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Quantum information in a nutshell

Quantum information in a nutshell
storage of information

the information is stored in a quantum system
where the information is the state of the system

processing the information (using unitary operators)

reading out the information (making quantum
measurements)



Introduction: quantum bit

As we know, in classical information theory, the basic unit of
information is the bit whose value can be 0 or 1. Its analogue
(but not the same(!)) in quantum information theory is the
quantum bit. From now, we will talk about the latter quantity.

Any two-level quantum system can be regarded as a quantum
bit (and its state is the information, as we know).

It is natural to ask:
when can a system be regarded as a quantum system?
Unfortunately, it is hard to answer this question adequately
(from the perspective of a physicist) to persons who has never
been trained in quantum mechanics on a university level.
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However, from the perspective of an informatician, the question
below can be answered with a satisfying precision.

From our perspective, the most important feature of a quantum
system is that its state is not necessarily defined. What does it
mean on the level of bits? While the two possible states of a
classical bit (0 and 1) mutually excludes each other, in case of
a quantum bit, the superposition of these states is also a
possible state of the system.

In a superposition, both classicaly possible states are included
(with some weight) in the state of a quantum bit. The essence
of this phenomenon can be summerized expressively in the
following way: events which are mutually exluded by each other
in classical physics do not necessarily exlude each other in
quantum physics.
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Being in a superposition of states titled 0 and 1, a quantum bit
does not "decide" which state to choose until the readout
(which means a quantum measurement or in other word:
observation). We must not think that before the measurement /
observation, the qubit is in one of these states and this
information is merely dredged up by the measurement which
can give 0 or 1 with some probability!
The truth is that in a state like this, till the readout, even itself
the qubit does not "know" if it is in state 0 or state 1. This (the
choice of the qubit between 0 and 1) is being "decided" during
the interaction of the measurement.
Before the measurement, its state is neither 0 nor 1..... it is
something else. This "else" is the superposition of them. In
case of a superposition only the probability of getting a given
state (after measurement) can be predicted exactly.
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The question naturally arises: what kind of new possibilites are
provided by the superposition state of quantum bits?
Using quantum computers in information processing, the input
(qubit) state can be also the superposition of classical bit
states, hence the quantum computer can process the different
input states parallelly.
Using this parallelism quantum computers can solve problems
that cannot be solved with classical computers.
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So far, we have talked about the state of a quantum system, but
we have not mentioned how to describe it. The mathematical
tool which helps us to feature the state of a quantum system is
the: state vector.
In the general formalism of quantum mechanics (called Dirac
formalism), the state of a system is described with a general
infinite dimensional vector. This vector is independent from any
coordinate system. Before starting its explanation, I have to
emphasize: I will make no effort to be mathematically rigorous
restricting myself to give only those informations which we need
to know, if we want to understand the topics explained in future
lessons.
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Let us suppose we have a particle (with a mass m) moving in a
potential V (q). We try to describe its one dimensional motion in
this potential, where q is the coordinate of the particle spread
onto the range of −∞ to∞.
In the Schrödinger formalism of quantum mechanics (called
position representation), the state of the particle at a time t is
described by its wave function ψ(q, t). If there is no intervening
measurement (the particle is not observed), this state evolves
from time t0 (and from a state ψ(q, t0)) according to the
Schrödinger equation:[

− ~2

2m
∂

∂q2 + V (q)

]
ψ(q, t) = i~

∂

∂t
ψ(q, t).
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From the things explained so far, it follows that there is a
strange ambiguity:

on one hand: if the system is not disturbed by a
measurement, its time evolution gives a nice, smooth
example of causality.
on the other and: if there is an intervening measurement,
the state of the system falls into one of its classically
possible (observable) states and we can predict the
probability of a given output only.

For example, if we want to know the position of a particle at a
time t , we can make a measurement. The probability of finding
the particle between q and q + dq is |ψ(q, t)|2dq.
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We have to remark that this state can be described in
momentum representation too where the function which
features the particle can be written in the following way: ψ(p, t).
The two representation are connected by the Fourier transform:

ψ(p, t) =
1√
2π~

∫ +∞

−∞
ψ(q, t)e−

ipq
~ dq.

