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Quantum cloning

First of all, we have to make the meaning of word quantum
cloning clear:

Let us suppose we would like to build a machine which is able
to create a perfect replica of an arbitrary system being in an
unknown quantum state. A tool like that seems to be
neceassary for certain information processing tasks. Error
correction, for instance, could be done using procedures
making use of several perfect copies of the original system
carrying the information. Such a creation of one or more exact
replicas of physical systems in arbitrary (and unknown)
quantum states is termed as quantum cloning. The reason for
the name, as we shall see, is that the “cloned” system cannot
be in fact distinguished from the original one.



Quantum cloning

It is natural to ask if the laws of quantum mechanics allow us to
build such a machine. To put it formally, we consider e.g. a
quantum bit in the state. |Ψ〉 = α|0〉+ β|1〉. In addition we need
an ancillary sytem which will be the replica. Its initial state can
be arbitrary, say |0〉 w.l.o.g. The desired operation is then

|Ψ〉|0〉 → |Ψ〉|Ψ〉. (1)



Quantum cloning

Let us first assume that an arbitrary state, say |Ψ1〉 can be
simply cloned by a unitary operator U:

U|Ψ1〉|0〉 = |Ψ1〉|Ψ1〉. (2)

If our machine works as we expected, we can continue cloning
with another state |Ψ2〉. The state of the target qubit is the
same before. In this case we get the following states:

U|Ψ2〉|0〉 = |Ψ2〉|Ψ2〉. (3)



Quantum cloning

Due to the unitarity, inner product of the left sides of equations
2 and 3 has to equal the inner product between the right sides
of these equations. Hence we obtain the equation below:

〈0|〈Ψ1|U†U|Ψ2〉|0〉 = 〈Ψ1|Ψ2〉2.

After simplifying, we get the following form:

〈Ψ1|Ψ2〉 = 〈Ψ1|Ψ2〉2. (4)

From equation (4), it directly follows that

〈Ψ1|Ψ2〉 =

{
0
1

. (5)



Quantum cloning

As we can see in equation (5), our basic assumption (namely:
quantum cloning is a unitary map) leads us results which can
be true if and only if we have a total knowledge of the states to
be cloned. Obviously, if we knew everyting about these states,
we would be able to create them without using any device to
clone.

More generally it can be shown that the cloning map in
equation (1) is not completely positive, so it is not physical. And
this holds not only for quantum bits, but also for any kind of
quantum systems. This is the no cloning theorem of quantum
mechanics first pointed out by Zureka.

aW. K. Wooters and W. H. Zurek, A single quantum cannot be cloned,
Nature 299, 802 (1982)



Quantum cloning

While thus far we have argued that cloning would be a useful
operation in information processing, it is easy to see that the
fact of its impossibility has also positive implications from
practical point of view. For instance it is a basic ingredient of
quantum cryptography.



Quantum cloning

If quantum cloning – in the sense of creating perfect replicas of
an unknown state – were a possible map, this protocol would
be breakable, because – as we saw it last time – an
eavesdropper, after the cloining of the quantum system
transmitted between the parties, could make measurements on
the clones of the qubits sent by Alice to Bob and the quantum
key distribution were not secure anymore.



Conclusion

As we saw, there are two things which makes quantum
cryptography unbreakable. On one hand, if Eve makes
measurements on the quantum bits she caught, her presence
will become visible for the parties of the secret communication.

On the other hand, she can even try to make perfect replicas of
the transmitted quantum bits to circumvent the protocol, but
quantum cloning is forbidden by the fundamental laws of
quantum mechanics, hence she does not have any possibility
to break the safety of quantum cryptography.



Conclusion

Nevertheless, as usual, a real life situation is never as simple
as the presented one. For example, quantum channels are not
ideal channels, but more or less they are noisy.

In addition to this, although, to make perfect replicas of a
quantum system which is in an unknown quantum state is an
impossible quantum map – as we saw – , imperfect clones can
be done by a device called quantum clonera.

aThis device and some related things will be shortly presented in a future
chapter.



Conclusion

In case the effect introduced by the cloning process is smaller
than the noise caused by the channel, an eavesdropper can
pass undetected. Naturally (and fortunately) there are
strategies to eliminate this problem, but the discussion of these
methods points beyond the frame of our short course.
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Quantum entanglement

From this slide, we begin to learn about quantum
entanglement. The reason for this is that there are a lot of
quantum protocols which can not be understood without
knowing this phenomenon.

