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Density matrix has already been partly explained in the
itroductory chapter of the textbook of our subject. Now we
detail some of its important features which will be useful later.
First of all we have to define a very considerable idea, namely:
ensemble which is a set of similar quantum systems prepared
in different states. Suppose we select one of these systems.
The probability of selecting a system whose state is Ψi equals
pi and

∑n
i=1 pi = 1, where n denotes the number of the

systems. Measuring a physical quantity A, we would like to
know its expectation value on this ensemble. In other words, we
want to know 〈Â〉. In a state |Ψi〉 – as we know – the
expectation value of A can be calculated in the following way:
〈Ψi |Â|Ψi〉.
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However we need to average twice: besides the former
expression, we have to average over weights too. Hence

〈Â〉 =
n∑

i=1

pi〈Ψi |Â|Ψi〉 = Tr(%̂Â),

where %̂ is the well known density operator which features the
ensemble and as we can surmise

%̂ =
n∑

i=1

pi |Ψi〉〈Ψi |.

How did we get this expression of %̂?
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Let us consider the followings: As we know:

|Ψi〉 =

(
αi
βi

)
=

(
αi
0

)
+

(
0
βi

)
= αi

(
1
0

)
+βi

(
0
1

)
= αi |0〉+βi |1〉.

Let us take the inner product between |Ψi〉 and |Ψj〉:

〈Ψi |Ψj〉 =
(
α∗i β∗i

)(αj
βj

)
= α∗i αj + β∗i βj

Let us mark this result and consider the outer product of these
kets:

|Ψi〉〈Ψj | =

(
αi
βi

)(
α∗j β∗j

)
=

(
αiα

∗
j αiβ

∗
j

βiα
∗
j βiβ

∗
j

)
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As we can see, having the trace of the outer product (summing
the diagonal element of the matrix above), we obtain exactly
the result of the inner product.a So

Tr(|Ψi〉〈Ψj |) =
∑

n

〈n|Ψi〉〈Ψj |n〉 =
∑

n

〈Ψj |n〉〈n|Ψi〉 =

〈Ψj |̂I|Ψi〉 = 〈Ψj |Ψi〉.

That is the operation of the trace makes the outer product an
inner product. Returning to the initial statement:

Tr
[
Â
∑

i

pi |Ψi〉〈Ψi |
]

=
∑

i

piTr
[
Â|Ψi〉〈Ψi |

]
=
∑

i

pi〈Ψi |Â|Ψi〉

aThe only difference is that i is replaced with j .
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So the density operator describes an ensemble. Nevertheless,
there is another interpretation of the density operator, namely:
when a subsystem of a larger system is considered. As an
example, let us suppose we have two systems, A and B. In this
case the common state vector is |Ψ〉 ∈ HA ⊗HB, which can be
expressed on the following base:

{
{|n〉A}; {|m〉B}

}
. Hence

|Ψ〉 =
∑

nm cnm|n〉|m〉 and
∑

nm |cnm|2 = 1. Let us consider a
system XA, which is one of the physical quantities of system A.
In this situation, X̂A ⊗ ÎB is a two-system operator measuring XA
in system A, but leaving B untouched.
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Its expectation value is

〈X̂A〉 = 〈Ψ|X̂A ⊗ ÎB|Ψ〉 =

=
∑

n

∑
m

〈Ψ|X̂A ⊗ ÎB
(
|n〉A|m〉B A〈n| B〈m|

)
|Ψ〉 =

=
∑

n
A〈n|

∑
m

B〈m|Ψ〉〈Ψ|m〉BX̂A|n〉A,

where ∑
m

B〈m|Ψ〉〈Ψ|m〉B

is the reduced density operator of subsystem A denoted by %̂A.
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In the derivation
∑
n

A〈n|
∑
m

B〈m|Ψ〉 is just an expression factor

and 〈Ψ|m〉B was also replacable, because X̂A does not have an
effect on |m〉B, because it is in system B.)
Knowing that

%̂A = TrB|Ψ〉〈Ψ| =

(∑
m

B〈m|Ψ〉〈Ψ|m〉B
)
,

we have that

〈X̂A〉 = TrA(%̂AX̂A).