Both representations describe the same state. It is just a
question of perspective, hence the question naturally arises: is
not there a possibility for us to feature a quantum state with a
device which is independent from any coordinate system?
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The answer is yes. This is aimed by the Dirac formalism. We
can understand how a state vector features the quantum state
of a system, if we give a geometrical interpretation to the wave
function ψ(q, t) at a frozen time t .
We know, coordinate q can have any value from −∞ to∞. On
each place q1, q2, q3.... and so on, the wave function has the
value of ψ(q1), ψ(q2), ψ(q3)... We can imagine a space with
infinite number of dimensions spanned by mutually
perpendicular axes. Each axis corresponds to one of the q
places.
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In the system of axes, ψ(q1) is actually the projection of some
vector on axis q1, ψ(q2) is the projection of the same vector on
axis q2 and so on. In this case, this vector (as its components
too) represents the state of the system, hence we call it state
vector.This vector is not a simple vector, because its
components can be complex numbers. A vector of this kind is
denoted by the following symbol (introduced by Dirac) |〉. The
vector whose components are ψ(q1), ψ(q2), ψ(q3)... is called ψ
ket and denoted by |ψ〉. The following picture try to show how
this vector can be imagined (but we have to keep in mind that a
vector like this can be more than three dimensional and its
components can have complex values too).
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Each state of a dynamic system is described by a ket vector.
We already know that the (linear) superposition of the states of
a quantum system is also a possible state of the system. From
this it follows that the ket vector space is linear in the following
sense: if c1 and c2 are complex numbers and |a〉 and |b〉 are
ket vectors, then their linear combination is also a ket vector

|u〉 = c1|a〉+ c2|b〉,

because the linear combination of |a〉 and |b〉 is also a state of
the system. If we have two (or more) ket vectors and none of
them can be expressed by the linear combination of the others,
they are said to be linearly independent vectors. The number of
dimensions of a ket vektor space is defined by the number of its
linearly independent kets.
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The independent states of a quantum system are represented
by independent ket vectors, hence the number of dimensions of
the vector space (state space) is determined by the number of
independent states of the quantum system. Time evolution of
the system can be imagined as the rotation of the state vector
round the origo.
Returning to the quantum bit: we know any two-level quantum
system can be regarded as a quantum bit and the state of the
system is the information. In the picture below, we try to show
how a qubit (or rather its state vector) can be visualized.
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In the pictuer above, the |ψ〉 state of the qubit is a superposition
of state |0〉 and state |1〉, where state |0〉 is weighted by the
value of α and state |1〉 is weighted by the value of β. These
numbers can be complex and using them we can calculate the
probability of getting the states |0〉 and |1〉 (after measurement).
As we mentioned any two level system can be a qubit. Such
systems are the polarization of photons or the spin of a particle
and so on.
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We need to know how to calculate with ket vectors on a base
spanned by them. Before explaining it, ther is a very important
thing we have to know, namely: the length of a ket vector must
be 1. It is evident that on a base like this, the coordinate of ket
|0〉 on the axis representing bit 0 is 1 and this value is 0
respectively the other axis.
In the case of ket |0〉, it is evident that these coordinate values
are exchanged.

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
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We will need to use also adjoints of ket vectors (adjoint means:
transposed and (complex) conjugated). These kind of vectors
are named bra vectors. In case of having non-complex
components, adjoints of kets |0〉 and |1〉 (bras 〈0| and 〈1| ) can
be written into the form below:

〈0| =
(
1 0

)
, 〈1| =

(
0 1

)
Scalar (or in other word: inner) product of two vectors will also
be needed. This multiplication can be achieved in the following
way: we have the adjoint of one of the two vectors (in case of
non-complex representatives, it is all the same which vector is
adjoined), then we multiply this adjoint vector by the other
vector. For example scalar product of kets |0〉 and |1〉 can be
seen below:

〈1|0〉 =
(
0 1

)(1
0

)
= 0
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In case of non-complex components, order of factors does not
matter, because:

〈1|0〉 =
(
0 1

)(1
0

)
= 〈0|1〉 =

(
1 0

)(0
1

)
= 0

but on the other hand, in case of kets |a〉 and |b〉 have complex
representatives, the following formula is valid:

〈a|b〉 = 〈b|a〉∗
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....and of course, we will need to use also the outer product of
vectors. Instead of a number, this kind of product results a
matrix. As we can see below, in case of outer product, order of
factors is not irrelevant, even in case of non-complex
components:

|0〉〈1| =

(
1
0

)(
0 1

)
=

(
0 1
0 0

)

|1〉〈0| =

(
0
1

)(
1 0

)
=

(
0 0
1 0

)
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Now, let us return to our quantum bit:

|0〉, |1〉 =⇒ |Ψ〉 = α|0〉+ β|1〉,

where the following very important requirement has to be
satisfied:

|α|2 + |β|2 = 1.

(This requirement is necessary because of the probability
interpretation.)



Introduction: quantum bit

In this phase, we have to enlighten the reasons why we have to
know the things treated above. First of all, as we saw, state |Ψ〉
of a quantum bit is expressed on an orthonormal base which is
expanded by kets |0〉 and |1〉. States that are represented by
kets |0〉 and |1〉 are called classically observable states. These
orthonormal, observable1 states are the eigenstates of the
system. If a measurement is made, the measured system falls
always into one of its eigenstates (in case of our qubit, into ket
|0〉 or into ket |1〉) and from that instant, state vector of the
system will be the "chosen" eigenstate (or eigenvector).

1or in other words: states that are mutually excluded by each other in
classical physics
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Now then! The question is that how can we calculate the
probability of finding the system in a certain eigenstate, after
making a measurement? We can calculate it via ascertaining
the amplitude of projection of state vector |Ψ〉 on the certain
eigenstate2. After obtaining this projection (which is a complex
number), we have to compute its absolute value, and then we
have to square this absolute value. The calculated number will
be the value of the sought probability.

2obviously before making the measurement
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For example, if we want to know the probability of finding the
system of qubit |Ψ〉 = α|0〉+ β|1〉 in the state |0〉, after a
measurement, we have to calculate the square of absolute
value of α. Square of absolute value of a complex number
equals the number itself multyplied by its complex conjugated.
In our case, it means: |α|2 = α∗α. Since we will work with
vectors with two or far more then two number of dimensions, it
is necessary to know how to calculate probabilities that we are
interested in. First of all, let us keep in mind that scalar product
of two vectors which are perpendicular to each other equals 0,
furthermore let us realize that all eigenvectors in the linear
combination which builds up state |Ψ〉 are mutually
perpendicular to each other (in our case: |0〉 and |1〉). From
these two facts it directly follows the way of calculation of
probabilities which we are interested in:
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We have to square the absolute value of scalar product of state
|Ψ〉 and the eigenstate whose materialization-probability we
want to know. This method can be understood very easy, if we
keep in mind that |Ψ〉 is a sum of mutually perpendicular
(eigen)vectors, thus in case of multiplying it by a member of this
sum, we actually do the following: we multiply all members of
the sum by the given member and add the obtained results to
each other. Consisting of mutually perpendicular ket vectors, all
scalar products which contains different kets results 0. Only the
scalar product survives this operation in which the angle
between the eigenvector and our ket is equal to 0. There is only
one such an eigenvector in the linear combination of |Ψ〉,
namely the one by which |Ψ〉 was multiplied. Obviously, scalar
product between our eigenket and itself equals 1, and this
result multiplies the projection which we are intersted in (which
can be called probability amplitude).
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What is it all about? If we are interested in the value of the
projection of |Ψ〉 on a certain eigenket, all we have to do is to
have the scalar product between |Ψ〉 and the eigenket. Let us
consider a very simple example, where we show how to
compute the value of probability w1 of finding the system in
state |1〉 after making a measurement on the base of (|0〉, |1〉),
if the initial state of the system is |Ψ〉 = α|0〉+ β|1〉:

w1 = |〈1|Ψ〉|2 = |〈1|(α|0〉+ β|1〉)|2 = |α〈1|0〉+ β〈1|1〉|2 =

= |α× 0 + β × 1|2 = |β|2 = β∗β

...or in matrix representation:

w1 = |〈1|Ψ〉|2 = |
(
0 1

)(α
β

)
|2 = |β|2 = β∗β



Introduction: quantum bit

Considering things drawn above, we can understand the
reason of the requirement connected with |Ψ〉 = α|0〉+ β|1〉,
namely: |α|2 + |β|2 = 1. Since |α|2 is the probability of finding
the system in state |0〉, and |β|2 is the probability of
materialization of state |1〉 after a measurement, obviously their
sum has to be equal to 1. From this fact, it follows that the
length (or norm) of any statevector has to equal 1, (because in
case of |α|2 + |β|2 = 1, length

