
Object-Oriented Programming

Using Microsoft Visual C#

.NET

Inheritance

C# Classes

• Classes are used to accomplish:

– Modularity: Scope for global (static) methods

– Blueprints for generating objects or instances:
• Per instance data and method signatures

• Classes support

– Data encapsulation - private data and

implementation.

– Inheritance - code reuse

Inheritance

• Inheritance allows a software developer to derive a new
class from an existing one.

• The existing class is called the parent, super, or base
class.

• The derived class is called a child or subclass.

• The child inherits characteristics of the parent.
– Methods and data defined for the parent class.

• The child has special rights to the parents methods and
data.
– Public access like any one else

– Protected access available only to child classes (and their
descendants).

• The child has its own unique behaviors and data.

Inheritance

• Inheritance
relationships are often
shown graphically in a
class diagram, with the
arrow pointing to the
parent class.

• Inheritance should
create an is-a
relationship, meaning
the child is a more
specific version of the
parent.

Animal

Bird

Examples: Base Classes and Derived

Classes

Base c lass Derived c lasses

Student GraduateStudent

UndergraduateStudent

Shape Circle

Triangle

Rectangle

Loan CarLoan

HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount

SavingsAccount

Declaring a Derived Class

• Define a new class DerivedClass which extends
BaseClass

class BaseClass

{

// class contents

}

class DerivedClass : BaseClass

{

// class contents

}

Controlling Inheritance

• A child class inherits the methods and data defined for
the parent class; however, whether a data or method
member of a parent class is accessible in the child class
depends on the visibility modifier of a member.

• Variables and methods declared with private visibility are
not accessible in the child class
– However, a private data member defined in the parent class is

still part of the state of a derived class.

• Variables and methods declared with public visibility are
accessible; but public variables violate our goal of
encapsulation

• There is a third visibility modifier that helps in inheritance
situations: protected.

+ public

- private

protected

The protected Modifier

• Variables and methods

declared with protected

visibility in a parent class

are only accessible by a

child class or any class

derived from that class

Book
pages : int

+ GetNumberOfPages() : void

Dictionary
- definition : int

+ PrintDefinitionMessage() : void

Single Inheritance

• Some languages, e.g., C++, allow Multiple

inheritance, which allows a class to be derived

from two or more classes, inheriting the

members of all parents.

• C# and Java support single inheritance,

meaning that a derived class can have only one

parent class.

Overriding Methods

• A child class can override the definition of an
inherited method in favor of its own

• That is, a child can redefine a method that it
inherits from its parent

• The new method must have the same signature
as the parent's method, but can have a different
implementation.

• The type of the object executing the method
determines which version of the method is
invoked.

11

Virtual Methods

• A method, which can be overridden, is called virtual.

• This means changing their implementation.

– the original source code from the base class is ignored and new

code takes its place.

• If we want a method to be overridable, we can do so by

including the keyword virtual in the declaration of the

method.

• One of the fundamental principle of Object-Oriented

Programming is "Polymorphism".

– it is mostly related to overriding methods in derived classes,

in order to change their original behavior inherited from the

base class.

12

Virtual Methods

• If we want to make a method virtual, we

mark it with the keyword virtual. Then the

derived class can declare and define a

method with the same signature.

• A method marked with the keyword override

is automatically virtual too. (Its derived

class can declare and define a method with

the same signature.)

13

Override methods

• Rules:

– Private method can not be virtual or override

– The signature of the virtual and override methods must
be the same.

– The access modifier of the virtual and the override
methods must be the same.

– To override a base method, the base method must be
defined as virtual, abstract, or override.

– When a derived class contains a method that overrides
a parent class method, you might have occasion to use
the parent class version of the method within the
subclass. If so, you can use the keyword base to
access the parent class method.

To the example: Hunting dogs

(Pointers-retrievers)

14

Hungarian Vizsla

Hungarian Pointer

Magyar Vizsla

Drótszőrű magyar vizsla,

Hungarian Wirehaired Vizsla

Source: https://en.wikipedia.org/wiki/Vizsla

15

An example
A virtual method (or property) is one that can be overridden by a method with

the same signature in a child class.

class Dog {

public virtual void WhoAreYou() { Console.WriteLine("I am a dog."); }

}

class HuntingDog : Dog{

public override void WhoAreYou() { Console.WriteLine("I am a hunting dog"); }

}

class HungarianVizsla : HuntingDog {

public override void WhoAreYou() { Console.WriteLine("I am a hungarian vizsla"); }

}

Dog dog1 = new HungarianVizsla(); // allow

dog1.WhoAreYou(); // "I am a hungarian vizsla"

Dog dog2 = new HuntingDog(); // allow

dog2.WhoAreYou(); // "I am a hunting dog"

16

• Every derived class object “is a” specific instance of both

the derived class and the base class.

