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Dense coding

Using this method, Bob can send Alice (or vice versa) two bits
of classical information by transmitting only one qubit. This
protocol is based – what a surprise – on quantum
entanglement.

In the beginning, Alice and Bob share an entangled pair of
qubits whose state is one of the four Bell states:

|Φ−〉AB =
1√
2

(
|01〉AB − |10〉AB

)
, (1)

where indeces A and B refer to the name of the person who
has the given member of the pair.



Dense coding

As we know, the four Bell states form an orthonormal basis in
the four dimensional Hilbert space, and they have the following
shapes:

|Φ±〉 =
1√
2

(
|01〉 ± |10〉

)
|Ψ±〉 =

1√
2

(
|00〉 ± |11〉

)
.



Dense coding

Suppose Alice performs one of the four preconcerted unitary
operations on the qubit she has. The four possible operataions
are enumerated below:

she applies operator Î on her qubit: or in other words, she
does nothing
she applies operator σx

she applies operator σy

she applies operator σz



Dense coding

Let us recall the shapes of the three Puali matrices and the unit
operator, then try to find out their effect on Alice’s single qubit,
finally calculate the resulted two-particle states. So, the shape
of the three Pauli matrices and the unit operator can be seen
below:

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
;

Î =

(
1 0
0 1

)
.



Dense coding

Now, let us see their effect on a single quantum bit whose state
can be either |0〉 or |1〉:

σx |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉

σx |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉.



Dense coding

The other four results can be derived similarly:

σy |0〉 = i |1〉

σy |1〉 = −i |0〉

σz |0〉 = |0〉

σz |1〉 = −|1〉



Dense coding

Finally, we are interested in the two-particle states resulted by
the four different operations of Alice. Let us see how will the
initial entangled state in equation (1) be altered by Alice’s
operations. In case she works with operator Î, it is evident the
state remains the same:

|Φ−〉 =
1√
2

(
|01〉 − |10〉

)
,

where indeces A and B are omitted now.



Dense coding

If he apply σx on her qubit the resulted entangled state is

1√
2

(
|00〉 − |11〉

)
.

In case of applying σy , they get the following two-particle state:

−i
1√
2

(
|00〉+ |11〉

)
.



Dense coding

Finally, in case of applying operator σz on Alice’s single qubit,
the common state of the two entangled qubits they share will be
changed into the following state:

− 1√
2

(
|01〉+ |10〉

)
.



Dense coding

Let us realize the four two-particle states which can be resulted
by Alice’s operation are actually the elements of the
orthonormal Bell basis.

The only difference between Bell states (which form the Bell
basis) and the state we can obtain is two scalar factors
(−i , −1).

Hence any of Alice’s operations results a state which is one of
the elements of a four dimensional, orthogonal basis.



Dense coding

Knowing this very important fact, we can turn to the second
step of the protocol:

After performing her operation, Alice sends her qubit to Bob,
hence from the moment he gets Alice’s qubit, Bob has the
whole system, hence setting four othogonal detectors –
correspondently the four possible states – he can find out the
resulted state and the corresponsive operation.



Dense coding

There is a crucial point here which has to be realized, namely:

Bob’s measurement selects one of the four possibilities which
means two bits of classical information, though Alice sent one
piece of quantum bit..... and this is the reason for the name of
this protocol, namely: dense coding.



Quantum teleportation

Quantum teleportation



Quantum teleportation

In this protocol, Alice has a qubit denoted by A1 in a state

|Ψ〉A1 = α|0〉+ β|1〉,

and she would like to transfer this state onto Bob’s quantum bit
denoted by B. It is worth notify that Alice does not even need to
know anything about the state of her qubit.



Quantum teleportation

The question is what she can do to reach her goal. As a first
idea one can suggest Alice to measure the state of her qubit
and to transmit the resulted classical information to Bob.

Unfortunately this strategy would not work, because - as we
know - the obtained information is not enough to reconstruct an
arbitrary, unknown state (as we know this is caused by the
effect of the measurement on the state vector).



Quantum teleportation

In the method of quantum teleportation, Alice and Bob share an
entangled pair, A2, B in one of the Bell states:

|Φ−〉A2B =
1√
2

(
|01〉A2B − |10〉A2B

)
.



