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Optimal universal asymmetric covariant quantum cloning
circuits for qubit entanglement manipulation



Though - as we already know - quantum cloning is an
impossible quantum map, it is still possible to create imperfect
replicas of a quantum state with optimal fidelity. This protocol,
originally introduced by Bužek and Hillery, is called quantum
cloning.

It is also possible to perform asymmetric quantum cloning: the
fidelity of the copies might not be equal. Quantum cloning has
been studied very extensively in the literature, and it has many
variants.



In this lecture we are interested in asymmetric universal cloning
transformations for individual quantum bits. A quantum circuit
was designed by Bužek et al. for this purpose, which was later
generalized to arbitrary dimensional quantum systems.

We shall call this circuit UCQC (universal covariant quantum
cloner) in what follows. It has a special feature of being
quantum controlled, that is, the fidelity ratio of the two clones is
controlled by the initial quantum state of two ancillary quantum
bits (one of which will carry the clone after the process).



This idea turned out to be related to the concept of
programmable quantum networks or quantum processors.

These are fixed quantum networks which are capable of
performing operations on quantum systems in a way that the
operation itself is encoded into the initial quantum state of
ancillae.

It was found that the very circuit for universal quantum cloning
is in fact a probabilistic universal quantum processor.



In this lecture we consider UCQC-s as entanglement
manipulation devices. In the context of cloning, one may ask
several questions.

One may consider the cloning of an entangled quantum
state as a whole, in order to obtain similar entangled pairs.
For two qubits this has been analyzed in detail by several
authors.In particular, Bužek at al. compare the fidelity of
cloning of an entangled pair by global and local operations.



Another approach might be the broadcasting of
entanglement, proposed by Bužek et al. In this case two
parties share an entangled pair and use cloners locally to
obtain two partially entangled pairs. This protocol attracted
a relevant attention in the literature, too. Topics such as
state-dependent broadcasting, broadcasting of multipartite
entangled states: W-states, GHZ-states, and linear optical
realizations were discussed in detail.



In this lesson, we consider the entanglement manipulation
capabilities of the universal covariant quantum cloner or
quantum processor circuit for quantum bits.

We investigate its use for cloning a member of a bipartite or a
genuine tripartite entangled state of quantum bits.

We find that for bipartite pure entangled states a nontrivial
behavior of concurrence appears, while for GHZ entangled
states a possibility of the partial extraction of bipartite
entanglement can be achieved.



Consider an entangled pair. It is always interesting to ask what
happens to the entanglement if any of the members of the pair
is subjected to some quantum information processing protocol.

In the case of quantum teleportation, for instance, rather
strikingly the teleported qubit inherits the entanglement of the
original qubit with its pair.



It is rather natural to ask what happens in the case of a
universal quantum cloner.

The answer for qubit pairs is partly given by Bandyopadhyay
and Kar. They show that if a member (or both members) of a
maximally entangled qubit pair is subjected to an optimal
universal quantum cloning operation, the resulting state is a
Werner state.



It is likely, however, that a cloning transformation is realized by
some quantum circuit, which uses ancillae for carrying out the
operation.

It is obviously interesting how the entanglement between the
different quantum bits of such a scenario (including also
ancillae) behaves.



In this lesson we consider the UCQC as a circuit, not only the
cloning operation itself.

We calculate entanglement as measured by concurrence. It
turns out that the ancillae play a very specific role and the
behavior of concurrence shows a rather interesting pattern.

The recent optical realization of certain programmable quantum
gate arrays also contributes to the relevance of this question.



Another similar question might be the partial extraction of
bipartite entanglement from a GHZ-type threepartite resource.

It is known that if three qubits are in a GHZ state, then a
measurement on either of the three qubits in the |±〉 basis
(eigenbasis of the σx Pauli-operator) projects the state of the
remaining two qubits into a maximally entangled state.



We will see that if the given particle is cloned in advance, it is
possible to create bipartite entanglement by measuring the
clone, while there still remains some purely threepartite
entangled resource in the state of the three parties. This is
indicated by the possibility of entangling a different pair of
qubits by a next measurement.

The nature of the entanglement in the multipartite system can
be also analyzed with the aid of the Coffman-Kundu-Wootters
inequalities, which quantify the monogamy of entanglement. I
shall present such an analysis, too.



This lecture is organized as follows:
we analyze the behavior of bipartite entanglement in the
case when UCQC is applied to clone a member of a
maximally entangled pair.
we consider the application of UCQC for the partial
extraction of bipartite entanglement from a
Greenberger-Horne-Zeilinger state.
the results are summarized and conclusions are drawn.