In this case, though the larger system is in a pure state, its
subsystem is in a mixed state.
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Let us consider examples for both interpretations:
Example for the ensemble interpretation (in case of qubits):
Let us suppose we have many qubits and half of the qubits are
in state |0〉, while the other half of them are in state |1〉. In this
case the density operator is

%̂ =
1
2
|0〉〈0|+ 1

2
|1〉〈1| =

1
2

Î.

Let us try to find out the expectation value of σz . As we know it
is one of the three Pauli operator represented by the following
matrix:

σz =

(
1 0
0 −1

)
.
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By the way |0〉 and |1〉 are the eigenstates of σz with
eigenvalues 1 and −1:

σz |0〉 =

(
1 0
0 −1

)(
1
0

)
= |0〉

σz |1〉 =

(
1 0
0 −1

)(
0
−1

)
= −|1〉

From this it follows that

〈σz〉 =
1
2

1 +
1
2

(−1), which is obviously equals Tr(%̂σz) = 0.
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Example for a system consisting of two qubits in a state

|Ψ〉 =
1√
2

(|0〉A|1〉B + |1〉A|0〉B).

We do not know it yeta but this is one of the four famous Bell
states:

|Ψ〉 =
1√
2

(|0〉|1〉+ |1〉|0〉) =
1√
2


0
1
1
0

 .

aBut it will be shortly discussed.
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Now let us see the spin of A. We know that TrB(|Ψ〉〈Ψ|) = %̂A,
thus

%̂A =
1∑

m=0
B〈m|

{
1√
2

(
|0〉A|1〉B + |1〉A|0〉B

)
+

1√
2

(
A〈0| B〈1|+ A〈1| B〈0|

)}
|m〉B =

1
2

1∑
m=0

B〈m|
{
|0〉A|1〉B A〈0| B〈1|+ |0〉A|1〉B A〈1| B〈0|+

|1〉A|0〉B A〈0| B〈1|+ |1〉A|0〉B A〈1| B〈0|
}
|m〉B =

1
2
(
|0〉A A〈0|+ |1〉A A〈1|

)
.
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Since σzA = σz ⊗ ÎB,

〈σzA〉 = Tr(σz%A) = 0.

In this formalism, if we want, also a pure state can be described
by a density operator, where

% =
∑

i

pi |Ψi〉〈Ψi | = |Ψ〉〈Ψ|

because each element of the ensemble is in the same state,
whose weight is 1. Weight belonging to all the other states is 0.
The expectation value of a physical quantity A is

〈Â〉 = Tr(%̂Â) = Tr(|Ψ〉〈Ψ|Â) = 〈Ψ|Â|Ψ〉.
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Both pure and mixed states can be featured by density
operators. If a density operator has a shape like this
% = |Ψ〉〈Ψ|, the state is said to be a pure state, but in case of
weighted sum of pure states – % =

∑
i

pi |Ψi〉〈Ψi | – the related

state is a mixed state. It is natural to ask that in case we have a
density operator, how can we find out if it is a pure or a mixed
state? This question can be answered with the properties of
density operators:
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Tr(%̂) = 1
Proving:

Tr(%̂) = Tr
(∑

i

pi |Ψi〉〈Ψi |
)

=
∑

i

piTr
(
|Ψi〉〈Ψi |

)
=

∑
i

pi〈Ψi |Ψi〉 =
∑

i

pi = 1

%̂ = %̂†

This feature comes from the construction of the density
operator, because |Ψi〉 and 〈Ψi | are the adjoints of each
other. From this feature, it follows that eigenvalues of %̂ are
real.
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%̂ is a positive operator, that is 〈Ψ|%̂|Ψ〉 ≥ 0. Proving:

〈Ψ|%̂|Ψ〉 = 〈Ψ|
(∑

i

pi |Ψi〉〈Ψi |
)
|Ψ〉 =

∑
i

pi〈Ψ|Ψi〉〈Ψi |Ψ〉 =

∑
i

pi |〈Ψi |Ψ〉|2 ≥ 0



Density matrix, mixed state

%̂ is positive if and only if all of its eigenvalues are λi ≥ 0.
Being a Hermitian operator, it has a diagonal production:
%̂ =

∑
i
λi |ui〉〈ui |, where it is true that 〈ui |uj〉 = δij and∑

i
|ui〉〈ui | = Î, (λi ≥ 0). Though different |Ψi〉-s are not

necessarily perpendicular to each other diagonalization
can be made (spectral theorem).
%̂ is a pure state if and only if

tr(%̂2) = 1.