Besides being a very interesting topic, without quantum
entanglement, several quantum protocols (e. g. quantum
teleportation, dense coding, E91 quantum key distribution
protocol, some of the quantum error correction processes, etc.)
were not possible.



Quantum entanglement

Let us get acquinted with the phenomenon of quantum
entanglement and outline its aspects which are relevant for our
course. We say that the quantum state |Ψ〉 ∈ H1 ⊗H2 of a
bipartite system is separable if it is a product of states of each
subsystem:

|Ψ〉 = |Ψ1〉 |Ψ2〉 , |Ψ1〉 ∈ H1, |Ψ2〉 ∈ H2. (6)

If a state is not separable, it is entangled.



Quantum entanglement

The definition can be obviously extended to multipartite
systems. And as we shall see later, the entanglement of
multipartite systems bears a rich structure.



Quantum entanglement

If a pure state |Ψ〉 is separable, then all the subsystems are in a
pure state. Thus their density operators are projectors. E.g. for

%(1) = Tr2 |Ψ〉 〈Ψ| (7)

we have (
%(1)
)2

= %. (8)

As Tr % = 1, it implies that

Tr
(
%(1)
)2

= 1. (9)

This holds for all the subsystems if and only if the state is
separable.



Quantum entanglement

Considering a bipartite system this leads to a possibility of
quantifying entanlgement: the “more mixed” a subsystem is, the
more entangled the state is. The mixedness of the state is
commonly measured by the von Neumann entropy of the
density operator

H(%) = −Tr(% log2 %), (10)

which bears a sound information theoretic interpretation.



Quantum entanglement

In a d-dimensional system its maximum value is log2 d , attained
by the state

%CM =
1
d

Î. (11)

This is termed as the completely mixed state.

It is the only state which produces a uniform distribution of
measurement results when measured in any possible basis.
For reasons not detailed here the partial traces of a pure
bipartite state have the same von Neumann entropy. Hence it is
reasonable to say that the entanglement of the state is
quantified by

E (|Ψ〉) = H (Tr2 |Ψ〉 〈Ψ|) (12)



Quantum entanglement

For practical reasons it is worth mentioning that a
mathematically simpler quantity can also be used to quantify
the mixedness of the state, and thus entanglement, albeit
without an operational or direct information theoretic meaning.

Its construction stems from the fact that Eq. (9) holds if the
state is pure. As the diagonal elements of the density matrix
describe a probability distributions, for mixed states we have

Tr %2 < 1. (13)



Quantum entanglement

Hence, the trace of the square of the density matrix is related to
the purity of the state in a way. It can be shown that its minimum
value is 1/d attained by the completely mixed state only.

For quantum bits (i.e. d = 2 we can thus construct a quantity
with in the [0,1] range (just like the von Neuman entropy):

Hlin(%) = 2
(

1
2
− %2

)
. (14)

This is termed as the linear entropy of the state.



Quantum entanglement

It can be easily verified that the von Neumann entropy is a
monotone function of the linear entropy, and so that of its
square root. Hence, entanglement can be described also in
terms of concurrence

C (|Ψ〉) =
√

Hlin (Tr2 |Ψ〉 〈Ψ|). (15)

The entanglement in Eq. (12) is its monotone function in the
same range, it can be evaluated with less effort, but does not
admit an operational interpretation.
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Mixed state entanglement

If a multipartite system is in a mixed state, its entanglement
properties are far more complex. As for the definition, a mixed
state is said to be a separable one, if it can be constructed as a
convex combination of separable pure states or – in other
words – it has a form like

% =
∑

i

pi |Ψi〉〈Ψi | (16)

in which every |Ψi〉 is separable. Unseparaple mixed states are
called entangled.



Mixed state entanglement

In many cases it is hard even to decide if a state is separable or
entangled at all: obviously in this case the subsystems of a
separable state may well be mixed.

Consider the complete mixture of two qubits as an example. It
is obviously separable (the density operator being proportional
the equal-weight convex combination of the projectos of an
arbitrary orthonormal basis, including any product-state basis).
Both subsystems are in a completely mixed state though.