Quantum teleportation

The whole state of their three qubits, the one whose state is to
be teleported, and the entangled pair can be expressed as a
tensor product:

|Ψ〉A1 |Φ−〉A2B =
1√
2

(
α|0〉A1 + β|1〉A1

)(
|01〉A2B − |10〉A2B

)
=

=
1√
2

(
α|00〉A1A2 |1〉B − α|01〉A1A2 |0〉B + β|10〉A1A2 |1〉B

−β|11〉A1A2 |0〉B
)



Quantum teleportation

Instead of using a product basis, let us rewrite this expression
into another shape via the elements of the Bell basis spanned
by the four basis vectors below:

|Φ±〉 =
1√
2

(
|01〉 ± |10〉

)
|Ψ±〉 =

1√
2

(
|00〉 ± |11〉

)
.



Quantum teleportation

From these elements, it directly follows that

√
2|Φ±〉 = |01〉 ± |10〉

√
2|Ψ±〉 = |00〉 ± |11〉.



Quantum teleportation

Using these equations, after a trivial calculation we obtain that

1√
2

(
|Φ+〉+ |Φ−〉

)
= |01〉

1√
2

(
|Φ+〉 − |Φ−〉

)
= |10〉

1√
2

(
|Ψ+〉+ |Ψ−〉

)
= |00〉

1√
2

(
|Ψ+〉 − |Ψ−〉

)
= |11〉.



Quantum teleportation

If we use these results, we can continue rewriting the initial
expression of the whole state, namely

|Ψ〉A1 |Φ−〉A2B =
1
2

[
α
(
|Ψ+〉+ |Ψ−〉

)
|1〉B − α

(
|Φ+〉+ |Φ−〉

)
|0〉B+

β
(
|Φ+〉 − |Φ−〉

)
|1〉B − β

(
|Ψ+〉 − |Ψ−〉

)
|0〉B

]
=

1
2

[
|Ψ+〉A1A2

(
α|1〉B − β|0〉B

)
+ |Ψ−〉A1A2

(
α|1〉B + β|0〉B

)
+

|Φ+〉A1A2

(
− α|0〉B + β|1〉B

)
+ |Φ−〉A1A2

(
− α|0〉B − β|1〉B

)]



Quantum teleportation

The key element of this process can be seen in the last two
rows. What is it all about?

We can see Alice has two quantum bits, A1 and A2. What if she
makes a Bell measurement on the system of these two qubits
(which is the subsystem of the whole threepartite qubit
system)?



Quantum teleportation

Let us remember, in case of a Bell measurement on a bipartite
system like Alice has, one of the four Bell states will be resulted.

As we can see in the last two rows, after making her
measurement, the (eigen)state of Alice’s subsystem can be one
of the well known Bell states.



Quantum teleportation

Nevertheless, what is more, let us focus on the state of Bob’s
qubit after Alice’s measurement, say, what if the resulted state
of Alice’s qubits is |Φ+〉A1A2?

As we can see, in this case the state of Bob’s qubit will be
−α|0〉B + β|1〉B, because the whole threepartite system will get
to the state |Φ+〉A1A2

(
−α|0〉B + β|1〉B

)
by Alice’s measurement.



Quantum teleportation

Why is it so important? To answer this question we need to
realize the fact that if Bob knew Alice’s result (|Φ+〉A1A2), he
would know what to do to get the state Alice wanted to teleport
to him.

Four instance, in the discussed case, he would make a unitary
transformation on his qubit state. The question is what kind of
transformation should be done by Bob?

The answer is nearly trivial: the respective operator of the
transformation is −σz .



Quantum teleportation

Let us try to find out if it is true or not: the matrix which
represents −σz is

−σz =

(
−1 0
0 1

)
.

Once again: in case Alice’s measurement results the state
|Φ+〉A1A2 , Bob’s qubit will be in −α|0〉B + β|1〉B.



Quantum teleportation

Let us see the effect of −σz on this state:

−σz
(
− α|0〉B + β|1〉B

)
=

(
−1 0
0 1

)(
−α
β

)
=

=

(
α
β

)
= α|0〉B + β|1〉,

which means the state of Bob’s qubit after making the
transformation is exactly the same like the state which was
wanted to teleport by Alice.

All she had to do was to send the result of her Bell
measurement to Bob.



