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"Everything we call real is made of things that cannot be regarded as real."

Niels Bohr
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Introduction

Quantum mechanics is the fundemental theory of all modern physics. As such it is a significant part

of our understanding of Nature. It employs sophisticated mathematical models whose interpretation

still poses unresolved physical and philosophical questions. Some of these lead to phenomena which

are unusual and counterintuitive from an everyday perspective. In spite of this, quantum mechanics

is a very successful theory. While its grounding fathers considered it as a theory for multipartite

systems not verifyable on the level of individual physical systems, the formidable development of

experimental technology (especially that of quantum optics) in the last decades has made the direct

observation of these conterintuitive phenomena viable. And indeed: quantum mechanics appears to

be valid for individual physical systems.

Moreover, the accessibility of quantum phenomena seems to find its way to practical applications.

The paradigm shift in physics introduced by quantum mechanics seems to be repeated in the field

of information theory and information processing: quantum information now has a well-established

reputation amongst future and emerging technologies. While quantum random generators and some

quantum ciphers are commercial products already, yet there are still a lot of details to be better under-

stood.

The present dissertation describes my results which contribute mainly to the field of quantum infor-

mation. In this field, quantum cloning is considered as an important information processing primitive.

I have studied the interrelations of cloned quantum bits to a rest of the quantum system their originals

belong to, in the case of a particular quantum cloner design. As quantum information science is often

deeply related to the fundamental aspects of quantum mechanics. These aspects sometimes lead to
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paradoxical consequences when viewed from a classical physical perspective. My other aim was to

better understand some details of such a paradox, introduced by Hardy.

The dissertation itself is based on results which appeared in three independent publications. The

topics may seem to be diverse, however, there is a key concept which interrelates all the presented

results, namely quantum entanglement.



Chapter 1

Backround and notation

In this Chapter we summarize the notation and the scientific context of my results. Section 1.1 is

devoted to the description of the very concepts in quantum mechanics used in this study. In Section 1.2

we briefly introduce those elements of quantum entanglement theory we will use. These Sections are

there for the sake of completeness and to introduce the notation, there is no intention to give a full

introduction to these broad topics. With this respect we refer to the extensive literature of the field.

The following three Sections deal with the phenomena we have actually studied in order to put my

results into their scientific context. A brief summary of the topic of quantum cloning can be found

in Section 1.3. In Section 1.4 we give a short quide to the topic of the interaction–free measurement.

Finally, in Section 1.5 we outline the playground of Hardy’s paradox and some other ideas related to

it.

1.1 Systems and states

A quantum system is modeled by a separable Hilbert spaceH. In the present work we deal only with

systems whose Hilbert space is finite dimensional. We use Dirac’s notation: the vectors are the kets,

|Ψ〉 ∈ H, (1.1)

6
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while the elements of the dual ofH are the bras:

〈Ψ| ∈ H∗, (1.2)

thus the scalar product of the vectors |Ψ〉 and |Φ〉 reads

〈Φ|Ψ〉 = 〈Ψ|Φ〉∗ . (1.3)

We frequently use orthonormal bases in our considerations. For a two-dimensional system (that is, a

quantum bit), for instance, we have

H = span(|0〉 , |1〉)

〈i|j〉 = δij, i, j ∈ {0, 1}, (1.4)

where δij is the Kronecker delta symbol. Systems with two dimensional Hilbert spaces can be and are

realized in experiments. The possible realizations include: spins of electrons, polarization of single

photons, circular Rydberg atoms, etc.

When dealing with multipartite systems, each subsystem has its own Hilbert space. The whole system

lives in the tensor product of the spaces. For two quantum bits, for instance, we have

H = H1 ⊗H2 = span(|0〉1 ⊗ |0〉2 , |0〉1 ⊗ |1〉2 , |1〉1 ⊗ |0〉2 , |1〉1 ⊗ |1〉2). (1.5)

In what follows we omit the ⊗ symbol in states and we write |Ψ〉1 |Φ〉2 or |Ψ1Φ2〉 instead of |Ψ〉1 ⊗
|Φ〉2. The maybe most intriguing feature of quantum systems, quantum entanglement, stems from the

fact that not all elements of the product space are products of individual subsystems. We return to this

point in Section 1.2.

Quantum states described by vectors of the Hilbert space are referred to as pure states. In the case

when we do not exactly know the state of the system, but at least we have a prior information that

with probability pi it is in a state |Ψi〉, its state is described by a density operator which is a convex

combination of projectors:

% =
∑
i

pi |Ψi〉 〈Ψi| . (1.6)
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Note that here i can be an element of an arbitrary index set (possibly even infinite, but we deal with

finite ones here), and there is no restriction on the states |Ψi〉. The set of density operators of a system

is a convex set of unit trace Hermitian positive semidefinite operators. The extremal states are the

pure states, they are rank one projectors. Also note that the form of a density operator in Eq. (1.6) is

not uniqe: different sets of states and different probabilities can yield the same density operator. This

ambiguity lies in the very heart of the difference between classical probabilistic systems and quantum

ones: the description of the state as a convex combination of the extremal states is ambiguous in the

latter case.

Returning to multipartite systems, if the multipartite system is in a given quantum state (mixed, % or

pure % = |Ψ〉 〈Ψ|), the state of a subsystem is its partial trace, which can be expressed on an arbitrary

product basis (c.f. Eq. (1.5)) as

%
(1)
i,j = [Tr2 %]i,j =

∑
k

%ik|jk, (1.7)

where %ik|jk = 〈ik| % |jk〉.

1.1.1 Physical transformations of states

Unitaries

Time evolution, as described by the Schrödinger equation, results in a unitary transformation of the

state:

|Ψ′〉 = U |Ψ〉 , U †U = Î , (1.8)

(Î stands for the identity operator while † for Hermitian conjugation), whereas for mixed states we

have

%′ = U%U †. (1.9)

Note that we do not refer to time in the last two equations: in topics of quantum information, unitaries

are typically considered as physically feasible transformations of quantum states without going into

details of the actual interaction and time to realize them. They are also referred to as quantum gates.
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Projective measurements and beyond

Measurables in quantum mechanics are modeled by Hermitian operators, which can be given in gen-

eral in terms of their eigenvalues m ∈ R and the corresponding eigenvectors |m〉:

M̂ =
∑
m

m |m〉 〈m| (1.10)

Note that the states |m〉 form a basis on the Hilbert-space of the system. Were the spectrum of M̂ de-

generate, we can always choose orthogonal states in the eigensubspace (e.g. via Gram-Smith orthog-

onalization), so we always have a basis of eigenstates, albeit with some ambiguity in the degenerate

case.