Mixed state entanglement

Also, while pure-state entaglement is fully characterized by the
quantity in Eq. (12), for mixed states there are several similar
quantities which coincide for pure states but they have different
operational meanings otherwise.

One of them is entanglement of formation defined as follows:

E(%) = inf
(pk , |ψk 〉 separable)∑

k pk |ψk 〉〈ψk |=%

∑
k

pkE(|ψk 〉), (17)

that is, the infimum of the average of the entaglements of all the
constituent pure states over all of its pure-state
decompositions. As we deal with finite dimensional states, the
infimum can be understood as minimum.



Mixed state entanglement

A similar quantity can be defined via concurrence:

C(%) = inf
(pk , |ψk 〉 separable)∑

k pk |ψk 〉〈ψk |=%

∑
k

pkC(|ψk 〉), (18)

It can be shown that entanglement of formation is its monotone
function, and in the special case of two qubits it can be
calculated analytically. This is the celebrated Wootters formula
which is very broadly used in the literature, including our work.
Hence we describe it in what follows. For the detailed
derivations we refer to the original papers.
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The Wootters formula

In order to calculate the concurrence of a two-qubit state %, first
we define the Wootters tilde operation:

%̃ = (σy ⊗ σy )%∗(σy ⊗ σy ), (19)

where ∗ means the complex conjugation (or, otherwise
speaking, the transpose) of the density matrix in a product state
basis, whereas σy is the second Pauli-operator.



The Wootters formula

Next the spectrum of the Hermitian operator has to be
determined √√

%%̃
√
%. (20)

Its eigenvalues λ are in fact the square roots of the
eigenvaluses of the (non-Hermitian) operator

%%̃. (21)

Let us put the eigenvalues λ1, λ2, λ3, λ4 to decreasing order.
The concurrence then reads

C(%) = max{0, λ1 − λ2 − λ3 − λ4} (22)

We shall employ this latter formula when calculating
concurrence in some future lessons.



Entanglement of multi-qubit systems

Entanglement of multi-qubit systems



Entanglement of multi-qubit systems

It may be an interesting question how can be featured the
entanglement of two chosen quantum bits in a system
consisting of N quantum bits, if the whole system is in a pure
state. As an illustration, let us consider the following specific
example: we have three quantum bits in a state which is called
Greenberger-Horne-Zeilinger (GHZ) state:

|ΨGHZ〉123 =
1√
2

(|000〉+ |111〉). (23)



Entanglement of multi-qubit systems

In this case, the state of the first two quantum bits is described
by the density operator

%12 =
1
2

(|00〉〈00|+ |11〉〈11|). (24)

This state is obviously entangled. In fact, all the subsystems
are in a completely mixed state.



Entanglement of multi-qubit systems

When considering any of the two qubits (e.g. the first two, any
of them can be choosen for symmetry reasons), however, using
the formula in (22), for this density operator, we get C(%12) = 0.
This means that state (24) is a separable state or, in other
words, the first two quantum bits are not entangled with each
other as a pair.



Entanglement of multi-qubit systems

It means that in the present entangled state there is no
qubit-pair entanglement whatsoever.

Indeed, after carrying out a measurement on the third quantum
bit in the basis |0〉, |1〉, the state of the first two quantum bits
will be either |00〉 or |11〉 with equal probability. This means that
the bipartite state can be constructed as a convex combination
of separable pure states.



Entanglement of multi-qubit systems

So the entanglement of the first two quantum bits can be
juggled away by achieving measurement on the third one. Due
to the symmetry of the state, this holds true of the case of any
pair of quantum bits in this state.

In the GHZ state (23), the state of any quantum bit pair can be
separated. The whole system is an entagled state, after all!



Entanglement of multi-qubit systems

State (23) is not separable. This can be seen, if we choose one
of the three quantum bits, its state, according to (11), is a
maximally mixed state, that is, the chosen quantum bit is
maximally entangled with the subsystem of the other two
quantum bits.

Hence, the entanglement present in this state is genuine
threepartite.



Entanglement of multi-qubit systems

Interestingly, it can be converted to maximal bipartite
entanglement though. Carrying out a properly chosen
measurement on one of the quantum bits, we can make the
state of the system of other two quantum bits maximally
entangled.

