modifiers

– Used to restrict the classes able to access them

– Supports the OOP principle "encapsulation"

• Class members can be:

– public – accessible from any class

– protected – accessible from the class itself and all its

descendent classes

– private – accessible from the class itself only

– internal – accessible from the current assembly (used

by default)

Using Classes and Objects

Using Classes

• How to use classes?

– Create a new instance

– Access the properties of the class

– Invoke methods

– Handle events

• How to define classes?

– Create new class and define its members

– Create new class using some other as base class

How to Use Classes (Non-static)?

1. Create an instance

– Initialize fields

2. Manipulate instance

– Read / change properties

– Invoke methods

– Handle events

3. Release occupied resources

– Done automatically in most cases

Constructors

Defining and Using Class Constructors

What is Constructor?

• Constructors are special methods

– Invoked when creating a new instance of an object

– Used to initialize the fields of the instance

• Constructors has the same name as the class

– Have no return type

– Can have parameters

– Can be private, protected, internal, public

Defining Constructors

public class Point
{

private int xCoord;
private int yCoord;

// Simple default constructor
public Point()
{

xCoord = 0;
yCoord = 0;

}

// More code ...
}

 Class Point with parameterless constructor:

Defining Constructors (2)

public class Person
{

private string name;
private int age;

// Default constructor
public Person()
{

name = null;
age = 0;

}

// Constructor with parameters
public Person(string name, int age)
{

this.name = name;
this.age = age;

}

// More code ...
}

As rule constructors

should initialize all own

class fields.

Properties

Defining and Using Properties

The Role of Properties
• Expose object's data to the outside world

• Control how the data is manipulated

• Properties can be:

– Read-only

– Write-only

– Read and write

• Give good level of abstraction

• Make writing code easier

Defining Properties

• Properties should have:

– Access modifier (public, protected, etc.)

– Return type

– Unique name

– Get and / or Set part

– Can contain code processing data in specific way

Defining Properties – Example

public class Point
{

private int xCoord;
private int yCoord;

public int XCoord
{

get { return xCoord; }
set { xCoord = value; }

}

public int YCoord
{

get { return yCoord; }
set { yCoord = value; }

}

// More code ...
}

Dynamic Properties

• Properties are not obligatory bound to a class field

– can be calculated dynamically

public class Rectangle
{

private float width;
private float height;

// More code ...

public float Area
{

get
{

return width * height;
}

}
}

Automatically Implemented Properties

• Properties could be defined without an

underlying field behind them

– It is automatically created by the compiler

22

class UserProfile
{

public int UserId { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

}
…
UserProfile profile = new UserProfile() {

FirstName = "Steve",
LastName = "Balmer",
UserId = 91112 };

Static Members

Static vs. Instance Members

Static Members

• Static members are associated with a type

rather than with an instance

– Defined with the modifier static

• Static can be used for

– Fields

– Properties

– Methods

– Events

– Constructors

Static vs. Non-Static

• Static:

– Associated with a type, not with an instance

• Non-Static:

– The opposite, associated with an instance

• Static:

– Initialized just before the type is used for the first time

• Non-Static:

– Initialized when the constructor is called

COLLECTIONS

26

Lists

• The most common sort of collection is a List<T>. Once

you create a List<T> object, it’s easy to add an item,

remove an item from any location in the list, peek at an

item, and even move an item from one place in the list to

another.

• Here’s how a list works:

– First you create a new instance of List<T>

– You need to specify the type of object or value that the list will

hold by putting it in angle brackets <> when you use the new

keyword to create it.

– List<Card> cards = new List<Card>();

• The <T> at the end of List<T> means it’s generic.

• The T gets replaced with a type—so List<int> just means a List of

ints.

27

Lists

• A List resizes dynamically to whatever size is needed.

• To put something into a List, use Add().

• To remove something from a List, use Remove().

• You can remove objects using their index number using

RemoveAt().

• To find out where something is (and if it is) in a List, use

IndexOf().

• To get the number of elements in a List, use the Count

property.

• You can use the Contains() method to find out if a

particular object is in a List.

28

Lists

• The List collection has some important

properties and methods.

29

private List <Flat> flats= new List<Flat>();

.

.

flat = new Flat(idcode, addr, area,
NumOfRooms, comfortLevel);

flats.Add(flat);

30

Files

• Contain a sequence of bytes that represent

information

• Persisting objects to files is important because

– It eliminates need to reenter data

– It allows information to be shared between people, or

applications

• File format

– Describes how file is organized

– Determined by software used to create the file

31

Files (continued)

• File extension

– Does not dictate what is contained within the file

• To identify a file’s location, you need

– The drive letter of the disk

– The folders and subfolders in which the file is

contained

– The filename

– The file extension

32

The .NET System.IO Namespace

• Classes can be grouped into two functions

– Classes that manipulate the file system

– Classes for saving and retrieving data to and from

external storage devices

33

System.IO.Directory

• Directory class

– Exposes methods that can be used to create, delete,

move, and list subfolders and files

• Because methods are defined as static

– They must be called using class name and not using

an instance variable name

34

System.IO.File

• File class

– Exposes methods that can be used to copy, delete,

and move files

• File methods

– Defined as static

– Must be called using the class name and not using an

instance variable name

35

System.IO.Path

• Methods in the Path class

– Do not actually manipulate folders and files

– Can be used to manipulate the strings that define a

folder’s or file’s path

36

Types of Files

• Data

– Can be stored in a file as plain-text strings or as

binary data

• Text files

– Usually have a file extension of .txt

• Saving data to a binary data file

– Executes more efficiently than saving data to a text

file

37

Persistence Using Sequential Text

Files

• .NET StreamReader and StreamWriter classes

– Used to read and write sequential text files with C#

• Hard-coded paths

– Not a good idea because a path that exists on your

computer might not another computer

– Can result in exceptions

38

Fixed-Width Text Files

• Format

– File contains zero or many records

– Each record contains information about a single entity

– Each record normally is terminated by a CRLF

• Contents of each field in each record is always

the same number of characters

• Nothing in the file delimits where a field begins

and ends

39

Fixed-Width Text Files (continued)

• Processing

– First open the file

– For reading or writing records

• Use the ReadLine method of the StreamReader class

or the WriteLine method of the StreamWriter class

– File is closed when you are finished using it

• Parsing input records and formatting output

records

– Requires more tedious coding than with tab-delimited

records

Using Files

• All input and output in the .NET Framework involves the use of

streams. A stream is an abstract representation of a serial device.

(network channel, disk, memory location etc.) A data stream is the

flow of data from a source to a single receiver.

40

C# Program Data stream Storage

Write Write

ReadRead

Whenever you want to read data from a file or write data to a file,

you’ll use a Stream object.

Reading – Writing

Reading

● Open the stream

● while there is new data

– Read

● Close the stream

DataSource ProgramStream

reading

Reading – Writing

Writing

● Open the stream

● while there is data

– write

● close the stream

Program StorageStream

Writing

Example

43