When the measurement is carried out on a system in state |Ψ〉, the apparatus displays the result m

with the probability

pm = | 〈m|Ψ〉 |2. (1.11)

Here we encounter yet another (if not the most) intriguing feature of quantum mechanics: right after

the measurement the system is left in state |m〉 and the state |Ψ〉 is destroyed. This is not only the

basis of many physical and philosophical disputes (including the Einstein-Podolsky-Rosen paradox),

but also leads to experimentally testable consequences such as the quantum Zeno effect. Moreover,

one can make use of this feature: quantum cryptography would be impossible without entanglement.

In the degenerate case the state is projected into an eigensubspace corresponding to the given measure-

ment result. When measuring mixed states, the measurement probabilites are the diagonal elements

of the density operator expanded in the measurable’s eigenbasis. In case of a nondegenerate measure-

ment, the state will be in the corresponding eigenstate of the measurement. (Note that it is actually

pure in this case, too.)

We briefly mention that there are more general measurements feasible in quantum systems. They can

be realized by projectively measuring a larger systems whose subsystem is the one to be measured.

These are referred to as POVM measurements, but we do not use them in our work.
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Completely positive maps

As we have to discuss cloning we have to briefly mention completely positive maps. They are the

most general transformations which can be realized on a physical system:

%′ = E(%) (1.12)

The transformation E has to be linear, trace preserving and it should also be positive (that is, preserve

the positive semidefiniteness of the density operator). However, there is another important require-

ment: it should be completely positive: if the system is supplemented by any other system, say, with

a Hilbert spaceH′ whose identiy operator is Î , the (super)operator E ⊗ Î should be also positive. The

reason behind this is: if we perform the operation on a system while we do nothing with any ancillary

system, then the resulting state of our system and the ancilla has to be still positive.

There exist positive but not completely positive operators. An important example is the transposition

in an orthonormal basis, which plays an important role in the theory of quantum entanglement.

1.2 Quantum entanglement

Let us return to quantum entanglement and outline its aspects which are relevant for our work. We

say that the quantum state |Ψ〉 ∈ H1⊗H2 of a bipartite system is separable if it is a product of states

of each subsystem:

|Ψ〉 = |Ψ1〉 |Ψ2〉 , |Ψ〉1 ∈ H1, |Ψ〉2 ∈ H2. (1.13)

If a state is not separable, it is entangled.

The definition can be obviously extended to multipartite systems. And as we shall see later, the

entanglement of multipartite systems bears a rich structure.

If a pure state |Ψ〉 is separable, then all the subsystems are in a pure state. Thus their density operators

are projectors. E.g. for

%(1) = Tr2 |Ψ〉 〈Ψ| (1.14)
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we have (
%(1)
)2

= %. (1.15)

As Tr % = 1, it implies that

Tr
(
%(1)
)2

= 1. (1.16)

This holds for all the subsystems if and only if the state is separable.

Considering a bipartite system this leads to a possibility of quantifying entanlgement: the “more

mixed” a subsystem is, the more entangled the state is. The mixedness of the state is commonly

measured by the von Neumann entropy of the density operator

H(%) = −Tr(% log2 %), (1.17)

which bears a sound information theoretic interpretation. In a d-dimensional system its maximum

value is log2 d, attained by the state

%CM =
1

d
Î. (1.18)

This is termed as the completely mixed state. It is the only state which produces a uniform distribution

of measurement results when measured in any possible basis. For reasons not detailed here the partial

traces of a pure bipartite state have the same von Neumann entropy. Hence it is reasonable to say that

the entanglement of the state is quantified by

E (|Ψ〉) = H (Tr2 |Ψ〉 〈Ψ|) (1.19)

For practical reasons it is worth mentioning that a mathematically simpler quantity can also be used

to quantify the mixedness of the state, and thus entanglement, albeit without an operational or direct

information theoretic meaning. Its construction stems from the fact that Eq. (1.16) holds if the state

is pure. As the diagonal elements of the density matrix describe a probability distributions, for mixed

states we have

Tr %2 < 1. (1.20)

Hence, the trace of the square of the density matrix is related to the purity of the state in a way. It can

be shown that its minimum value is 1/d attained by the completely mixed state only. For quantum
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bits (i.e. d = 2 we can thus construct a quantity with in the [0, 1] range (just like the von Neuman

entropy):

Hlin(%) = 2

(
1

2
− %2

)
. (1.21)

This is termed as the linear entropy of the state. It can be easily verified that the von Neumann entropy

is a monotone function of the linear entropy, and so that of its square root. Hence, entanglement can

be described also in terms of concurrence

C (|Ψ〉) =
√
Hlin (Tr2 |Ψ〉 〈Ψ|). (1.22)

The entanglement in Eq. (1.19) is its monotone function in the same range, it can be evaluated with

less effort, but does not admit an operational interpretation.

1.2.1 Mixed state entanglement

If a multipartite system is in a mixed state, its entanglement properties are far more complex. As

for the definition, a mixed state is said to be a separable one, if it can be constructed as a convex

combination of separable pure states or – in other words – it has a form like (1.6) in which every |Ψi〉
is separable. Unseparaple mixed states are called entangled.

In many cases it is hard even to decide if a state is separable or entangled at all: obviously in this case

the subsystems of a separable state may well be mixed. (Consider the complete mixture of two qubits

as an example. It is obviously separable (the density operator being proportional the equal-weight

convex combination of the projectos of an arbitrary orthonormal basis, including any product-state

basis). Both subsystems are in a completely mixed state though.) Also, while pure-state entaglement

is fully characterized by the quantity in Eq. (1.19), for mixed states there are several similar quantities

which coincide for pure states but they have different operational meanings otherwise.