√
|α|2 + |β|2 will be equal to 1).

From the foregoing, it is clear how to calculate the norm
(length) of an arbitrary vector |Ψ〉. (By the way, the norm of a
vector |Ψ〉 is denoted by ‖Ψ‖.)

‖Ψ‖ =
√
〈Ψ|Ψ〉 =

√
(α∗〈0|+ β∗〈1|)(α|0〉+ β|1〉) =

=
√
|α|2〈0|0〉+ α∗β〈0|1〉+ β∗α〈1|0〉+ |β|2〈1|1〉 =

=
√
|α|2 + |β|2
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...or it can be expressed via matrices:

‖Ψ‖ =
√
〈Ψ|Ψ〉 =

√(
α∗ β∗

)(α
β

)
=
√
|α|2 + |β|2

Generally, α is a real number and β is a complex one. Besides
superposition, phase-freedom is also a newness, in quantum
information (from the eiϕ shape of complex numbers).
Phase-freedom makes possible for us to achieve computations
via interference. This is related with another kind of
visualization of qubits which is represented by the
Bloch-sphere, as it can be seen in the picture below.
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In this case, the state of the qubits is described by two angles
(0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π), according to the following formula:
|Ψ〉 = cos θ2 |0〉+ eiϕ sin θ

2 |1〉. Any point on the surface of the
sphere is a possible state |Ψ〉. In this kind of representation θ is
responsible for superposition. If θ = 0, the system is in state
|0〉, and in case of θ = π, state of the system is |1〉. On this
surface, orthogonal states are ’over against’ each other. Let us
remember, in our previous representation, orthogonal states
were perpendicular to each other. This is the reason why θ

2 is
written into the expression above, instead of θ. Angle ϕ
represents the phase of the complex factor.
Naturally, we will have to work with systems which consist of
several qubits, thus we need to know the way of description of
their state. This is shown from the following slide.
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Description of a multi-qubit system
Ensemble of two qubits: In this case the state space of their
common system is the tensor product of their state spaces.
The base where their state is expressed on is the so called
product base, whose elements are the following ones:

|0〉1|0〉2 = |00〉

|0〉1|1〉2 = |01〉

|1〉1|0〉2 = |10〉

|1〉1|1〉2 = |11〉

In our case |Ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉, and
obviously the following requirement has to be satisfied:
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. Generally one of the α-s
gets a real value while all the others are complex, hence we get
a very large phase-freedom.
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Description of a multi-qubit system
Let us realize that numbers in the symbols of kets above are
actually binary numbers. In decimal system, they correspond to
numbers 0, 1, 2, and 3. In case of a system which consists of
three qubits, the first base ket of the state space is |000〉 and
the last one is |111〉, thus numbers from 0 to 7 can be
described by base kets. If we have an n-qubit system, base
elements of its state space are the following ones:

|00......00〉

.

.

.

|11......11〉
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Description of a multi-qubit system
From this, it follows that general state of an n-qubit system can
be written into the following shape:

|Ψ〉 =
2n−1∑
x=0

cx |x〉

The question naturally arises how can a tensor production of
vectors be achieved?a Without any explanation we try to show
this method below via an example.