Obviously, in case %̂ is a pure state:

%̂ = |Ψ〉〈Ψ| ⇒ %̂2 =
(
|Ψ〉〈Ψ|

)(
|Ψ〉〈Ψ|

)
= |Ψ〉〈Ψ| = %̂

(let us remember: 〈Ψ|Ψ〉 = 1), and the trace of %̂ is 1.
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Without additional provings, we declare that in case of a mixed
state

Tr(%̂2) < 1 = Tr(%̂)

and for a pure state

Tr(%̂2) = 1 = Tr(%̂).
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A quantum cryptographical protocol

So far, we have learned the simplest tools which are necessary
for us to understand the most elementary algorithms and
methods in quantum information. Hence, by this time, we have
become clever enough :-) to begin to deal with some of the
simplest applications of the easiest parts of quantum
mechanical toolkit in the area of quantum communication.
Nevertheless, some algorithms and methods belonging to the
same area have to be treated separately, because even now,
we do not have knowledge enough in quantum mechanics.
What is it all about? For understanding this dilemma, let us
consider - for example - the quantum cryptographical protocols.
These methods should be explained in the same chapter,
accordingly their goals.



A quantum cryptographical protocol

But we can not do this, for several reasons. Just as an example
of these reasons: there is a cryptographical protocol called E91
which is based on the phenomenon of quantum entanglement,
and if we would like to understand how it works, we have to
know the fundamental theoretical background of the
entanglement. Being an important topic which is unknown for
us, entanglement requires an own chapter, thus it should be
treated before learning about certain cryptographical – and
some other – protocols.
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Nevertheless we would like to maintain the attendance of
students, hence we start to learn about practical applications
which can be already understood using the discussed / known
theoretical tools, and those applications which still can not be
understood will be discussed in a future chapter after explaining
their theoretical background. This tuitional method results a
structure which is based on not the goal of algorithms, but on
the theoretical basics which we need to know for understanding
them. So, let us start it.
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The BB84 protocol

Question: what does cryptography mean?
Answer: it is the art of secret communication.

Let us consider the following situation where Alice wants to
send a secret message to Bob. In a case like this Alice’s
message has to be encoded using some kind of cryptographic
key. Probably the oldest and simpliest method to make a
message secret is the Caesar code/cipher, which is a
substitutive encryption procedure, where each letter of the
alphabet is replaced by another letter.
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The distance between the position of the original letter and its
substitutive is given as a key for the encryption method and its
value can have (1, 2, 3, ....etc). In this procedure – in Caesar’s
time in the history – the primary alphabet was the Latin
alphabet and the secondary alphabet was obtained by using
this ciphering method. Nowadays, using English alphabet, if
"I love this semester!" is the message to be encrypted and the
value of the letter-transpose (the key) is 2, each letter of the
English alphabet will be transposed by 2 places and the
encrypted message will be "k nqxg vjku ugoguvgt!"1.

1Provided we do not handle upper and lower cases.
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Evidently this is an easy breakable kind of ciphering. However,
if we use a random value of transpose for each letter and we
use the obtained key only once, we get an unbreakable2

encryption method called Vernam cipher or in other words One
Time Pad (OTP). (The only disadvantage of this method is that
the used key is as long as the text itself.)
So, Alice needs to have two important things:

One of them is the algorithm of the encryption. (For
example transposing the letters.)
The other one is the key. For example, using a Caesar
code, it is the value of the distance of the transpose.