One of them is entanglement of formation defined as follows:

E(%) = inf
(pk, |ψk〉 separable)∑

k pk|ψk〉〈ψk|=%

∑
k

pkE(|ψk〉), (1.23)
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that is, the infimum of the average of the entaglements of all the constituent pure states over all of its

pure-state decompositions. As we deal with finite dimensional states, the infimum can be understood

as minimum.

A similar quantity can be defined via concurrence:

C(%) = inf
(pk, |ψk〉 separable)∑

k pk|ψk〉〈ψk|=%

∑
k

pkC(|ψk〉), (1.24)

It can be shown that entanglement of formation is its monotone function, and in the special case of

two qubits it can be calculated analytically. This is the celebrated Wootters formula which is very

broadly used in the literature, including our work. Hence we describe it in what follows. For the

detailed derivations we refer to the original papers

1.2.2 The Wootters formula

In order to calculate the concurrence of a two-qubit state %, first we define the Wootters tilde operation:

%̃ = (σy ⊗ σy)%∗(σy ⊗ σy), (1.25)

where ∗ means the complex conjugation (or, otherwise speaking, the transpose) of the density matrix

in a product state basis, whereas σy is the second Pauli-operator.

Next the spectrum of the Hermitian operator has to be determined√√
%%̃
√
%. (1.26)

Its eigenvalues λ are in fact the square roots of the eigenvaluses of the (non-Hermitian) operator

%%̃. (1.27)

Let us put the eigenvalues λ1, λ2, λ3, λ4 to decreasing order. The concurrence then reads

C(%) = max{0, λ1 − λ2 − λ3 − λ4} (1.28)

We shall employ this latter formula when calculating concurrence throughout this thesis.
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1.2.3 Entanglement of multi-qubits systems

It may be an interesting question how can be featured the entanglement of two chosen quantum bits

in a system consisting of N quantum bits, if the whole system is in a pure state. As an illustration,

let us consider the following specific example: we have three quantum bits in a state which is called

Greenberger-Horne-Zeilinger (GHZ) state:

|ΨGHZ〉123 =
1√
2

(|000〉+ |111〉). (1.29)

In this case, the state of the first two quantum bits is describes by the density operator

%12 =
1

2
(|00〉〈00|+ |11〉〈11|). (1.30)

This state is obviously entangled. In fact, all the subsystems are in a completely mixed state.

When considering any of the two qubits (e.g. the first two, any of them can be choosen for symmetry

reasons), however, using the formula in (1.28), for this density operator, we get C(%12) = 0. This

means that state (1.30) is a separable state or, in other words, the first two quantum bits are not

entangled with each other as a pair.

It means that in the present entangled state there is no qubit-pair entanglement whatsoever. Indeed,

after carrying out a measurement on the third quantum bit in the basis |0〉, |1〉, the state of the first

two quantum bits will be either |00〉 or |11〉 with equal probability. This means that the bipartite state

can be constructed as a convex combination of separable pure states.

So the entanglement of the first two quantum bits can be juggled away by achieving measurement on

the third one. Due to the symmetry of the state, this holds true of the case of any pair of quantum bits

in this state. In the GHZ state (1.29), the state of any quantum bit pair can be separated. The whole

system is an entagled state, after all! State (1.29) is not separable. This can be seen, if we choose one

of the three quantum bits, its state, according to (1.18), is a maximally mixed state, that is, the chosen

quantum bit is maximally entangled with the subsystem of the other two quantum bits.

Hence, the entanglement present in this state is genuine threepartite. Interestingly, it can be converted

to maximal bipartite entanglement though. Carrying out a properly chosen measurement on one of the



1.2. QUANTUM ENTANGLEMENT 15

quantum bits, we can make the state of the system of other two quantum bits maximally entangled.

Indeed, if the eigenvectors of the measurement are now 1√
2
(|0〉±|1〉), we get the maximally entangled

states 1√
2
(|00〉 ± |11〉) with equal probability. Both states are maximally entangled bipartite states. If

we are aware of the measurement result, we know which state we have obtained, so we can use it, e.g.

for teleportation. In this system, its tripartite entanglement can be completly converted into a bipartite

entanglement.

1.2.4 Monogamy of entanglement

Note that a maximally entangled state of two quantum bits is necessarily a pure state. Hence two

quantum bits cannot be entangled with any other system. This means that (unlike classical correla-

tions) quantum entanglement has a property which is called monogamy: pairwise entanglement of

two subsystems limits the entanglement with the other subsystems.

As for a quantitative description of monogamy, we introduce another quantity which we will use

in our work. This is the tangle denoted by τ , which is the linear entropy in Eq. (1.21) of a given

subsystem, which, for qubits can also expressed as

τk = 4det%(k).

This is the so-called one-tangle, characterizing the entanglement between the given qubit and the rest

of the total system which is in a pure state. In case we have two qubits in a pure state, the tangle

relating to one of them equals the square of the concurrence. Let us consider a system consisting of

many qubits and suppose the system is in a pure state. Checking concurrences of the qubit pairs in

the system, we get that Coffmann-Kundu-Wootters (CKW) inequalities [2] are satisfied:

τk ≥
∑
l 6=k

C2
k,l (1.31)

This formula can be interpreted in the following way: the entanglement measured in tangle between

the k-th qubit and the rest of the total system gives an upper bound for the concurrence calculated

between the k-th qubit and another arbitrary qubit in the system. If these inequalities are saturated,

the bipartite entanglement is maximal.
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The CKW inequalities had been originally formulated as a conjecture, but they were later proven.

Their saturation reflects that the bipartite entanglement is in a way maximal in the system.

1.3 Quantum cloning

First of all, we have to make the meaning of word quantum cloning clear. Suppose we would like to

build a machine which is able to create a perfect replica of an arbitrary system being in an unknown

quantum state. A tool like that seems to be neceassary for certain information processing tasks. Error

correction, for instance, could be done using procedures making use of several perfect copies of the

original system carrying the information. Such a creation of one or more exact replicas of physical

systems in arbitrary (unknown) quantum states is termed as quantum cloning. The reason for the

name, as we shall see, is that the “cloned” system cannot be in fact distinguished from the original

one.