Bipartite pure states

Bipartite pure states



Bipartite pure states

The considered setup is depicted in Fig. 1.
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This is the setup for bipartite entangled states. The dashed box
contains the universal covariant cloning circuit, composed of
four controlled-NOT gates.



Bipartite pure states

The quantum circuit in the dashed box is the universal quantum
cloner. Its first input port (which is port 2 in our current notation)
receives the state to be cloned, while on the second two ports
there impinges a so-called program state:

|Ψ(prog)
34 〉 = N (α (|0〉(|0〉+ |1〉)) + β (|00〉+ |11〉)) , (1)

where N = 1/
√

2(α + β2) is a normalization constant, α is a
real parameter and β = 1− α.



Bipartite pure states

Were a single-qubit state % impingent on port 2, the output
states would be:

%2 =
β

α + β2 %+
α2

2(α + β2)
1̂,

%3 =
α

β + α2 %+
β2

2(β + α2)
1̂,

%4 =
αβ

β2 + α
%T +

α2 + β2

2(α + β2)
1̂. (2)

The clones reside in ports 2 and 3, the original qubit and the
first ancilla, whereas in the port 4 there is an ancilla, the state
of which is a mixture of the state described by the mixture of
the transpose of the density operator of the original state and
the identity operator.



Bipartite pure states

The fidelity of the clones depends on the value of α: for α = 0
there is no cloning, whereas for α = 1 the state of the original
qubit is fully transferred to the clone, leaving the original qubit in
a completely mixed state.

For other values of alpha there are optimal clones generated.
Note the symmetry of the formulae in α and β.



Bipartite pure states

In the terminology of cloning this setup realizes an optimal
universal asymmetric cloner. The term asymmetric expresses
that the two clones are not identical, their fidelity with respect to
the original state is different, but controlled by the parameter α.

Setting α = 1
2 , we obtain the symmetric case. The cloning is

universal in the sense that the realized cloning transformation
itself does not depend on the input state. Optimality in this
context means that the second clone is obtained with maximal
fidelity for a given fidelity of the first one.



Bipartite pure states

Let us return to the description of the whole scenario in
argument, depicted in Fig. 1. The qubits 1 and 2 carry the initial
bipartite input state. Qubit 2 is subject to cloning, while qubit 1,
the first part of the pair is not manipulated.

We are interested in the entanglement relations between the
different pairs of qubits in the resulted state. As for the measure
of bipartite entanglement for qubits, we apply concurrence
according to the Wootters formula as we saw in lecture 3.



Bipartite pure states

As an input state we consider a state in either of the following
four forms:

|Φ(in)
12 〉 =

√
C0|00〉 ±

√
C1|11〉,

or
|Ψ(in)

12 〉 =
√

C0|01〉 ±
√

C1|10〉,
C0 + C1 = 1. (3)

As for the nonzero concurrences between the various pairs of
qubits, we obtain the behavior in Fig. 2, regardless of the
choice from the above states. The output states, however,
depend on this actual choice, I will comment on this later.



Bipartite pure states

a) 1-2 (lower surface) and 3-4 (upper surface)
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b) 1-3
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The concurrence between the various pairs of qubits at the
output of the setup in Fig. 1. The input state is either of the four
in Eq. (3), the same figure is obtained for each choice, though
the states themselves differ. The “program” state is the one in
Eq.(1). The concurrence between qubits 1 and 4 is zero. The
plotted quantities are dimensionless.



Bipartite pure states

In the figure one can observe that the entanglement between
qubits 1 (the one not manipulated) and qubit 2 (the original
qubit) behaves in the similar way as that between qubit 1 and 3
(the one not manipulated and the clone).

For α = 0 (no cloning), qubits 1 and 2 are entangled as they
were originally, while for α = 1, complete cloning, the
entanglement is transferred to qubits 1 and 3, the clone plays
the role of the former original qubit completely.



Bipartite pure states

The surfaces representing the concurrence for the pairs 1-2
and 1-3 are symmetric in the cloning parameter α, that is, they
can be obtained from each other by the α→ 1− α substitution.

The dependence of these entanglements from α is
monotonous but not continuous: for small values there is a
region where the entanglement is zero, and it appears suddenly
and non continuously.

The dependence of these concurrences on the initial
entanglement in the state C0 is monotonous and continuous.