2Proved by Shannon.
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Nevertheless, we must keep in mind the following – proved –
theorem:
the safety of a crypto-system does not depend on the secrecy
of the applied algorithm, but depends on the secrecy of the key
only. Hence, to find a secret/safe way to share/distribute the
encryption key to the parties of the communication is the most
important task to solve. This problem can not be solved by
using any of the classical methods.
However, we have a new hope, because applying one of the
several quantum key distribution protocols the problem is
solvable, with a complete safety.
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Let us consider a present-day example to understand how
encryption works. So, Alice’s message consists of a set of bits,
like this one below:

0 1 . . . . 1 1 . . . . 0 1

In addition to this, she has a randomly generated encryption
key consisting a set of bits, too:

1 1 . . . . 1 0 . . . . 0 1

She can encrypt her message by adding the corresponsive
elements of her message and the key, according to modulo-2,
where

0⊕ 0 = 0,

0⊕ 1 = 1,

1⊕ 0 = 1,

1⊕ 1 = 0.
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The resulted encrypted message can be seen below:

Original message 0 1 . . . . 1 1 . . . . 0 1
Encryption key 1 1 . . . . 1 0 . . . . 0 1

Encrypted message 1 0 . . . . 0 1 . . . . 0 0

Now then, this encrypted message will be sent to Bob, who
needs to have the encription key used by Alice, provided he
wants to find out what Alice wanted to communicate.
Supposing Bob has the key, it is natural to ask how he will
decode the message he got?
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The answer is very simple: the received (encrypted) message
and the key has to be added to obtain the original message:

Encrypted message 1 0 . . . . 0 1 . . . . 0 0
Encryption key 1 1 . . . . 1 0 . . . . 0 1

Original message 0 1 . . . . 1 1 . . . . 0 1

As we can see, it is an unbreakable – or at least a hard
breakable – encryption algorithm. However, it has a weakness,
namely it can not be garanteed that Alice and Bob are the only
persons who have the secret key. In addition to this the
presence of an eavesdropper (let us call her Eve) can not be
debunked. Let us see, how quantum cryptography help us to
eliminate this problem.
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So, the goal of Alice and Bob is to share a common secret key
known by themselves only to ensure the secrecy of their
communication. Before all, they need to share a quantum and a
classical channel (the latter can be anything, even smoke
signals). Their common quantum channel is a one way channel
from Alice to Bob and the classical channel is a two-way
channel. First of all, Alice randomly generate a set of classical
bits3:

0 1 1 0 1 0 1 1 1 0 1 0

3Naturally, in a real life situation the length of a set like this is much more
longer than the presented one.
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After finishing it, Alice encodes each bit of the set into a
quantum bit, in the following way: for every qubit, she randomly
chooses a preparation basis which can be either the basis
spanned by the eigenvectors of σz Pauli matrix or another one
spanned by the eigenvectors of σx Pauli matrix. Let us lebel the
former basis as Z basis and the latter one as X basis. As we
already know, elements of the Z basis are {|0〉; |1〉} and the
two basis vectors of the X basis are {|+〉; |−〉}, where
|±〉 = 1√

2
(|0〉 ± |1〉). Bearers of the quantum bits used in this

protocol can be photons, and their observable polarization
(eigen)states play the role of the basis vectors. In this picture, if
Z basis is considered as a horizontal polarization basis, then X
basis corresponds to the rectilinear polarization basis, where
these two bases are the π/2 rotated of each other.
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Now then, depending on the chosen preparation basis, bit 0
can be encoded into either |0〉 or |+〉, and similarly, bit 1 can be
associated with either |1〉 or |−〉. As a visualization, these
bases can be imagined in the following graphic way:

0

1

+

Z basis

X basis
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In this situation – as in general in any of real life cases – the
orientations of the basis elements matter only, or rather we can
say the orientations of the axes matter only. It is important to
realize and to keep in mind that
if a qubit is in either of the eigenstates of one of these two
bases, its state is a superposition on the other basis, and vice
versa.
If we keep in mind this fact, we will understand how BB84
quantum key distribution protocol works.
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Let us consider the figure below, where in the first row, we can
see the randomly generated set of classical bits, in the second
row – for each bit – the randomly chosen preparation bases can
be seen, and in the third row the prepared quantum bit states
are enumerated, where 0-s or 1-s are encoded into each qubit.