It is natural to ask if the laws of quantum mechanics allow us to build such a machine. To put it

formally, we consider e.g. a quantum bit in the state. |Ψ〉 = α|0〉 + β|1〉. In addition we need an

ancillary sytem which will be the replica. Its initial state can be arbitrary, say |0〉 w.l.o.g. The desired

operation is then

|Ψ〉|0〉 → |Ψ〉|Ψ〉. (1.32)

Let us first assume that an arbitrary state, say |Ψ1〉 can be simply cloned by a unitary operator U :

U |Ψ1〉|0〉 = |Ψ1〉|Ψ1〉. (1.33)

If our machine works as we expected, we can continue cloning with another state |Ψ2〉. The state of

the target qubit is the same before. In this case we get the following states:

U |Ψ2〉|0〉 = |Ψ2〉|Ψ2〉. (1.34)

Due to the unitarity, inner product of the left sides of equations 1.33 and 1.34 has to equal the inner

product between the right sides of these equations. Hence we obtain the equation below:

〈0|〈Ψ1|U †U |Ψ2〉|0〉 = 〈Ψ1|Ψ2〉2.
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After simplifying, we get the following form:

〈Ψ1|Ψ2〉 = 〈Ψ1|Ψ2〉2. (1.35)

From equation 1.35, it directly follows that

〈Ψ1|Ψ2〉 =


0

1

. (1.36)

As we can see in Eq. (1.36), our basic assumption (namely: quantum cloning is a unitary map) leads

us results which can be true if and only if we have a total knowledge of the states to be cloned.

Obviously, if we knew everyting about these states, we would be able to create them without using

any device to clone.

More generally it can be shown that the cloning map in Eq. (1.32) is not completely positive, so it

is not physical. And this holds not only for quantum bits, but also for any kind of quantum systems.

This is the no cloning theorem of quantum mechanics first pointed out by Żurek [3].

While thus far we have argued that cloning would be a useful operation in information processing,

it is easy to see that the fact of its impossibility has also positive implications from practical point

of view. For instance it is a basic ingredient of quantum cryptography. If quantum cloning – in the

sense of creating perfect replicas of an unknown state – were a possible map, this protocol would be

breakable, because an evesdropper, after the cloining of the quantum system transmitted between the

parties, could achieve measurements on the clones of the qubits sent by Alice to Bob and the quantum

key distribution were not secure anymore.

Albeit quantum cloning is an impossible quantum map [3], it is still possible to create imperfect

replicas of a quantum state with optimal fidelity [4]. This protocol, originally introduced by Bužek

and Hillery [5], is called quantum cloning. It is also possible to perform asymmetric quantum cloning:

the fidelity of the copies might not be equal [6, 7]. Quantum cloning has been studied very extensively

in the literature, and it has many variants. See Ref. [8] for a review.

In this study we are interested in asymmetric universal cloning transformations for individual quantum

bits. A quantum circuit was designed by Bužek et al. for this purpose [9], which was later generalized
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to arbitrary dimensional quantum systems [10]. We shall call this circuit UCQC (universal covariant

quantum cloner) in what follows. It has a special feature of being quantum controlled, that is, the

fidelity ratio of the two clones is controlled by the initial quantum state of two ancillary quantum bits

(one of which will carry the clone after the process). This idea turned out to be related to the concept

of programmable quantum networks or quantum processors [11]. These are fixed quantum networks

which are capable of performing operations on quantum systems in a way that the operation itself

is encoded into the initial quantum state of ancillae. It was found that the very circuit for universal

quantum cloning is in fact a probabilistic universal quantum processor [12].

In this dissertation we consider UCQC-s as entanglement manipulation devices. In the context of

cloning, one may ask several questions. One may consider the cloning of an entangled quantum state

as a whole, in order to obtain similar entangled pairs. For two qubits this has been analyzed in detail

by several authors [13, 14, 15]. In particular, Bužek at al. [16] compare the fidelity of cloning of an

entangled pair by global and local operations.

Another approach might be the broadcasting of entanglement, proposed by Bužek et al. [16]. In this

case two parties share an entangled pair and use cloners locally to obtain two partially entangled

pairs. This protocol attracted a relevant attention in the literature, too. Topics such as state-dependent

broadcasting [17], broadcasting of multipartite entangled states: W-states [17, 18], GHZ-states [19],

and linear optical realizations [20] were discussed in detail.

1.4 Interaction-free measurement

Interaction-free measurement (IFM) is an intriguing paradox of quantum mechanics stemming from

wave-particle duality. Let us recall the IFM setup and also its explanation of Geszti in Ref. [30],

which motivated a part of our results.

The scenario is depicted in Fig. 1.1 In a Mach-Zehnder interferometer, a destructive interference is

observed at the detector D in the absence of the absorber, optionally placeable in either of the arms.

If the absorber resides in one of the paths, then the detector, which is idle otherwise, will fire. This
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is strange since if the absorber had absorbed the particle, there would have been nothing to make the

detector fire. Hence, there is a possibility of detecting the presence of the absorber without absorption

or, in other words, without interaction. This phenomenon is called interaction-free measurement.

This effect can be viewed as the consequence of the optical theorem of quantum scattering theory: the

unitary nature of quantum mechanics does not allow the absorption to be the only effect of an object.

The incoming wave should be extinguished by emitting a forward-scattered wave. In this case, the

forward-scattered wave can be obtained as a difference between the outgoing wave with an absorber

and the outgoing wave with no absorber. To clarify this calculation method of forward-scattered wave,

below, we follow the derivation of Tamás Geszti, step by step, in our notation:

As we can see in Fig. 1.1, the Mach-Zehnder interferometer makes possible for a photon to be in

either mode d or c, correspondingly the paths towards detectors D or C. Both beam splitters induce

transitions between modes d and c. While the probability amplitude of transmission equals 1√
2
, the

amplitude of transition equals i√
2
. As it can be seen from these values, transition happens in half the

cases and transmission can be observed in the other half of the cases. For the sake of simplicity, we

consider merely two states of the absorber: ground state g and excited state e.

