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Quantum error correction

Today we study how quantum entanglement is used in error
correction processes. Due to the noisy quantum channelsa,
error correction is required in the field of quantum
communication protocols.

aNaturally there are several other phenomena which can cause errors in
quantum information protocols, for instance faulty gates, measurements,
preparations

First of all, we have to clarify the reason why we use the
quantum entanglement as a tool in error correction, instead of
using redundancy as we saw in the case of classical
information systems.
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The answer is very trivial, if we recall what we learned about
quantum cloning.

Being an impossible quantum map, quantum cloning can not be
used to create one or several clones of a qubit which is in an
unknown quantum state, hence redundancy can not be applied
if we handle quantum bits.
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Fortunately, using a highly entangled state of several qubits, we
have a possibility to spread the information carried by a single
qubit onto the entangled state.

Peter Shor suggested a method where the information of one
qubit is stored in the highly entangled state of nine qubits.
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Classical error correcting codes generally use a syndrome
measurement to detect which error appears in an encoded
state. After this, applying a corresponsive operation based on
the detected syndrome we can correct the error.

Also in quantum error correction protocols syndrome
measurements are used. Making a multi-qubit measurement,
we do not disturb the information stored in the encoded state,
however we retrieve information about the error.
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Besides diagnosing if a qubit has been corrupted, we can also
find out which qubit was affected, if we use syndrome
measurements.

In addition, the outcome of a syndrome measurement
bespeaks us the way how the qubit was corrupted (bit flip, sign
flip or both).
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It is natural to ask: how can the effect of the noise be one of a
few possibilities, when the noise itself can be arbitrary?

In most of the codes, this effect can be either a bit flip, or a sign
flip, or both (corresponding to the Pauli matrices X, Z, and Y). It
is important to keep in mind that syndrome-measurements are
projective measurementsa, hence though the noise can be
arbitrary, it can be built as a superposition of basis operations.

ajust like any of the quantum measurements (except when POVM is made,
but this kind of measurement is not discussed in this semester)
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The syndrome-measurement makes the qubit to choose one of
the Pauli errors to have happeneda, and the syndrome
bespeaks us which error was choosen.

ait is said to be "Pauli error" because of the kinds of errors, for instance bit
flip, sign flip, or both

Hence we can apply the same Pauli operator on the corrupted
qubit and in this way the effect of the error can be reverted.
Unfortunately syndrome-measurements tell nothing about the
value stored in the logical qubit
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The bit flip code
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As we know, repetition code can not be used in case of a
quantum channel, because of the no-cloning theorem.
Fortunately there is a solution of this problem, namely the
three-qubit bit flip code.

In this method syndrome-measurement and entanglement are
applied and this "protocol" is as effective as the repitition code
was in classical cases.



Quantum error correction

Let suppose we want to transmit a qubit |ψ〉 through a noisy
channel C. We know that this channel either flips the state of
the qubit, with probability p, or leaves it untouched.

Hence, if we have a general qubit ρ as an input state of the
channel C, the action of the channel on the qubit can be written
as

C(ρ) = (1− p)ρ+ p XρX .
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In our case, we want to transmit the following state:
|ψ〉 = α|0〉+ β|1〉. Without applying any error correcting
protocol, the state will be correctly transmitted with a probability
of 1− p.

Naturally this number can be improved, if we encode the state
into a greater number of qubits. In this way we can detect and
correct errors in the corresponding logical qubits.
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In the case of the simple three-qubit repetition code, the
encoding means the following mappings:

|0〉 → |0L〉 ≡ |000〉 and |1〉 → |1L〉 ≡ |111〉.

The input state |ψ〉 is encoded into the state
|ψ′〉 = α|000〉+ β|111〉. This mapping can be realized in case
we apply two CNOT gates to entangle the system with two
ancillary qubits initialized in the state |0〉. Hence, the encoded
state |ψ′〉 is sent through the noisy channel.
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Quantum circuit of the bit flip code
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The channel can have an effect on |ψ′〉, because it can flip
some subset of the qubits of the state. There is no qubit flip
with a probability of (1− p)3, one of the qubits is flipped with a
probability of 3p(1− p)2, two of them are flipped with a
probability of 3p2(1− p) and all of them are flipped with a
probability of p3.