0 1 1 0 1 0 1 1 1 0 1 0

Quantum bits sent
by Alice to Bob:

0 1 1 0 1 0 0 0 1 1 1 0

This is the raw key: 0 1 0 0 1 1 0
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From the 4th row, Bob’s side is presented. This row containes
the measurement bases chosen randomly for each qubit by
Bob. What is it all about? After obtaining the qubits sent by
Alice, Bob chooses randomly a measurement basis (Z or X ) for
each qubit he got, and he makes a measurement on every
single qubit in the corresponsive basis. After completing his
work on measurement, he documents the set of the resulted
values. After this, Alice and Bob check the set of their randomly
chosen bases (not the results) via a public classical channel,
and they keep those elements of their sets of bits where they
chose the same basis. The bits which remained form the raw
key4, which – in the presented situation – is the following set:

0 1 0 0 1 1 0

4The reason for calling this set raw key will be shortly discussed.
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One more thing remains to be understood for us to see why this
method is better and safer (or rather: absolutely safe) than any
of the classical key distributions. First of all let us try to find out
what an eavesdropper can do to get the secret key. She (
supposing her name is Eve ) can catch the quantum bits sent
by Alice and before retransmitting them to Bob, she can make a
measurement on each quantum bit she caught. And this is a
critical moment, because she does not know which bases were
chosen by Alice and which bases will be chosen by bob
(because Alice and Bob will check their bases publicly only
after Bob obtains the qubits). Hence Eve must select one of the
two used bases ( Z or X ) and make her measurements
"blindly" without any knowledge about Alice’s or Bob’s bases.
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And here comes the essence of this protocol:
Alice and Bob know their results are necessarily the same for
every qubit where they chose the same basis5. As we already
know these results form the raw key. Now, we say the reason
why we call this kind of key a raw key. To obtain the "final" key
which will be used in the secret communication between Alice
and Bob, they need to compare a part of the raw key publicly
(immolating the selected part), because they know the following
important thing:

5according to the fundamental laws of quantum mechanics, as we already
know
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If in these cases – where Alice and Bob chose the same basis
– the mesurement basis chosen by Eve were not the basis
which were selected by Alice and Bob, Eve’s measurement
results a state which is a superposition in the basis chosen by
Alice and Bob. Hence Alice and Bob can find different results
with a probability of 1/2 where their results should be the same
because of the superposition caused by Eve’s measurement (in
her wrong chosen basis).
Hence, the presence of an eavesdropper – in our case: Eve –
can be detected
because of the non-reversible disturbance introduced into the
quantum state by her measurement. The reason for the 1/2
value of the probability is that even a superposition state can
fall into the "good" eigenstate of Bob’s basis with a porabability
of 1/2. In this case, the presence of Eve remains undetected.
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Moreover, it is imaginable for Eve to choose the "good" basis
with a probablity of 1/2. In a situation like this her presence can
not be detected by comparing Alice’s and Bob’s results.
Fortunately, Alice and Bob work with a raw key whose length is
much more longer than the peresented set, hence they can
apply a statistical method which makes possible for them to
detect the presence of Eve with a complete security. In case of
detecting an eavesdropper, they drop the key and create a new
one. Summarized: in case of the quantum key distribution, the
presence of an eavesdropper can not be kept dark.

This is the reason why quantum cryptography is unbreakable.
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However..... what if Eve decide to copy / clone each quantum
bit she caught before retransmitting it to Bob and in this way
she can make two clones of every quantum bit sent by Alice. In
this situation, having two clones of each quantum bit, she can
make a measurement on one of the clones, in basis Z , and can
make another measurement on the other clone, in basis X . In a
case like this, it is possible for her to circumvent BB84 protocol.

Let us realize there is a crucial point in Eve’s process, namely:
we have not known if cloning of an unknown quantum state is a
possible quantum map or not. This topic will be discussed next
week.