A number of photons can fill the modes d and c. We have to describe three states of this system

as its eigenstates. One of these is that the photon is in mode d while the absorber is in its ground

state. The other state can be observed, when the photon is in mode c and the absorber is in its ground

state. The last one can be detected, if there is no photon in either of the modes but the absorber in its

excited state. Hence, the state of the system will be described by a column vector consisting of three

representatives. The basis of this state vector can be seen below:

|1d0cg〉 =


1

0

0

 , |0d1cg〉 =


0

1

0

 , |0d0ce〉 =


0

0

1

 . (1.37)

As it can be seen below, unitary matrices represent the beam splitter and the absorber on this basis:
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UBS =


1√
2

i√
2

0

i√
2

1√
2

0

0 0 1

 , UAB =


1 0 0

0 0 −1

0 1 0

 (1.38)

In this study we work with ideal detectors that covers the members of the basis described above.

Carrying out a quantum measurement in this basis, we force the system to choose randomly one

of the states that are mutually excluded by each other. These possibilities are the following ones:

detecting a photon on mode d (detector D), detecting a photon on mode c (detector C), detecting the

absorber in its excited state.

Let us consider the standard treatment of the setup that can be seen in Fig. 1.1 The sequence of the

unitary evolution can be drawn in the following way:


1

0

0

→


1√
2

i√
2

0

⇒


1√
2

0

i√
2

→


1
2

i
2

i√
2

 (1.39)

In the expression above, arrows on right and left stand for the effects of the two beam splitters and

the medial one corresponds to the absorber. Now we begin to use the scattering theory to analyze the

effect of the absorber. Changes which are caused by the absorber can be found by defining a reference

sequence of unitary events without any absorber. In this case UAB is replaced by unity:


1

0

0

→


1√
2

i√
2

0

⇒


1√
2

i√
2

0

→


0

i

0

 . (1.40)

On mode d, we get a full destructive interference. Subtracting Eq. (1.40) from Eq. (1.39) results the

”scattering amplitude”
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0

0

0

→


0

0

0

⇒


0

− i√
2

i√
2

→


1
2

− i
2

i√
2

 . (1.41)

This forward-scattered wave gets to the detector, making the interaction-free measurement possible.

1.5 Hardy’s paradox

The Hardy paradox [27] is one of the consequences of quantum entanglement: it is a statistical phe-

nomenon which cannot be explained in the realm of local realism. It is a concept whose physical and

philosophical implications are extensive and far deeper to be even summarized in detail in the present

work. Hence we employ the Hardy paradox here not only as the subject of our actual study but also

as an illustrational example of the violation of local realism.

The interferometric setup for Hardy’s paradox is depicted in Fig. 1.2; we use the notation introduced

there in what follows. It consists of two Mach-Zehnder interferometers. An electron impinges on one

of them and a positron on the other. There is a point P where they can meet and annihilation may

take place.

Hardy’s gedanken experiment aims at the testing of local realism without inequalities. The presence

or absence of the beam splitters BS2± plays the role of the local setting, which is a key element also

in the case of Bell-type inequalities. Local realism would require that the measurement statistics of,

e.g., the electron should be independent of the choice of whether BS2+ is in its place or not. As

it is clear from the calculations in Section 3.1, if none of the beam splitters is in its place, detectors

C+ and C− cannot fire in coincidence. On the other hand, local realism would require that the

detection probabilities of the positron (electron) should not depend on the presence or absence of

the beam splitter for the electron (positron), respectively. From this assumption and the probabilities

implied by the calculations in Section 3.1, one can deduce, after a reasoning given in Ref. [27] (not

repeated here), that in 1
16

th of the cases, the independence assumption implied by local realism leads
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Figure 1.1: The interferometric setup for interaction-free measurement. In the absence of absorber A

(say, a bomb (as Elitzur and Vaidman suggested in Ref. [34])), detector D is always idle. If A is there,

there is a finite probability that D fires, thus the interfering particle is not absorbed. (Thus the bomb

is detected without exploding.)
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P

Figure 1.2: The interferometric setup of Hardy’s paradox. The electron and the positron may meet at

point P only. The beam splitters BS2± are optionally replaceable; if they are replaced, the particles

reach the respective detector directly. The symbols c+, d+ , c−, d− denote the paths in the interfer-

ometer to guide the reader’s eye. The plus and minus signs in this path notation refer to the type of

particle, while the letter corresponds to the detector at the direct (not reflected) end of the path.
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to coincident detection at detectors C+ and C− for the same situation, which is in contradiction with

quantum mechanics.

Having outlined the scientific context and defined the notation, let us now turn to the description of

our results.



Chapter 2

Optimal universal asymmetric covariant

quantum cloning circuits for qubit

entanglement manipulation

In this chapter, we consider the entanglement manipulation capabilities of the universal covariant

quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a

member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite

pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a

possibility of the partial extraction of bipartite entanglement can be achieved.

Consider an entangled pair. It is always interesting to ask what happens to the entanglement if any of

the members of the pair is subjected to some quantum information processing protocol. In the case

of quantum teleportation, for instance, rather strikingly the teleported qubit inherits the entanglement

of the original qubit with its pair. It is rather natural to ask what happens in the case of a universal

quantum cloner. The answer for qubit pairs is partly given by Bandyopadhyay and Kar [21]. They

show that if a member (or both members) of a maximally entangled qubit pair is subjected to an

optimal universal quantum cloning operation, the resulting state is a Werner state. It is likely, however,

that a cloning transformation is realized by some quantum circuit, which uses ancillae for carrying out

25
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the operation. It is obviously interesting how the entanglement between the different quantum bits of

such a scenario (including also ancillae) behaves. In this chapter we consider the UCQC as a circuit,

not only the cloning operation itself. We calculate entanglement as measured by concurrence (see

Section 1.2). It turns out that the ancillae play a very specific role and the behavior of concurrence

shows a rather interesting pattern. The recent optical realization of certain programmable quantum

gate arrays [22] also contributes to the relevance of this question.

Another similar question might be the partial extraction of bipartite entanglement from a GHZ-type

threepartite resource. It is known that if three qubits are in a GHZ state [23], then a measurement on

either of the three qubits in the |±〉 basis (eigenbasis of the σx Pauli-operator) projects the state of the

remaining two qubits into a maximally entangled state. We show that if the given particle is cloned

in advance, it is possible to create bipartite entanglement by measuring the clone, while there still

remains some purely threepartite entangled resource in the state of the three parties. This is indicated

by the possibility of entangling a different pair of qubits by a next measurement. The nature of the

entanglement in the multipartite system can be also analyzed with the aid of the Coffman-Kundu-

Wootters inequalities [2] (see Section 1.2), which quantify the monogamy of entanglement. We shall

present such an analysis, too.