aFor example: how to achieve a production like this |00〉?
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Description of a multi-qubit system

|a〉 =

(
a1
a2

)
, |b〉 =

(
b1
b2

)
, |a〉|b〉 = |ab〉 =


a1b1
a1b2
a2b1
a2b2


In case we have non column/row matrices:

a =

(
a1 a2
a3 a4

)
,b =

(
b1 b2
b3 b4

)

a⊗ b =


a1b1 a1b2 a2b1 a2b2
a1b3 a1b4 a2b3 a2b4
a3b1 a3b2 a4b1 a4b2
a3b3 a3b4 a4b3 a4b4
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Description of a multi-qubit system
Returning to n-qubit systems, we have to mention possibilities
given by them: as we have already known numbers and their
superpositions can be described by two-state quantum
systems. What is it all about? As we know |Ψ〉 =

∑2n−1
x=0 cx |x〉 is

the general state of an n-qubit system, where in each |x〉, x is
binary number consisting of n pieces of digits. In a
superposition of an n-qubit system, many numbers
(2n − 1 and 0) can be described at the same time via one of
the states of the system (and of course there is the
phase-freedom, as an additional possibility).
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From the Schrödinger-equation an important conservation law
can be derive which is related to the current of
probability-density. The derived law of conservation represents
the conservation of the total probability. It means that any
transformation which has an effect on our state vectors (for
example in case of their time evolution) must leave the total
probability untouched. What does it mean exactly? The thing is
that though state vector may rotate around the origo as the
state itself is changing, its length has to be left unchanged by
the transformation which makes state vector rotate. Why is it
equivalent to the conservation of probability? Let us consider
the well known two dimensional case, where the norm (length)
of the state vector |Ψ〉 = α|0〉+ β|1〉 was calculated according
to this formula: ‖Ψ‖ =

√
〈Ψ|Ψ〉 =

√
|α|2 + |β|2,

where the members under the root-sign are probability values.
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Any changing of the length of state vector under some
transformation would mean that sum of probabilities has
changed, or in other words: total probability is not invariant. But
- as we know - it cannot happen because of the law of
probability-conservation. Since quantum gates alter states,
matrices which describe transformations made by these gates
has to represent operators which satisfy the requirement
mentioned above. Operators of this kind are called unitary
operators (and their matrices are unitary ones). Unitarity is a
necessary and sufficient condition which ensures that
transformation cannot change the length of (the norm of) a
state vector. Operators of such kind of transformations are
denoted by the following symbol: Û. But what is the condition of
unitarity? A matrix which represents a unitary operator has to
satisfy the following requirement: U−1 = U†, where U† means
the adjoint (transposed and complex conjugated) of the matrix.
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From the fact that length of our state vectors
√
〈Ψ|Ψ〉 = 1

(because of the total probability), it follows that 〈Ψ|Ψ〉 = 1. If
|Ψ〉 is subject to a unitary operation of some Û which alters the
original state into a new state of |Ψ′〉, the following expression
has to come true: 〈Ψ|Ψ〉 = 〈Ψ′|Ψ′〉 = 1. Let us check how
unitarity of an operator Û can ensure it:

|Ψ′〉 = Û|Ψ〉 =⇒ 〈Ψ′|Ψ′〉 = 〈ÛΨ|ÛΨ〉 = 〈Ψ|Û†Û|Ψ〉

We know that according to unitarity U−1 = U†, furthermore we
know U is a square matrix, and in case of a square matrix
UU−1 = U−1U = I. Knowing these facts, we can realize the
value of the scalar product (just like the value of the norm)
remained the same after the effect of Û. There is another
important consequence of unitarity of an operator like Û,
namely: transformations described by this kind of operators are
reversible.
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This means output state of a quantum gate (or a quantum
circuit containing several gates) can be retransformed to its
input state by sending back the output state into the gate (or
circuit).
Let us consider what it means in case of one quantum gate:
So, our input sate is |Ψ〉, and state |Ψ′〉 = U|Ψ〉 will appear on
the output. (Since henceforward every operator will be
represented by matrices, from now Û = U.) This output state
will be sent back through the quantum gate, in other words
matrix U will have an effect on state |Ψ′〉 = U|Ψ〉. In this way,
we will get the following state: UU|Ψ〉.
At this point, it is important to know that from the unitarity of a
matrix U, it follows U is a self-adjoint (hermitian) matrix, thus
U† = U. Accordingly, UU|Ψ〉 = U†U|Ψ〉. Since - as we know -
U† = U−1, our last expression can be altered into the next form:
U†U|Ψ〉 = U−1U|Ψ〉 = |Ψ〉. As we can see, we got back the
original input state, thus the transformation is really reversible.
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From this reversibility, it follows there are classical gates which
do not have a quantum analogous. For example such a gate is
the AND gate which gives 0 output in case of 00, 01, and 10
inputs. In such a case, input cannot be found out from
knowledge of output. On the other hand, NOT gate, which
causes a bit-flip (0→ 1, 1→ 0), is a reversible one, thus it has
a quantum analogous (|0〉 → |1〉, |1〉 → |0〉). Its effect on a
general qubit is:

α|0〉+ β|1〉 → α|1〉+ β|0〉

Representing the state of the qubit by a two-component column
matrix like this

α|0〉+ β|1〉 =

(
α
β

)
,
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we can describe the effect of NOT gate by use of the matrix
below: (

0 1
1 0

)(
α
β

)
=

(
β
α

)
,

which is actually one of the three Pauli matrices (more on them
later) denoted by σx . Now, that we know there are classical
gates which do not have quantum analogous (for example:
AND gate), it is time to mention a quantum gate that does not
have classical analogous. Such a gate is the one-bit Hadamard
gate whose circuit symbol can be seen below:

H

The left side line of the picture above represents the input
quantum bit, and the right side symbolizes the output qubit.
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It is nice, but we still have not written what happen with qubit
crossing through the Hadamard gate. Depending on the bit
itself, the gate can have two kinds of effect on the qubit:

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉)

(Let us realized that the resulted states span an orthonormal
base.)
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So, after the effect of Hadamard gate, a qubit which was
originally in one of its eigenstates (in |0〉 or |1〉) gets into the
superposition of states |0〉 and |1〉. It is apparently impossible in
a classical case. Let us realize that H2 = I:

HH|0〉 =
1√
2

H(|0〉+|1〉) =
1√
2

[
1√
2

(|0〉+|1〉)+
1√
2

(|0〉−|1〉)
]

=

=
1√
2

2√
2
|0〉 = |0〉
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The matrix of the Hadamard gate can be seen below:

H =
1√
2

(
1 1
1 −1

)
Naturally, there are two-qubit gates, too. From this kind of
gates, C-NOT (Controlled–NOT) gate is the most important
one, whose effect can be found below:

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉

From the rows above, it is clear that C-NOT affects only in case
value of first qubit (the control bit) equals 1. In this case second
qubit (target bit) is given a reverse value than it had before (a
bit flip happens).
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If we have a little patient, we can easily find out the matrix
which represents the effect of C-NOT:

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Watchful readers can find quickly the NOT gate hiding in the
right bottom part of the matrix. Checking of unitarity of C-NOT
is a reader’s task.
Circuit symbol of C-NOT can be seen below:
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In the picture above, upper line symbolyzes the controll bit
whose value remains untouched by the gate. Only the value of
target bit (visualized by the lower line) can change, in case
value of control bit equals 1.
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Quantum circuits
Now we have reached the point, where it is worth introducing
the method of modelling quantum computation via quantum
circuits. As it can be surmised, in a system of this kind of
circuits, qubits are symbolized by lines of the circuit, and
quantum gates (which are actually unitary opertors) are
denoted by their symbols. There is an important theorem,
namely: Any kind of unitary transformation can be constructed
by use of one-qubit gates and C-NOT gates. (We set aside
from proving this theorem.) This is the reason why we can meet
so many C-NOT gates in schemes realizing different kinds of
quantum informatical protocols. Below, we show a very simple
quantum protocol.
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As a tradition, many times Deutsch problem is the first treated
one in standard textbooks on quantum information to
demonstrate how efficient a quantum algorithm can be. The
reason which makes writers of these books follow this way can
be easily understood, if we realize that though using very few
knowledges, this algorithm already shows quantum paralellism
in computation, giving students a relatively simple tool that
demonstrates how a quantum algorithm can work tipically. Let
us follow our great ancestors by beginning with this algorithm.
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Let us consider a function f which maps the discreet set of
{0,1} onto the set {0,1}. In case f (0) = f (1), function f is
called constant, and if f (0) 6= f (1) function f is a balanced one.
Using some classical method, we have to make two evaluations
to decide whether function f is a constant or a balanced one.
However, using Deutsch algorithm, we can decide it after one
evaluation. Let us check how it works. First of all, we have to
know the quantum circuit which implements Deutsch’s
algorithm. This circuit is drawn in the figure below.
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In the picture above, Uf denotes the f-Controlled-NOT gate (or
fNOT, CfNOT, or Deutsch gate). What does this gate do? In
case of denoting the upper bit (which is the control bit) by |x〉,
and the lower bit (target bit) by |y〉, two-qubit gate Uf has the
following effect on the pair of qubits: |x〉|y〉 → |x〉|y ⊕ f (x)〉,
where ⊕ means modulo-2 addition, which is subject to the
following connections: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1,
1 + 1 = 0. In the figure below, different states of the two-qubit
system is denoted, correspondently to relevant sections of the
circuit.
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As it can be seen, input state of the circuit is |Ψ0〉 = |0〉|1〉. Due
to the effect of first two Hadamard gates, this state alters into
the state |Ψ1〉, as we can see below:

|Ψ1〉 = H|0〉H|1〉 =
1√
2

(|0〉+ |1〉) 1√
2

(|0〉 − |1〉) =

1
2

(|0〉+ |1〉)(|0〉 − |1〉) =

=
1
2

(|00〉 − |01〉+ |10〉 − |11〉)
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Now let us see how this state changes under the effect of
Deutsch gate:

|Ψ2〉 = CfNOT |Ψ1〉 =
1
2

CfNOT (|00〉 − |01〉+ |10〉 − |11〉) =

=
1
2

[|0〉|0 + f (0)〉− |0〉|1 + f (0)〉+ |1〉|0 + f (1)〉− |1〉|1 + f (1)〉] =

=
1
2

[|0〉(|0 + f (0)〉 − |1 + f (0)〉) + |1〉(|0 + f (1)〉 − |1 + f (1)〉)]

Being watchful, we can realize how to simplify the expression
above:

if f (x) = 0, then |0 + f (x)〉 − |1 + f (x)〉 = |0〉 − |1〉
on the other hand,
if f (x) = 1, then
|0 + f (x)〉 − |1 + f (x)〉 = |1〉 − |0〉 = (−1)(|0〉 − |1〉)
thus: |0 + f (x)〉 − |1 + f (x)〉 = (−1)f (x)(|0〉 − |1〉)
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From this enumeration, it follows that |Ψ2〉 can be written into
the shape below:

|Ψ2〉 =
1
2

[(−1)f (0)|0〉+ (−1)f (1)|1〉](|0〉 − |1〉)

Before making the measurement (in other word: readout) on
the output of the circuit, we have to find out the effect of the last
gate on the state of the system. As we can see, in this case a
Hadamard gate affects on the upper qubit. Let us calculate the
resulted state after its action:

|Ψ3〉 =
1

2
√

2
[(−1)f (0)(|0〉+ |1〉) + (−1)f (1)(|0〉− |1〉)](|0〉− |1〉) =

=
1

2
√

2
[((−1)f (0)+(−1)f (1))|0〉+((−1)f (0)−(−1)f (1))|1〉](|0〉−|1〉)
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So, |Ψ3〉 is the output state of the circuit, and as it can be seen,
there remains no more but to make a measurement on this
output state to find out whether function f is a constant or a
balanced one. It is natural to ask: how can we decide it based
on only one measurement (or in other word: evaluation)? The
answer can be easily understood, if we try to imagine what is
the output state |Ψ3〉 in case of a constant function and in case
of a balanced function.
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Let us see the result of our imagination:

if f is a constant function, the resulted state is

|Ψ3〉 = ± 1√
2

(|00〉 − |01〉)

if f is a balanced function, the resulted state is

|Ψ3〉 = ± 1√
2

(|10〉 − |11〉)

So, we can draw a conclusion, according to which if f is a
constant function, state of the upper qubit will be |0〉, and if f is
a balanced one, upper qubit will be in the state |1〉.
Thus, making only one measurement on the upper qubit, we
can decide what sort of function f is.