Indeed, if the eigenvectors of the measurement are now
1√
2

(|0〉 ± |1〉), we get the maximally entangled states
1√
2

(|00〉 ± |11〉) with equal probability.



Entanglement of multi-qubit systems

Both states are maximally entangled bipartite states. If we are
aware of the measurement result, we know which state we
have obtained, so we can use it, e.g. for teleportationa. In this
system, its tripartite entanglement can be completly converted
into a bipartite entanglement.

amore on this later
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Monogamy of entanglement

Note that a maximally entangled state of two quantum bits is
necessarily a pure state. Hence the two quantum bits cannot
be entangled with any other system.

This means that (unlike classical correlations) quantum
entanglement has a property which is called monogamy:
pairwise entanglement of two subsystems limits the
entanglement with the other subsystems.



Monogamy of entanglement

As for a quantitative description of monogamy, we introduce
another quantity which we will use in our work. This is the
tangle denoted by τ , which is the linear entropy in Eq. (14) of a
given subsystem, which, for qubits can also expressed as

τk = 4det%(k).

This is the so-called one-tangle, characterizing the
entanglement between the given qubit and the rest of the total
system which is in a pure state.



Monogamy of entanglement

In case we have two qubits in a pure state, the tangle relating to
one of them equals the square of the concurrence. Let us
consider a system consisting of many qubits and suppose the
system is in a pure state. Checking concurrences of the qubit
pairs in the system, we get that Coffmann-Kundu-Wootters
(CKW) inequalitiesa are satisfied:

τk ≥
∑
l 6=k

C2
k ,l (25)

aV. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. 61, 052306 (2000)



Monogamy of entanglement

This formula can be interpreted in the following way: the
entanglement measured in tangle between the k -th qubit and
the rest of the total system gives an upper bound for the
concurrence calculated between the k -th qubit and another
arbitrary qubit in the system. If these inequalities are saturated,
the bipartite entanglement is maximal.

The CKW inequalities had been originally formulated as a
conjecture, but they were later proven. Their saturation reflects
that the bipartite entanglement is in a way maximal in the
system.
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Bell inequalities

Since entangled states can have stronger correlations than any
of the classical correlations can be, they are a valuable
resource in quantum communication. Before getting on the
protocols based on the phenomenon of quantum entanglement,
let us get to know Bell’s inequalities to understand what
nonclassical correlations mean.

As we know, in quantum mechanics, an observable physical
quantity does not have value until we measure it. However,
there were (and are) theories according to which – unlike in
quantum mechanics – , observables have values, even we have
not carried on a measurement on them.



Bell inequalities

Since they depend on some "hidden variables", we do not know
their actual values, because we do not know anything about
these hidden variables. Bell’s inequalities show that in case of
very general conditions, hidden variable theories (more
precisely: local hidden variables theories) yield predictions
which conflict with quantum mechanics and – what is more –
these can be experimentally tested.

Spoiler: experimetal tests support quantum mechanics and
reject the locality of our world. In essence – as we shall see –
Bell’s inequalities make a philosophical debate testable
experimentally. And this was / is the biggest merit of Bell and
his inequalities.



Bell inequalities

In case of Bell’s inequalities, we can see two observers (see
the figure below), namely: Alice and Bob (who else?). Between
them, there is a source producing two-particle states. One of
these particles is sent to Alice and the other one to Bob.

Source producing 
two-parcticle 

states

Alice can  
measure either 
quantity a

1
 or 

a
2
.

Bob can 
measure 

either quantity 
b

1
 or b

2
 too.



Bell inequalities

On her particle, Alice can measure one of two quantities, a1
and a2. The resulted values of these observable quantities can
be either 1 or −1. Similarly, Bob can measure either b1 or b2 ,
and the measured values can equal either 1 or −1, too. The
essence of this idea is to execute this gedankenexperiment
many times, and use the results to calculate the quantities
〈aibj〉.



Bell inequalities

First of all, let us see how a hidden-variable theory would
describe this case.

The source produces regulation sets which go with the
particles. For instance, one of these regulation set can say, in
case Alice measures a1, she will get 1, and measuring a2 , she
gets −1, furthermore if Bob measures b1 he will get −1, and in
case of measuring a2 he gets −1. We do not know which
regulation set will be produced by the source, hence the
regulation set is our hidden variable.