This chapter is organized as follows: in Section 2.1 we analyze the behavior of bipartite entangle-

ment in the case when UCQC is applied to clone a member of a maximally entangled pair. In Sec-

tion 2.2 we consider the application of UCQC for the partial extraction of bipartite entanglement from

a Greenberger-Horne-Zeilinger state. In Section 2.3 the results are summarized and conclusions are

drawn.
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{

{

|Ψ(in)〉

|Ψ(prog)〉

Figure 2.1: The setup for bipartite entangled states. The dashed box contains the universal covariant

cloning circuit, composed of four controlled-NOT gates.

2.1 Bipartite pure states

The considered setup is depicted in Fig. 2.1. The quantum circuit in the dashed box is the universal

quantum cloner [10]. Its first input port (which is port 2 in our current notation) receives the state to

be cloned, while on the second two ports there impinges a so-called program state:

|Ψ(prog)
34 〉 = N (α (|0〉(|0〉+ |1〉)) + β (|00〉+ |11〉)) , (2.1)

where N = 1/
√

2(α + β2) is a normalization constant, α is a real parameter and β = 1 − α. (In

Ref. [9] there is an additional circuit introduced to prepare the program state of Eq. (2.1), as a first

step of cloning, which we have omitted here, as it does not have a role in the cloning process itself.)

Were a single-qubit state % impingent on port 2, the output states would be:

%2 =
β

α + β2
%+

α2

2(α + β2)
1̂,

%3 =
α

β + α2
%+

β2

2(β + α2)
1̂,

%4 =
αβ

β2 + α
%T +

α2 + β2

2(α + β2)
1̂. (2.2)

The clones reside in ports 2 and 3, the original qubit and the first ancilla, whereas in the port 4 there

is an ancilla, the state of which is a mixture of the state described by the mixture of the transpose of
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the density operator of the original state and the identity operator. The fidelity of the clones depends

on the value of α: for α = 0 there is no cloning, whereas for α = 1 the state of the original qubit is

fully transferred to the clone, leaving the original qubit in a completely mixed state. For other values

of alpha there are optimal clones generated. Note the symmetry of the formulae in α and β.

In the terminology of cloning this setup realizes an optimal universal asymmetric cloner. The term

asymmetric expresses that the two clones are not identical, their fidelity with respect to the original

state is different, but controlled by the parameter α. Setting α = 1
2
, we obtain the symmetric case.

The cloning is universal in the sense that the realized cloning transformation itself does not depend

on the input state. Optimality in this context means that the second clone is obtained with maximal

fidelity for a given fidelity of the first one.

Let us return to the description of the whole scenario in argument, depicted in Fig. 2.1. The qubits 1

and 2 carry the initial bipartite input state. Qubit 2 is subject to cloning, while qubit 1, the first part

of the pair is not manipulated. We are interested in the entanglement relations between the different

pairs of qubits in the resulting state. As for the measure of bipartite entanglement for qubits, we apply

concurrence according to the Wootters formula as we saw in Eq. (1.28).

As an input state we consider a state in either of the following four forms:

|Φ(in)
12 〉 =

√
C0|00〉 ±

√
C1|11〉,

or

|Ψ(in)
12 〉 =

√
C0|01〉 ±

√
C1|10〉,

C0 + C1 = 1. (2.3)

As for the nonzero concurrences between the various pairs of qubits, we obtain the behavior in

Fig. 2.2, regardless of the choice from the above states. The output states, however, depend on this

actual choice, we shall comment on this later.

In the figure one can observe that the entanglement between qubits 1 (the one not manipulated) and

qubit 2 (the original qubit) behaves in the similar way as that between qubit 1 and 3 (the one not

manipulated and the clone). For α = 0 (no cloning), qubits 1 and 2 are entangled as they were
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Figure 2.2: (color online) The concurrence between the various pairs of qubits at the output of the

setup in Fig. 2.1. The input state is either of the four in Eq. (2.3), the same figure is obtained for

each choice, though the states themselves differ. The “program” state is the one in Eq.(2.1). The

concurrence between qubits 1 and 4 is zero. The plotted quantities are dimensionless.
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originally, while for α = 1, complete cloning, the entanglement is transferred to qubits 1 and 3, the

clone plays the role of the former original qubit completely. The surfaces representing the concurrence

for the pairs 1-2 and 1-3 are symmetric in the cloning parameter α, that is, they can be obtained

from each other by the α → 1 − α substitution. The dependence of these entanglements from α is

monotonous but not continuous: for small values there is a region where the entanglement is zero,

and it appears suddenly and non continuously. The dependence of these concurrences on the initial

entanglement in the state C0 is monotonous and continuous.

It is also interesting to observe that a similar non-symmetric behavior appears in the concurrence of

qubits 3-4 and 2-4. The program state of Eq. (2.1), in which the qubits 3-4 are prepared initially, is

maximally entangled for α = 0, the case of no cloning, and its entanglement decreases with the in-

crease of the cloning parameter α. Accordingly, the entanglement of qubits 3-4 decreases with α also

after the cloning operation, while the complementary behavior (in the sense of α → 1 − α substitu-

tion) appears between qubits 2 and 4 (the cloned part of the input state and the ancilla of the cloner).

Note that the entanglement of qubits 3 and 4 is not equal to their entanglement before the cloning

operation: the concurrence of the partially entangled program state in Eq. (2.1) is a monotonous and

continuous function of α, and its values are not equal to the concurrences after the cloning operation.

Moreover, the concurrence of qubits 3 and 4 after the cloning also depends slightly on that of the

input state of qubits 1 and 2, in Eq. (2.3).

As for the remaining pairs, qubits 1 and 4 (the qubit not manipulated and the ancilla) will not be

entangled, while between qubits 2 and 3 (the second input state and its clone), as a nontrivial effect,

there is a small amount of entanglement appearing only in the case the input state (of qubits 1-2) is

only slightly entangled.