Bipartite pure states

It is also interesting to observe that a similar non-symmetric
behavior appears in the concurrence of qubits 3-4 and 2-4.

The program state of Eq. (1), in which the qubits 3-4 are
prepared initially, is maximally entangled for α = 0, the case of
no cloning, and its entanglement decreases with the increase
of the cloning parameter α.

Accordingly, the entanglement of qubits 3-4 decreases with α
also after the cloning operation, while the complementary
behavior (in the sense of α→ 1− α substitution) appears
between qubits 2 and 4 (the cloned part of the input state and
the ancilla of the cloner).



Bipartite pure states

Note that the entanglement of qubits 3 and 4 is not equal to
their entanglement before the cloning operation: the
concurrence of the partially entangled program state in Eq. (1)
is a monotonous and continuous function of α, and its values
are not equal to the concurrences after the cloning operation.

Moreover, the concurrence of qubits 3 and 4 after the cloning
also depends slightly on that of the input state of qubits 1 and
2, in Eq. (3).



Bipartite pure states

As for the remaining pairs, qubits 1 and 4 (the qubit not
manipulated and the ancilla) will not be entangled, while
between qubits 2 and 3 (the second input state and its clone),
as a nontrivial effect, there is a small amount of entanglement
appearing only in the case the input state (of qubits 1-2) is only
slightly entangled.



Bipartite pure states

A special case arises if the input state of qubits 1 and 2 is
maximally entangled. This is the case of C0 = 1/2 in Fig. 2.

The concurrence between qubits 1-2 and 3-4 (two originals, two
program qubits of the cloner) is equal to each other. The
complementary pairs, qubits 1-3 (not manipulated-clone) and
2-4 (clone-ancilla) have also equal concurrences.



Bipartite pure states

The dependence of these concurrences on α is depicted in Fig.
3.
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A slice of Figs. 2. a-c) for C0 = 1/2, that is, for any of the
maximally entangled Bell-states as input. The plotted quantities
are dimensionless.



Bipartite pure states

The behavior of these curves is due to the fact that the
universal cloning transformation produces Werner states.
Indeed, if the input state is in Eq. (3) is the maximally entangled
|Φ(+)〉 Bell-state, where the states of qubit-pairs 1-2, 1-3, 2-4,
3-4 are Werner-states of the form

%(Werner) = γ|Φ(+)〉〈Φ(+)|+ 1− γ
4

1̂, (4)

where 1̂ stands for the identity operator of the two-qubit space.



Bipartite pure states

The value of the parameter γ is

γ12 = γ34 =
α

α + β2 (5)

for pairs 1-2 and 3-4, while it is

γ13 = γ24 =
β

α + β2 . (6)

Note that the denominator on the right-hand-side of the above
formulae comes directly from the normalization constant of the
program state in Eq. (1) (i.e. the scaling of parameters in
Eqs. (5) and (6) is merely a consequence of our particular
choice of parameters).



Bipartite pure states

In the case we choose a different one from the states in Eq. (3),
we obtain local unitary transforms of the Werner state in Eq. (5).

The message of the consideration for cloning an element of a
maximally entangled pair is not the fact that Werner states are
obtained in qubits 1-2 and 1-3, since it was known from the
literature.

What is nontrivial here that in the UCQC circuit this behavior is
repeated between the ancilla (qubit 4), and qubits 2 and 3, and
this holds only in the case of the cloning of a member of a
maximally entangled state.



Bipartite pure states

Finally let us note that the behavior of qubits 2, 3, and 4 cannot
depend on the properties of qubit 1 since it is a remote system
from the UCQC’s point of view. It is the reduced density
operator of qubit 2 which can influence their behavior.

We have found that only for a maximally entangled pair, a
concurrence characterizing a nonlocal property is equal to
another concurrence which is a local property of the cloner.



The GHZ state

The GHZ state



The GHZ state

Let us consider the case in which a member of a
Greenberger-Horne-Zeilinger (GHZ) state is cloned. This
tripartite state, of the form

|Ψ(GHZ )〉 =
1√
2

(|000〉+ |111〉) (7)

is known to be genuinely tripartite entangled.

That is, all the pairwise entanglements (as measured by
concurrence) are zero, however, all of the three qubits are in a
maximally entangled state.



The GHZ state

When any of the qubits is subject to a von Neumann
measurement in the basis

|±〉 =
1√
2

(|0〉 ± |1〉), (8)

the other two qubits will be in either of the maximally entangled
Bell-states

|Φ±〉 =
1√
2

(|00〉 ± |11〉), (9)

depending on the measurement result.

