
Object-Oriented Programming

Using Microsoft Visual C#

.NET

Programming 3

Collections
(more about collections)

2

Working with the ArrayList Class

 The ArrayList is a class defined in the

System.Collections namespace.

 It represents a dynamically sized array of

objects.

 Features of ArrayList class:

• Allows you to add, remove, insert, and sort the

items in it.

• Contains items in the order of addition.

Working with the ArrayList Class

 Consists of an index identifier assigned to its items.

 Enables you to retrieve items in any order by means of

their associated index numbers.

Introducing Generics

Benefits of using Generics:

 Allows you to work with any data type.

 Provides many of the advantages of the strongly

typed collections.

 Increases code performance by reducing the number

of required casting operations.

Introducing Generics

Generic Class Nongeneric Class Description

List<T> ArrayList,

StringCollection

A dynamically

resizable list of items

Dictionary<T,U> HashTable,

ListDictionary,

HybridDictionary,

OrderedDictionary,

NameValueCollection,

StringDictionary

A generic collection

of name-value pairs

Queue<T> Queue A generic

implementation of a

FIFO list

Introducing Generics

Generic Class Nongeneric

Class

Description

Stack<T> Stack A generic

implementation of a

LIFO list

SortedList<T,U> SortedList A generic

implementation of a

sorted list of generic

name/value pairs

Comparer<T> Comparer Compares two generic

objects for equality

Introducing Generics

Generic Class Nongeneric Class Description

LinkedList<T> N/A A generic

implementation of a

doubly linked list

Collection<T> CollectionBase Provides the basis

for a generic

collection

ReadOnlyCollection<T

>

ReadOnlyCollectionBa

se

A generic

implementation of a

set of read-only

items

Lists

• The most common sort of collection is a List<T>. Once

you create a List<T> object, it’s easy to add an item,

remove an item from any location in the list, peek at an

item, and even move an item from one place in the list to

another.

• Here’s how a list works:

– First you create a new instance of List<T>

– You need to specify the type of object or value that the list will

hold by putting it in angle brackets <> when you use the new

keyword to create it.

– List<Card> cards = new List<Card>();

• The <T> at the end of List<T> means it’s generic.

• The T gets replaced with a type—so List<int> just means a List of

ints.

9

The List<T> Class

• Implements the abstract data structure list using

an array

– All elements are of the same type T

– T can be any type, e.g. List<int>, List<string>,

List<DateTime>

– Size is dynamically increased as needed

• Basic functionality:

– Count – returns the number of elements

– Add(T) – appends given element at the end

List<T> – Simple Example
static void Main()
{

List<string> list = new List<string>() { "C#",
"Java" };

list.Add("SQL");
list.Add("Python");

foreach (string item in list)
{

Console.WriteLine(item);
}

// Result:
// C#
// Java
// SQL
// Python

}

Inline initialization:

the compiler adds

specified elements

to the list.

List<T> – Functionality

• list[index] – access element by index

• Insert(index, T) – inserts given element to

the list at a specified position

• Remove(T) – removes the first occurrence of

given element

• RemoveAt(index) – removes the element at

the specified position

• Clear() – removes all elements

• Contains(T) – determines whether an element

is part of the list

List<T> – Functionality (2)

• IndexOf() – returns the index of the first

occurrence of a value in the list (zero-based)

• Reverse() – reverses the order of the
elements in the list or a portion of it

• Sort() – sorts the elements in the list or a
portion of it

• ToArray() – converts the elements of the list

to an array

• TrimExcess() – sets the capacity to the

actual number of elements

Primes in an Interval – Example

static List<int> FindPrimes(int start, int end)
{

List<int> primesList = new List<int>();

for (int num = start; num <= end; num++)
{

bool prime = true;
for (int div = 2; div <= Math.Sqrt(num); div++)
{

if (num % div == 0)
{

prime = false;
break;

}
}
if (prime)
{

primesList.Add(num);
}

}
return primesList;

}

Stacks

Static and Dynamic Implementation

The Stack

• LIFO (Last In First Out) structure

• Elements inserted (push) at “top”

• Elements removed (pop) from “top”

• Useful in many situations

– E.g. the execution stack of the program

• Can be implemented in several ways

– Statically (using array)

– Dynamically (linked implementation)

– Using the Stack<T> class

Static Stack

• Static (array-based) implementation

– Has limited (fixed) capacity

– The current index (top) moves left / right with each

pop / push

S 2 18 7 12

0 1 2 3 4 5 6 7

top

The Stack<T> Class

The Standard Stack Implementation in .NET

The Stack<T> Class

• Implements the stack data structure using an

array

– Elements are from the same type T

– T can be any type, e.g. Stack<int>

– Size is dynamically increased as needed

• Basic functionality:

– Push(T) – inserts elements to the stack

– Pop() – removes and returns the top element from

the stack

The Stack<T> Class (2)

• Basic functionality:

– Peek() – returns the top element of the stack without
removing it

– Count – returns the number of elements

– Clear() – removes all elements

– Contains(T) – determines whether given element is

in the stack

– ToArray() – converts the stack to an array

– TrimExcess() – sets the capacity to

the actual number of elements

Stack<T> – Example

• Using Push(), Pop() and Peek() methods

static void Main()

{

Stack<string> stack = new Stack<string>();

stack.Push("1. Joe");

stack.Push("2. Steven");

stack.Push("3. Maria");

stack.Push("4. George");

Console.WriteLine("Top = {0}", stack.Peek());

while (stack.Count > 0)

{

string personName = stack.Pop();

Console.WriteLine(personName);

}

}

Queues

Static and Dynamic Implementation

The Queue

• FIFO (First In First Out) structure

• Elements inserted at the tail (Enqueue)

• Elements removed from the head (Dequeue)

• Useful in many situations

– Print queues, message queues, etc.

• Can be implemented in several ways

– Statically (using array)

– Dynamically (using pointers)

– Using the Queue<T> class

Static Queue

• Static (array-based) implementation

– Has limited (fixed) capacity

– Implement as a “circular array”

– Has head and tail indices, pointing to the head and

the tail of the cyclic queue

S 7 12 2 5

0 1 2 3 4 5 6 7

head tail

The Queue<T> Class

Standard Queue Implementation in .NET

The Queue<T> Class

• Implements the queue data structure using a

circular resizable array

– Elements are from the same type T

– T can be any type, e.g. Stack<int>

– Size is dynamically increased as needed

• Basic functionality:

– Enqueue(T) – adds an element to the

end of the queue

– Dequeue() – removes and returns the element at

the beginning of the queue

The Queue<T> Class (2)

• Basic functionality:

– Peek() – returns the element at the beginning of the

queue without removing it

– Count – returns the number of elements

– Clear() – removes all elements

– Contains(T) – determines whether given element is in

the queue

– ToArray() – converts the queue to an array

– TrimExcess() – sets the capacity to the actual number

of elements in the queue

Queue<T> – Example

• Using Enqueue() and Dequeue() methods

static void Main()
{

Queue<string> queue = new Queue<string>();

queue.Enqueue("Message One");
queue.Enqueue("Message Two");
queue.Enqueue("Message Three");
queue.Enqueue("Message Four");

while (queue.Count > 0)
{

string message = queue.Dequeue();
Console.WriteLine(message);

}
}

The String Class

30

31

String, String class

• Contains Unicode characters (characters collection)

• The String is a reference type.

• Objects of the string class store an immutable series of
characters.They are considered immutable because once
you give a string a value; it cannot be modified. Methods
that seem to be modifying a string are actually returning
a new string containing the modification.

• You can use the Length property of a string to determine
its length.

• String type allows individual characters to be accessed
using an index with [].

String class
Properties Description

Length Gets the number of characters

Static methods

Compare(stringA,stringB) Compares two strings. Returns: (-1, 0, 1)

Bool Equals(stringA, stringB) Determines whether two strings have the
same value. (return true or false)

Concat() Concatenates one or more string

Non static methods

CompareTo() Compares the string with the string given
as a parameter

Equals()
pl.: string name = "Ann";
name.Equals("Andy")

Equals () returns true if the two string
have the same value

Contains()
string today =
DateTime.Now.ToLongDateString();

today.Contains("july")

Returns with true, if the string contains the
other string given as a parameter

32

String class

Non static methods Description

StartsWith(string) ; EndsWith(string) Determines wether the beginning (the end) of
this instance string matches the specified
string.

IndexOf(string, [startindex]) Returns the index of the first occurence of a
string wthitin the instance. Returns -1 if there
is no any occurence.

LastIndexOf(string, [startindex]) Returns the index of the last occurence of a
specified string or character. (If no returns -1.)

Insert(startindex, string) Insert a specified instance of a string at a
specified index position.

Remove(startindex, count) Deletes a specified number of characters
beginning at a specified position.

Replace(oldString, newstring)
string Replace(char oldChar, char newChar)
string Replace(string oldValue, string newValue)

Replaces all occurences of a character or string
with another character or string.

33

String class

Non static methods Description

Substring(startIndex, [length]) Retrieves a substring from the string
beginning at the specified position.

ToLower(), ToUpper() Returns a copy of the string in lowercase
(uppercase) .