Let us realize that there is an additional assumption about the
channel, namely: we assume that the effects of C on each
qubit of |ψ′〉 are independent and equal.

Thus our problem is how to detect and correct such errors,
without corrupting the state to be transmitted.
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For the sake of simplicity, let us suppose that p is very small,
thus the probability of more than one qubit is flipped is
negligible.

In this case we can detect if a qubit was flipped, without also
querying for the values being transmitted, by asking whether
one of the qubits differs from the others.
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This amounts to performing a measurement with four different
outcomes, corresponding to the following four projective
measurements:

P0 = |000〉〈000|+ |111〉〈111|

P1 = |100〉〈100|+ |011〉〈011|

P2 = |010〉〈010|+ |101〉〈101|

P3 = |001〉〈001|+ |110〉〈110|
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We can do it, if we first measure Z1Z2 and then Z2Z3. This tells
us which qubits are different from which others but does not
yield any information of the state of the qubits.

In case we obtain the outcome which corresponds to P0, there
is no need to apply any of the corrections. On the other hand,
in case of obtaining an outcome corresponding to Pi , we have
to apply the Pauli X gate on the i-th qubit.
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This procedure can be expressed by the following map (which
has to be applied on the output of the channel):

Ccorr (ρ) = P0 ρP0 +
3∑

i=1

XiPi ρPiXi .

It is important to know that this procedure does not work
properly, if there are more the one qubit flipped by the channel.
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The sign flip code



Quantum error correction

Although in classical case bit flip can be the only kind of error,
using a quantum computer we have to face another kind of
error, namely the sign flip.

This means that the relative sign between |0〉 and |1〉 can
become inverted. For example a state like this
|−〉 = 1√

2
(|0〉 − |1〉) can change into the following state:

|+〉 = 1√
2
(|0〉+ |1〉), which is a sign flip.
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Quantum circuit of the phase flip code
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The original state to be transmitted is |ψ〉 = α|+〉+ β|−〉, which
will be altered into the following state:

|ψ′〉 = α|+++〉+ β| − −−〉.

Expressing a state on the Hadamard base, a sign flip becomes
bit flip and vice versa. In case Cphase is a quantum channel
causing at most one bit flip, the bit flip code can recover |ψ〉 by
transforming it into the Hadamard basis before and after
transmission through Cphase.
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The Shor code
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A noisy channel can cause sign flip, bit flip or both. Using the
Shor code both types of errors can be corrected. Actually,
arbitrary single-qubit errors can be fixed by applying the Shor
code.

Let us suppose C is a quantum channel, which can corrupt a
quantum bit in an arbitrary way. In our figure (below), the 1st,
4th and 7th are for the sign flip code and the three group of
qubits (1,2,3), (4,5,6), (7,8,9) are designed for the bit flip code.
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Quantum circuit of Shor code



Quantum error correction

Using the Shor code, we transform the state |ψ〉 = α|0〉+ β|1〉
into the product state of nine qubits |ψ′〉 = α|0S〉+ β|1S〉, where

|0S〉 =
1

2
√

2
(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

and

|1S〉 =
1

2
√

2
(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉).
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In case one of the qubits has a bit flip error, the syndrome
analysis is performed on each set of states (1,2,3), (4,5,6),
(7,8,9), and the error will be fixed.

If the three bit flip groups (1,2,3), (4,5,6), (7,8,9) are considered
as three inputs, the Shor code circuit can be reduced as a sign
flip code. In other words, the Shor code can also fix sign flip
error for a single qubit.
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Any arbitrary error can be corrected by the Shor code, in the
case of a single qubit. Considering an error as a unitary
transform U (acting on a qubit |ψ〉), it can be described by the
following expression:

U = c0 I + c1 σx + c2 σy + c3 σz ,

where c0, c1, c2, c3 are complex factors, I is the identity
operator and there are the familiar Pauli matrices in the
formula, namely:

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
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In case U = 0, there was no error. If U = σx , there was a bit
flip. In the case of U = σz , there was a sign flip. And if U = iσy ,
there were both bit flip and sign flip. From the linearity, it follows
that the Shor code can fix arbitrary one-qubit errors.

We remark there are other quantum error correcting protocols,
but our present knowledge is not enough to understand how
they work.