The probability of the measurement results are equal. In this
way the tripartite entangled resource in the GHZ state can be
converted into maximal bipartite entanglement.



The GHZ state

The scenario we consider for GHZ states is depicted in Fig. 4.
Qubits 1-3 carry the input state which is a GHZ state in Eq. (7).
Qubit 3 enters the UCQC’s first port. The program ports of the
UCQC are qubits 4 and 5, considered again to be in the
program state in Eq. (1).

+−

+−

{

1

2

3

4

5

{
|Ψ(prog)〉

|Ψ(GHZ)〉



The GHZ state

In the figure above, the setup for the tripartite GHZ state can be
seen. Qubits 1-3 hold the GHZ state initially. The dashed box
contains the universal covariant cloning circuit, composed of
four controlled-NOT gates. The “meters” measure in the |±〉
basis. First the clone (qubit 4), then a member of the original
GHZ state (qubit 1) is measured. The horizontal position from
the left to the right side thus represents the order of operations
in time.



The GHZ state

Directly after the operation of the cloner all pairwise
concurrences are zero, except for the one between qubits 3-5
and 4-5. Their value is represented by curves “A” and “B” in
Fig. 5.
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The GHZ state

In the figure above the pairwise concurrences in the
GHZ-cloning can be seen:

A: qubits 3-5 after the cloner and also after each
measurement
B: qubits 4-5 after the operation of the cloner
C: qubits 1-2 after the first measurement
D: qubits 2-3 after the second measurement
E: qubits 2-5 after the second measurement.



The GHZ state

This fact that directly after the operation of the cloner all
pairwise concurrences are zero, except for the one between
qubits 3-5 and 4-5 is easily explained by the following
reasoning.

From the point of view of the UCQC circuit, qubits 1 and 2 are
remote ones, thus they cannot influence the local properties of
qubits 3, 4 and 5.

All we “see” at the locus of the UCQC is that qubit 3 is in a
maximally mixed state, as it is a member of the maximally
entangled threepartite GHZ state of Eq (7).



The GHZ state

But the same situation would arise if qubit 3 were maximally
entangled in a bipartite sense with one additional qubit, as we
have considered in the case of bipartite pure states.

Thus the behavior of concurrences between the pairs
ancilla-original and ancilla-clone are the very same as in the
case of cloning a member of a bipartite maximally entangled
state (or a member of any kind of multipartite entangled state
which is itself in a completely mixed state for this reason):
Werner states are obtained.



The GHZ state

Projective measurement on the clone
Motivated by the relation of the projective measurements of the
members of a GHZ state on the |±〉 basis, one may now
consider a measurement of this kind on the clone, that is, on
qubit 4.

Projective measurement on the clone
This measurement will not alter the bipartite entanglement
between qubits 3-5, and that between 4-5 will disappear due to
the measurement.



The GHZ state

Projective measurement on the clone
However, there will be an even larger entanglement appearing
between qubits 1 and 2, this is curve “C” in Fig. 5.

Projective measurement on the clone
Both measurement outcomes will have equal probability and
also the entanglement behavior is the same for both cases. In
case of full cloning (α = 1), we obtain a pure EPR pair as
expected.

Projective measurement on the clone
This is a partial conversion of the resource available as genuine
tripartite entanglement into bipartite entanglement.



The GHZ state

Measurement on the qubit 1
In order to further justify this statement let us consider a second
measurement, now on qubit 1. Again, the results will be
uniformly distributed and the entanglement itself will not
depend on the measurement result.

Measurement on the qubit 1
The entanglement between qubits 3 and 5 will be untouched,
and that between qubits 1 and 2 will be destroyed by the
measurement of course.



The GHZ state

Measurement on the qubit 1
Meanwhile we obtain nonzero entanglement between pairs 2-3
and 2-5, these are the curves “D” and “E” in Fig. 5, respectively.

Measurement on the qubit 1
Indeed, if the extraction of the tripartite entanglement was not
full (i.e. α 6= 1), one can still obtain bipartite entanglement by
measuring another qubit this time.



The GHZ state

Measurement on the qubit 1
Curves “C” and “D”, describing the entanglement between 1-2
after the first measurement, and that between 2-3 after the
second measurement, respectively, are counter propagating,
reflecting the interplay between the two extractions.