A special case arises if the input state of qubits 1 and 2 is maximally entangled. This is the case of

C0 = 1/2 in Fig 2.2. The concurrence between qubits 1-2 and 3-4 (two originals, two program qubits

of the cloner) is equal to each other. The complementary pairs, qubits 1-3 (not manipulated-clone)

and 2-4 (clone-ancilla) have also equal concurrences. The dependence of these concurrences on α

is depicted in Fig. 2.3. The behavior of these curves is due to the fact that the universal cloning
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Figure 2.3: A slice of Figs. 2.2 a-c) for C0 = 1/2, that is, for any of the maximally entangled Bell-

states as input. The plotted quantities are dimensionless.

transformation produces Werner states. Indeed, if the input state is in Eq. (2.3) is the maximally

entangled |Φ(+)〉 Bell-state, where the states of qubit-pairs 1-2, 1-3, 2-4, 3-4 are Werner-states of the

form

%(Werner) = γ|Φ(+)〉〈Φ(+)|+ 1− γ
4

1̂, (2.4)

where 1̂ stands for the identity operator of the two-qubit space. The value of the parameter γ is

γ12 = γ34 =
α

α + β2
(2.5)

for pairs 1-2 and 3-4, while it is

γ13 = γ24 =
β

α + β2
. (2.6)

Note that the denominator on the right-hand-side of the above formulae comes directly from the

normalization constant of the program state in Eq. (2.1) (i.e. the scaling of parameters in Eqs. (2.5)

and (2.6) is merely a consequence of our particular choice of parameters). In the case we choose a

different one from the states in Eq. (2.3), we obtain local unitary transforms of the Werner state in
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Eq. (2.5). The message of the consideration for cloning an element of a maximally entangled pair

is not the fact that Werner states are obtained in qubits 1-2 and 1-3, since it was known from the

literature [21]. What is nontrivial here that in the UCQC circuit this behavior is repeated between

the ancilla (qubit 4), and qubits 2 and 3, and this holds only in the case of the cloning of a member

of a maximally entangled state. Finally let us note that the behavior of qubits 2, 3, and 4 cannot

depend on the properties of qubit 1 since it is a remote system from the UCQC’s point of view. It is

the reduced density operator of qubit 2 which can influence their behavior. We have found that only

for a maximally entangled pair, a concurrence characterizing a nonlocal property is equal to another

concurrence which is a local property of the cloner.

2.2 The GHZ state

In this section we consider the case in which a member of a Greenberger-Horne-Zeilinger (GHZ) state

is cloned. This tripartite state, of the form

|Ψ(GHZ)〉 =
1√
2

(|000〉+ |111〉) (2.7)

is known to be genuinely tripartite entangled. That is, all the pairwise entanglements (as measured by

concurrence) are zero, however, all of the three qubits are in a maximally entangled state. When any

of the qubits is subject to a von Neumann measurement in the basis

|±〉 =
1√
2

(|0〉 ± |1〉), (2.8)

the other two qubits will be in either of the maximally entangled Bell-states

|Φ±〉 =
1√
2

(|00〉 ± |11〉), (2.9)

depending on the measurement result. The probability of the measurement results are equal. In

this way the tripartite entangled resource in the GHZ state can be converted into maximal bipartite

entanglement.

The scenario we consider for GHZ states is depicted in Fig. 2.4. Qubits 1-3 carry the input state which
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Figure 2.4: The setup for the tripartite GHZ state. Qubits 1-3 hold the GHZ state initially. The dashed

box contains the universal covariant cloning circuit, composed of four controlled-NOT gates. The

“meters” measure in the |±〉 basis. First the clone (qubit 4), then a member of the original GHZ state

(qubit 1) is measured. The horizontal position from the left to the right side thus represents the order

of operations in time.

is a GHZ state in Eq. (2.7). Qubit 3 enters the UCQC’s first port. The program ports of the UCQC are

qubits 4 and 5, considered again to be in the program state in Eq. (2.1).

Directly after the operation of the cloner all pairwise concurrences are zero, except for the one be-

tween qubits 3-5 and 4-5. Their value is represented by curves “A” and “B” in Fig. 2.5. This fact is

easily explained by the following reasoning. From the point of view of the UCQC circuit, qubits 1

and 2 are remote ones, thus they cannot influence the local properties of qubits 3, 4 and 5. All we

“see” at the locus of the UCQC is that qubit 3 is in a maximally mixed state, as it is a member of the

maximally entangled threepartite GHZ state of Eq (2.7). But the same situation would arise if qubit 3

were maximally entangled in a bipartite sense with one additional qubit, as we have considered in the

previous Section. Thus the behavior of concurrences between the pairs ancilla-original and ancilla-

clone are the very same as in the case of cloning a member of a bipartite maximally entangled state

(or a member of any kind of multipartite entangled state which is itself in a completely mixed state

for this reason): Werner states are obtained.
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Projective measurement on the clone. Motivated by the relation of the projective measurements

of the members of a GHZ state on the |±〉 basis, one may now consider a measurement of this

kind on the clone, that is, on qubit 4. This measurement will not alter the bipartite entanglement

between qubits 3-5, and that between 4-5 will disappear due to the measurement. However, there will

be an even larger entanglement appearing between qubits 1 and 2, this is curve “C” in 2.5. Both

measurement outcomes will have equal probability and also the entanglement behavior is the same

for both cases. In case of full cloning (α = 1), we obtain a pure EPR pair as expected. (We remark

here that if we were to measure on the original qubit (qubit 3) instead of its clone, we would obtain

the counter propagating curve of the same shape, curve “D” in Fig. 2.5, as one would expect. The

role of the original and the clone is symmetric. Entanglement of 4-5 will not alter, while that of 3-5

will disappear in this case.) This is a partial conversion of the resource available as genuine tripartite

entanglement into bipartite entanglement.

Measurement on the qubit 1. In order to further justify this statement let us consider a second

measurement, now on qubit 1. Again, the results will be uniformly distributed and the entanglement

itself will not depend on the measurement result. The entanglement between qubits 3 and 5 will

be untouched, and that between qubits 1 and 2 will be destroyed by the measurement of course.

Meanwhile we obtain nonzero entanglement between pairs 2-3 and 2-5, these are the curves “D” and

“E” in Fig. 2.5, respectively. Indeed, if the extraction of the tripartite entanglement was not full (i.e.