PadLeft(), PadRight()
string PadLeft(int totalWidth)
string PadLeft(int totalWidth, char paddingChar)

string PadRight(int totalWidth)
string PadRight(int totalWidth, char paddingChar)

Right-aligns (Left-aligns) the characters in
the string padding on the left (padding on
the right) with spaces or a specified
character.

Trim(), TrimStart() és TrimEnd() Removes all occurences of a set of
specified characters from the beginning
and end.

34

String class methods

Non static methods Description

Split()

string[] Split(params char[] separator)
string[] Split(char[] separator, int count)
string[] Split(char separator, StringSplitOptions options)
string[] Split(string[] separator, StringSplitOptions
options)
string[] Split(char[] separator, int count,

StringSplitOptions options)
string[] Split(string[] separator, int count,

StringSplitOptions options)

Identifies the substrings in
the string that are delimited
by one or more characters
specified in an array, then
places the substrings into a
string array.

35

String class methods

36

String class methods

37

38

StringBuilder class
• NET includes another class, StringBuilder, which

represents a mutable string of characters. Objects of
this class can have data appended onto the same
object. The StringBuilder class offers many of the
same members as the string class does.

• For applications that concatenate or add characters
to the string, you will want to consider instantiating
objects of the StringBuilder class

• Most often used methods of the StringBuilder class
ara Append(), Insert() and
AppendFormat().

39

StringBuilder class
Example:

Exceptions

41

What are Exceptions?

• Exception

– Error condition that is unexpectedly encountered

during program execution

• Exception class

– Base class for all exceptions

• Exception handler

– Code written to bypass default error messages

• Execution call stack

– Keeps track of all methods that are in execution

42

Types of Errors

• Syntax error
– Occurs when C# grammar is violated

• Semantic error
– Occurs when syntax is correct, but what you want the

code to do is not

• Logic error
– Program with semantic errors is able to complete

execution but displays incorrect results

• Run-time error
– Triggered during program execution

43

Code snippet from the Restaurant

Bill Calculator application

44

What Causes Exceptions?

• Exceptions are thrown in the following cases

– You try to loop through an array and go past a valid

location

– Your program uses up considerable system resources

– Your program specifies the wrong location for the text

file or database

– Your file does not have enough data, and your

program attempts to read from it

45

Exception Thrown by Entering

Alphabetic Characters into the Basic

Math Calculator

46

Syntax for Exception Handlers

• Try block

– Surrounds regular processing code that may throw an

exception

• Catch block

– Contains code that provides alternative processing

steps in the event that an exception is thrown

• Finally block

– Identifies processing steps executed after the try or

catch blocks, whether an exception is thrown or not

47

General Syntax for an Exception

Handler

48

Data Type Check

• It is important to verify that the data you are

processing are the correct types

• If you perform calculations on an integer value

– Ensure that user entered a string that can be

converted and stored as an int data type

• Strings

– Do not have to be checked because Text property of a

text box is already of type string

49

Exception Handler for Quantity Input

Field

50

Data Type Exception Handler for

Optional Input Field

51

A General Exception Handler

• To enhance usability of your program

– Write a generalized exception handler to deal with

any type of exception that could be thrown

• Message property

– Returns an English description of the current

exception

• StackTrace property

– Can help locate where exception was thrown

52

Syntax for General Exception

Handler without the Finally Block

53

Syntax for the General Exception

Handler to use the Exception Object

54

Using the Message Property of the

Exception Object

55

When to Catch Exceptions

• When you include multiple exception handlers in

a single event

– Each try block should have its own catch or finally

block

• Keep the general exception handler

– But nest individual exception handlers for individual or

sets of program statements

• When you nest try-catch blocks

– If exception is triggered within a nested try block

control passes to the associated catch block

56

Nested Exception Handlers in

Average Item Price Program

57

Catching Exceptions of a Specific

Type

• DivideByZeroException

– Performing division in which the denominator is zero

• FormatException

– Attempting to convert “ten” to a numeric data type

using Parse

• OverflowException

– Attempting to store a value larger than the range limit

for a particular numeric data type

58

Throwing your Own Exceptions

• Syntax

If (BooleanExpression)

{

ApplicationException exVar =

new ApplicationException(“Message String”);

throw exVar;

}

59

Exceptions and the Call Stack

• Execution call stack

– Keeps track of all the methods that are in execution

currently

• Stack trace

– Trace of all method calls

– Provides information to help you pinpoint problems

60

Revised General Exception Handler

to Show Stack Trace

61

Screen Shots from Revised General

Exception Handler to Show Stack

Trace

Thank you for your attention!

62