• You can assign derived class object to an object of any of

its parent class types. When you do, C# makes an implicit

reference conversion from derived class to base class.

• Example:

After invoke the new operator dog1 object behaves as a
HungarianVizsla object (it is really a hungarianvizsla object), can
call the methods and use Properties of HingarianVizsla class. It is
important that this conversion is not working in the opposite
direction as you can see:

The editor notes!

Typecasting

17

Declare a Dog type dog1 name variable and invoke the HungarianVizsla()

constractor to create an object. If we want to call the Hunt() method of the

HungarianVizsla class we cannot, because only during compilation will be

clear that the Dog type dog1 is really a HungarianVizsla object. In this

case we must use explicit type conversion.

Typecasting

• You can use the is operator to check whether a

conversion would complete successfully.

18

The as operator is like the cast operator, except that it does not raise an

exception. If the conversion fails, rather than raising an exception, it returns null.

19

The classes

20

The main method

21

Sealed classes and methods

• A sealed class can be instantiated only as

a stand-alone class object—it cannot be

used as a base class. Sealed class is

labeled with the sealed modifier:

22

Sealed class and methods

• Sealing of methods is done when we rely on a piece of

functionality and we don’t want it to be altered. We

already know that methods are sealed by default. But if

we want a base class’ virtual method to become sealed

in a derived class, we use sealed override.

23

Sealed class

If the class we want to inherit is marked
with the keyword sealed, inheritance is not
possible.
The type string is sealed, so it cannot be
inherited.

24

Sealed methods
• The relationship of virtual, override, sealed keywords :

– A virtual method is the first implementation of the

method.

– An override method is the other implementation of

the base method.

– A sealed method is the last implementation of the

base method.

Class Hierarchies

• A child class of one parent can be the parent of

another child, forming a class hierarchy

Animal

Reptile Bird Mammal

Snake Lizard BatHorseParrot

Class Hierarchies

CommunityMember

Employee Student Alumnus

Faculty Staff

Professor Instructor

GraduateUnder

Class Hierarchies

Shape

TwoDimensionalShape ThreeDimensionalShape

Sphere Cube CylinderTriangleSquareCircle

Class Hierarchies

• An inherited member is continually passed down

the line

– Inheritance is transitive.

• Good class design puts all common features as

high in the hierarchy as is reasonable. Avoids

redundant code.

References and Inheritance

• An object reference can refer to an object of its

class, or to an object of any class derived from it

by inheritance.

• For example, if the Holiday class is used to

derive a child class called Christmas, then a

Holiday reference can be used to point to a

Christmas object.
Holiday day;

day = new Holiday();

…

day = new Christmas();

Dynamic Binding

• A polymorphic reference is one which can refer
to different types of objects at different times. It
morphs!

• The type of the actual instance, not the declared
type, determines which method is invoked.

• Polymorphic references are therefore resolved
at run-time, not during compilation.
– This is called dynamic binding.

Dynamic Binding

• Suppose the Holiday class has a method

called Celebrate, and the Christmas class

redefines it (overrides it).

• Now consider the following invocation:

day.Celebrate();

• If day refers to a Holiday object, it invokes

the Holiday version of Celebrate; if it

refers to a Christmas object, it invokes the

Christmas version

Overriding Methods

• C# requires that all class definitions

communicate clearly their intentions.

• The keywords virtual, override and new provide

this communication.

• If a base class method is going to be overridden

it should be declared virtual.

• A derived class would then indicate that it indeed

does override the method with the override

keyword.

Overriding Methods

• If a derived class wishes to hide a method in the

parent class, it will use the new keyword.

• This should be avoided.

Overloading vs. Overriding

• Overloading deals with
multiple methods in
the same class with
the same name but
different signatures

• Overloading lets you
define a similar
operation in different
ways for different data

• Example:
int foo(string[] bar);

int foo(int bar1, float a);

• Overriding deals with
two methods, one in a
parent class and one in
a child class, that have
the same signature

• Overriding lets you
define a similar
operation in different
ways for different object
types

• Example:
class Base {

public virtual int foo() {} }
class Derived {

public override int foo() {}}

Polymorphism via Inheritance

StaffMember

name : string

address : string

phone : string

+ ToString() : string

+ Pay() : double

Volunteer

+ Pay() : double

Employee

socialSecurityNumber : String

payRate : double

+ ToString() : string

+ Pay() : double

Executive

- bonus : double

+ AwardBonus(execBonus : double) : void

+ Pay() : double

Hourly

- hoursWorked : int

+ AddHours(moreHours : int) : void

+ ToString() : string

+ Pay() : double

Pay() is virtual

Override Pay()

Widening and Narrowing

• Assigning an object to an ancestor reference is
considered to be a widening conversion, and
can be performed by simple assignment

Holiday day = new Christmas();

• Assigning an ancestor object to a reference can
also be done, but it is considered to be a
narrowing conversion and must be done with a
cast:

Christmas christ = new Christmas();

Holiday day = christ;

Christmas christ2 = (Christmas)day;

Widening and Narrowing

• Widening conversions are most common.
– Used in polymorphism.