Bell inequalities

This kind of a hidden-variable theory are called local theory,
because the regulations to Alice’s particle do not depend on
Bob’s decision on the quantity to be measured. That is, the
regulation set does not say anything like, measuring a1, Alice
will obtain 1 if Bob measures b1 and she gets −1 if Bob
measures b2. We will consider local theories only.



Bell inequalities

In a situation like this, a hidden variable can be the state of the
source. If we know the source is in some state m, results of the
measurments can be prognosticated. Obviously there are 16
possibilities:

value of m a1 a2 b1 b2
1 −1 −1 −1 −1
2 −1 −1 −1 1
3 −1 −1 1 −1
4 −1 −1 1 1
. . . . .
. . . . .
. . . . .

16 1 1 1 1



Bell inequalities

Supposing we do not have access to the source, we assume
P(m) is a distribution function of the states of the source, or
equivalently, a certain number foursome (a1, a2, b1, b2) can
appear with a given probability. This means there is a
P(a1, a2, b1, b2) distribution function. From this it follows that
the expectation value 〈a1b1〉 can be calculated as

〈a1b1〉 =
−1∑

a1=1

−1∑
a2=1

−1∑
b1=1

−1∑
b2=1

a1b2 P(a1, a2, b1, b2).



Bell inequalities

There can be possible 4 pieces of correlation functions like this,
namely: 〈a1b1〉, 〈a1b2〉, 〈a2b1〉, 〈a2b2〉. According to
calculations (not detailed here), the following expression yields
the biggest value which can be reached by this kind of
(classical) correlations:

S = 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 =

=
−1∑

a1=1

−1∑
a2=1

−1∑
b1=1

−1∑
b2=1

[a1(b1 + b2) + a2(b1 − b2)] P(a1, a2, b1, b2).



Bell inequalities

Let us call the expression in brakets multiplying the probability
distribution X . As it can be seen

X =

{
a1(b1 + b2), if b1 = b2

a2(b1 − b2), if b1 6= b2.

In both cases |X | = 2, hence

|S| ≤ 2
−1∑

a1=1

−1∑
a2=1

−1∑
b1=1

−1∑
b2=1

P(a1, a2, b1, b2) = 2.



Bell inequalities

Expression |S| ≤ 2 is Bell’s inequality. Naturally, similar
inequalities can be derived simply by interchanging a1 and a2 ,
b1 and b2, or both.

Now, supposing we are measuring the spins of two half-spin
particles, we describe the same experiment using the
apparatus of quantum mechanics. (a1 and a2 (just like b1 and
b2) can be considered as measurements of the spin (or
polarization of a photon) along two different directions.)



Bell inequalities

Having a quantum source, let us suppose that

a1 = σxa a2 = σya

b1 = σxb b2 = σyb ,

and that the source emits particles in a state which is a
maximally entangled pure (bipartite) state (multiplied with a
phase factor), or in other words, one of the four Bell states:

|Ψ〉 =
1√
2

(
|00〉+ ei π4 |11〉

)
,

where
σx |0〉 = |1〉 σy |0〉 = i |1〉

σx |1〉 = |0〉 σy |1〉 = −i |0〉.



Bell inequalities

In this case
〈a1b1〉 = 〈Ψ|σxa ⊗ σxb |Ψ〉 =

=
1
2

[(
〈00|+ e−i π4 〈11|

)
σxa ⊗ σxb

(
|00〉+ ei π4 |11〉

)]
=

=
1
2
(
〈00|+ e−i π4 〈11|

)(
|11〉+ ei π4 |00〉

)
=

1
2
(
ei π4 + e−i π4

)
=

=
1
2

2 cos
π

4
=

1
2

2
√

2
2

=

√
2

2
.



Bell inequalities

Since

〈a1b1〉 = 〈a1b2〉 = 〈a2b1〉 =

√
2

2
and

〈a2b2〉 = −
√

2
2
,

it directly follows that

S = 〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉 = 4
√

2
2

= 2
√

2 ≥ 2,

that is quantum mechanics violates Bell’s inequality.



Bell inequalities

This fact has three consequences:

Quantum mechanics – that is our world – can not be
described by a local, hidden variable theory. From this, it
follows that our world is nonlocal(!).

In the local hidden variable theory, correlations came from
a joint probability distribution function.

Quantum mechanics can create stronger correlations than
classical systems can.