Quantum teleportation

This is almost exactly the case when any of the three other
possible outcomes is resulted by Alice’s measurment. The only
difference is the kind of the transformation which has to be
applied by Bob on his quantum bit to get the state to be
teleported. These "result – transformation" pairs are scheduled
in the table below:

result of Alice’s Bell measurement |Φ+〉 |Φ−〉 |Ψ+〉 |Ψ−〉
Bob’s transformation −σz −Î (or Î) −σxσz σx



Quantum teleportation

Let us summarize the discussed process of quantum
teleportation. In the beginning the two parties share an
entangled state consisting of two qubits.

On Alice’s side there is another qubit whose state is wanted to
teleport (or in other words to transfer onto Bob’s qubit) by Alice.



Quantum teleportation

To reach her goal, Alice makes a Bell measurement on her two
qubits and then she messages her result to Bob via a classical
channel.

Knowing Alice’s result, Bob knows what kind of transformation
has to be applied on his quantum bit to transfer / teleport the
state of qubit A1 onto his quantum bit.



Quantum teleportation

There is a very important fact which we have to realize:

This protocol is not copying / cloning, because the quantum bit
– A1 – which was in the teleported state initially, will be in a
totally different state after applying the protocol.



Quantum teleportation

And another interesting remark:

In case we do not know the state to be cloned, we can not
clone it (if we know the state, we can prepare it and there is no
need to clone), on the other hand, we can teleport any of the
states, even if we do not know anything about it.



E91 quantum key distribution protocol

E91 quantum key distribution protocol



E91 quantum key distribution protocol

In 1991 Artur Ekert suggested a protocol based on shared
entanglement instead of sending particles via a quantum
channel (as we saw it in the case of BB84 protocol).

Let us suppose a source sending entangled quantum bit pairs
to Alice and Bob. One member of each qubit pair is sent to
Alice and the other one is sent to Bob.



E91 quantum key distribution protocol

Each qubit pair is in a singlet state which is the same in both X
basis and Y basis. We already know the elements of X basis,
namely: {|+〉; |−〉}.

Nevertheless, also the basis vectors of Y were mentioned in a
subsection (titled The quantum theory of the half spin: two
component spinors and Pauli matrices) of the textbook on the
quantum mechanical background of this subject, where we
wrote the eigenvectors of σy Pauli matrix.



E91 quantum key distribution protocol

These eigenvectors, |±〉y = 1√
2

(|0〉 ± i |1〉), where

|+〉y =
1√
2

(
1
i

)
and |−〉y =

1√
2

(
1
−i

)
,

span the Y basis.

As we said, the singlet state of the qubit pairs has equivalent
expressions on both X and Y basis:

1√
2

(
|+〉A|−〉B − |−〉A|+〉B

)
=

1√
2

(
|+〉yA |−〉yB − |−〉yA |+〉yB

)
.



E91 quantum key distribution protocol

This is true, because on X basis, it has the following shape:

1√
2

(|+〉|−〉 − |−〉|+〉) =
1√
2

((
1
1

)(
1
−1

)
−
(

1
−1

)(
1
1

))
=

=
1√
2

(
1
−1
1
−1

−


1
1
−1
−1


)

=
1√
2


0
−2
2
0

 .



E91 quantum key distribution protocol

And then on Y basis, its form is the expression below:

1√
2

(|+〉y |−〉y − |−〉y |+〉y ) =
1√
2

((
1
i

)(
1
−i

)
−
(

1
−i

)(
1
i

))
=

=
1√
2

(
1
−i
i
1

−


1
i
−i
1


)

= i
1√
2


0
−2
2
0

 .

We can see the singlet state is the same in both bases (as we
know a state and itself multiplied by i are the same states).



E91 quantum key distribution protocol

The point of the protocol is that Alice and Bob autonomously
choose a measurement basis from between X and Y randomly
and make a measurement in the selected bases.

After this, they communicate each other the basis they chose
(but not the result).

In case they chose the same basis, the results of their
measurements are perfectly anti-correlated.



E91 quantum key distribution protocol

Hence the presence of an eavesdropper can be detected in
exactly the way as we saw in the case of BB84 protocol: they
need to check a part of the (raw) key.

Nevertheless, there is an important difference, namely: they
can use their measurement results obtained in the cases when
they chose different bases, hence they can test if a Bell
inequality is violated or not.

In case Eve had taken over the source and were sending
particles in definite states to Alice and Bob, for instance a |+〉 to
Alice and a |−〉 to Bob, then the Bell inequality would not be
violated, and Alice and Bob would detect her.