Measurement on the qubit 1
As a side effect, there is a small amount of entanglement which
appears between qubits 2-5 after the second measurement,
this is curve “E” in Fig. 5.



The GHZ state

The use of the partial extraction of the entanglement is the
following. Consider that qubit 1 is at Alice, qubit 2 at Bob, while
the rest of the qubits is at Charlie.

Initially they share a tripartite GHZ resource. Charlie wants to
enable Alice and Bob to use a bipartite maximally entangled
channel.

He might perform the projective measurement on the clone he
has, however, in this case his qubit 3 gets disentangled from
the rest of the parties.



The GHZ state

However, if he performs cloning and measures the clone, Alice
and Bob still obtains a partially entangled bipartite resource.

However, Alice can decide that instead of using a bipartite
channel with Bob, she wants to create a channel between Bob
and Charlie.

All she has to do is to perform a proper measurement on her
qubit and communicate the result: Bob and Charlie will posses
a partially entangled bipartite resource.

This would not be possible without the cloning. The same could
be done of course by Bob, to enable the bipartite resource
between Alice and Charlie.



Coffmann-Kundu-Wootters (CKW) inequalities
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Coffmann-Kundu-Wootters (CKW) inequalities

In order to obtain a deeper insight into the behavior of bipartite
entanglement in this multipartite system, it is worth examining
the Coffman-Kundu-Wootters inequalities.



Coffmann-Kundu-Wootters (CKW) inequalities

A maximally entangled state of two quantum bits is necessarily
a pure state. Hence two quantum bits cannot be entangled with
any other system.

This means that (unlike classical correlations) quantum
entanglement has a property which is called monogamy:
pairwise entanglement of two subsystems limits the
entanglement with the other subsystems.



Coffmann-Kundu-Wootters (CKW) inequalities

As for a quantitative description of monogamy, we introduce
another quantity which we will use. This is the tangle denoted
by τ , which is the linear entropy of a given subsystem, which -
for qubits - can be expressed as

τk = 4det%(k).

This is the so-called one-tangle, characterizing the
entanglement between the given qubit and the rest of the total
system which is in a pure state.

In case we have two qubits in a pure state, the tangle relating to
one of them equals the square of the concurrence.



Coffmann-Kundu-Wootters (CKW) inequalities

Let us consider a system consisting of many qubits and
suppose the system is in a pure state. Checking concurrences
of the qubit pairs in the system, we get that
Coffmann-Kundu-Wootters (CKW) inequalities are satisfied:

τk ≥
∑
l 6=k

C2
k ,l (10)

This formula can be interpreted in the following way: the
entanglement measured in tangle between the k -th qubit and
the rest of the total system gives an upper bound for the
concurrence calculated between the k -th qubit and another
arbitrary qubit in the system.

If these inequalities are saturated, the bipartite entanglement is
maximal.



Coffmann-Kundu-Wootters (CKW) inequalities

To quantify the saturation we evaluate

s = τk −
∑
l 6=k

C2
k ,l , (11)

which is zero if the inequalities are saturated.

After the first measurement we obtain nonzero values except
for the fourth qubit (apart from the case of α = 1). The behavior
is depicted in Fig. 6 (see below).

The fact that the CKW inequalities are not saturated also
suggests the presence of additional multipartite entanglement
in the system.



Coffmann-Kundu-Wootters (CKW) inequalities

After the second measurement, on the other hand, we find that
all the CKW inequalities are saturated: the system is in a sense
maximally bipartite entangled.



Coffmann-Kundu-Wootters (CKW) inequalities
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plotted quantities are dimensionless.



Conclusion

We have seen that when using a universal covariant quantum
cloning circuit to clone a member of an entangled pair of qubits,
a very specific behavior of the entanglement of the qubits
appears.

The main feature is that behavior of the entanglement between
the not cloned part of the pair and the cloned one is repeated in
the entanglement of certain ancillae, and so is that of the not
cloned qubit and the clone, provided that the original qubit pair
was maximally entangled initially.



Conclusion

We have also analyzed the cloning of an element of the GHZ
state.

It appears that the universal quantum cloning circuit facilitates
the partial extraction of bipartite entangled resources from a
genuine tripartite entangled resource.

We saw a detailed analysis of the entanglement behavior,
including the relation to Coffman-Kundu-Wootters inequalities.



Conclusion

In conclusion, the universal quantum cloning circuit (or
quantum processor) for qubits is found to be useful as an
entanglement manipulator as well. It can perform entanglement
manipulations which are potentially applicable in quantum
information processing.