• Note: Do not be confused with the term widening
or narrowing and memory. Many books use
short to long as a widening conversion. A long
just happens to take-up more memory in this
case.

• More accurately, think in terms of sets:
– The set of animals is greater than the set of parrots.

– The set of whole numbers between 0-65535 (ushort)
is greater (wider) than those from 0-255 (byte).

The System.Object Class

• All classes in C# are derived from the Object class

– if a class is not explicitly defined to be the child of an existing class,
it is a direct descendant of the Object class

• The Object class is therefore the ultimate root of all class
hierarchies.

• The Object class defines methods that will be shared by all
objects in C#, e.g.,
– ToString: converts an object to a string representation

– Equals: checks if two objects are the same

– GetType: returns the type of a type of object

• A class can override a method defined in Object to have a
different behavior, e.g.,
– String class overrides the Equals method to compare the content

of two strings

Abstract Classes and methods

• Abstract classes

– Cannot be instantiated

– Used as base classes

– Class definitions are not complete

• Derived classes must define the missing pieces

– Can contain abstract methods and/or abstract properties

• Have no implementation

• Derived classes must override inherited abstract methods

and abstract properties to enable instantiation

– Abstract methods and abstract properties are implicitly

virtual

39

Abstract classes and methods

• An abstract class is used to provide an appropriate base

class from which other classes may inherit (concrete

classes)

• Abstract base classes are too generic to define (by

instantiation) real objects

• To define an abstract class, use keyword abstract in the

declaration

• To declare a method or property abstract, use keyword

abstract in the declaration

• Abstract methods and properties have no

implementation

40

Abstract classes and methods

• Concrete classes use the keyword override to

provide implementations for all the abstract

methods and properties of the base-class

• Any class with an abstract method or property

must be declared abstract

• Even though abstract classes cannot be

instantiated,

we can use abstract class references to refer to

instances of any concrete class derived from the

abstract class

41

DATA FORMATTING

42

Formatting output in C#
• Format specifiers can be use in the Console class output

methods (Write(), WriteLine()), and in the String class Format()
method and in the ToString() method.

• The format specifier is placed inside the curly braces ({ }), thus
becoming part of the string literal argument for the WriteLine()
method.

• Notice two values are placed inside the braces. The first value
in the curly brace is a placeholder. It indicates which of the
arguments that are placed outside of the double quotes you
want displayed:

43

int n = 122334;
Console.WriteLine("{0:D} = {1:X}", n, n);
Console.WriteLine(String.Format("{0:D} = {1:X}", n, n));
Console.WriteLine("{0} = {1}",n.ToString("D"), n.ToString("X"));

Standard numeric format specifiers

Character Name Format specifier

C, c Currency {0:c}

D, d Decimal {0:d}

E, e Scientific (exponent) {0:e}

F, f Fixed point {0:f}

G, g General {0:g}

N, n Number with thousand
separator

{0:n}

R, r Rounded {0:r}

P, p Percent {0:p}

X, x Hexadecimal {0:X}

44

Precision specifier

Format character Name Format specifier with
precision

C, c Currency {0:c7}

D, d Decimal {0:d7}

E, e Scientific {0:e7}

F, f Fix-point {0:f7}

G, g General {0:g7}

N, n Number with thousand
separator

{0:n7}

R, r Round-trip {0:r7}

P, p Percent {0:p7}

X, x Hexadecimal {0:X7}

45

Precision: the number of significant digits or zeros to the right of the decimal point.

You may also specify a width as part of the format specifier. This is especially useful
when you want to control the alignment of items on multiple lines. Add the Alignment
component following the index ordinal before the colon. A comma is used as a separator.
If the value of alignment is less than the length of the formatted string, alignment is
ignored and the length of the formatted string is used as the field width. The formatted
data in the field is right-aligned if alignment is positive and left-aligned if alignment is
negative. If padding is necessary, white space is used.

Format character Name Format specifier

C, c Currency {0,12:c7}

D, d Decimal {0,12:d7}

E, e Scientific {0,12:e7}

F, f Fix-point {0,12:f7}

G, g General {0,12:g7}

N, n Number with thousand separator {0,12:n7}

R, r Round-trip {0,12:r3}

P, p Percent {0,12:p7}

X, x Hexadecimal {0,12:X7}

46

47

48

49

Continue sample

Thank you for your attention!

50