α 6= 1), one can still obtain bipartite entanglement by measuring another qubit this time. Curves “C”

and “D”, describing the entanglement between 1-2 after the first measurement, and that between 2-3

after the second measurement, respectively, are counter propagating, reflecting the interplay between

the two extractions. As a side effect, there is a small amount of entanglement which appears between

qubits 2-5 after the second measurement, this is curve “E” in Fig. 2.5.

The use of the partial extraction of the entanglement is the following. Consider that qubit 1 is at

Alice, qubit 2 at Bob, while the rest of the qubits is at Charlie. Initially they share a tripartite GHZ

resource. Charlie wants to enable Alice and Bob to use a bipartite maximally entangled channel. He

might perform the projective measurement on the clone he has, however, in this case his qubit 3 gets
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Figure 2.5: (color online) Pairwise concurrences in the GHZ-cloning scenario. A: qubits 3-5 after

the cloner and also after each measurement, B: qubits 4-5 after the operation of the cloner, C: qubits

1-2 after the first measurement, D: qubits 2-3 after the second measurement, E: qubits 2-5 after the

second measurement. The plotted quantities are dimensionless.
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disentangled from the rest of the parties. However, if he performs cloning and measures the clone,

Alice and Bob still obtains a partially entangled bipartite resource. However, Alice can decide that

instead of using a bipartite channel with Bob, she wants to create a channel between Bob and Charlie.

All she has to do is to perform a proper measurement on her qubit and communicate the result: Bob

and Charlie shall posses a partially entangled bipartite resource. This would not be possible without

the cloning. The same could be done of course by Bob, to enable the bipartite resource between Alice

and Charlie.

In order to obtain a deeper insight into the behavior of bipartite entanglement in this multipartite

system, it is worth examining the Coffman-Kundu-Wootters inequalities. As we mentioned in Section

1.2, if inequalities in Eq. (1.31) are saturated, the bipartite entanglement is maximal.

To quantify the saturation we evaluate

s = τk −
∑
l 6=k

C2
k,l, (2.10)

which is zero if the inequalities are saturated. After the first measurement we obtain nonzero values

except for the fourth qubit (apart from the case of α = 1. The behavior is depicted in Fig. 2.6. The

fact that the CKW inequalities are not saturated also suggests the presence of additional multipartite

entanglement in the system. After the second measurement, on the other hand, we find that all the

CKW inequalities are saturated: the system is in a sense maximally bipartite entangled.

2.3 Conclusion

We have shown that when using a universal covariant quantum cloning circuit to clone a member of an

entangled pair of qubits, a very specific behavior of the entanglement of the qubits appears. The main

feature is that behavior of the entanglement between the not cloned part of the pair and the cloned

one is repeated in the entanglement of certain ancillae, and so is that of the not cloned qubit and the

clone, provided that the original qubit pair was maximally entangled initially. We have described the

behavior of the entanglement in detail.
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Figure 2.6: The quantity in Eq. (2.10), which is zero if the CKW inequalities are saturated, for each

qubit after the first measurement in our GHZ-cloning scenario. For qubit 4 the quantity is zero. The

plotted quantities are dimensionless.
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We have also investigated the cloning of an element of the GHZ state. It appears that the univer-

sal quantum cloning circuit facilitates the partial extraction of bipartite entangled resources from a

genuine tripartite entangled resource. We provided a detailed analysis of the entanglement behavior,

including the relation to Coffman-Kundu-Wootters inequalities.

In conclusion, the universal quantum cloning circuit (or quantum processor) for qubits is found to be

useful as an entanglement manipulator as well. It can perform entanglement manipulations which are

potentially applicable in quantum information processing.



Chapter 3

Hardy’s paradox and the entanglementlike

structure of forward-scattered waves

In this chapter we analyze Hardy’s paradox, which we have introduced in Section 1.5. Our analysis

starts from the observation that the scheme in which the paradox is observed is similar to that of

interaction-free measurement. As described in Section 1.4, this latter can be better understood with an

approach originating in scattering theory. The idea behind our investigation was whether we employ

Geszti’s approach to Hardy’s scenario.

3.1 The setup

Let us first recapitulate the original calculations of Ref. [27] as they are required to derive our results.

We use the notation of Fig. 1.2. We have four possible arrangements of the beam splitters, which are

the following:

1. BS2+ and BS2− are removed.

2. BS2+ is in place, BS2− is removed.

39
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3. BS2+ is removed, BS2− is in place.

4. BS2+ and BS2− are in place.

Let us denote the modes of the Mach-Zender interferometers by Pd, Pc, Ed, and Ec, where the letters

c and d distinguish the two modes of the interferometer, while P and E describe the positron and

the electron, respectively. The beam splitters utilized in the setup are considered to be symmetric,

with reflection coefficient i√
2

and transmission coefficient 1√
2
. The state of the system of the two

interferometers lies in the tensor-product space of three Hilbert spaces, namely, Hp, He, and Hγ ,

where Hp is the Hilbert space of the positron, He is the Hilbert space of the electron, andHγ is the

Hilbert space of the electromagnetic-field mode of the γ photon emitted upon annihilation.

Both Hp and He contain three basis states, which can have nonzero coefficients in this setup. The

state |p0〉, |e0〉 correspond to the situation in which there is no particle in either arm (c, d) of the

respective interferometer. Kets |pd〉, |ed〉 denote the basis states that correspond to the situation when

the respective particle is in mode d. Finally, the state where the respective particle is in mode c is

denoted by |pc〉, |ec〉. Since, at most, one photon can be created in the annihilation,Hγ is spanned by

two elements of the bases: the vacuum |γ0〉 and the single-photon state |γ1〉. The state of the whole

system can be expressed as the linear combination of the following orthogonal product states:

i. |p0〉|e0〉|γ1〉 = |γ〉. There is no positron or electron in the arms because they have annihilated

each other, and there is a photon emitted.

ii. |pd〉|ed〉|γ0〉 = |pded〉. Both the positron and the electron are in mode d, and the photon is

absent.

iii. |pd〉|ec〉|γ0〉 = |pdec〉. The positron is in mode d, the electron is in mode c, and the photon is

absent.

iv. |pc〉|ed〉|γ0〉 = |pced〉. The positron is in mode c, the electron is in mode d, and the photon is

absent.
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v. |pc〉|ec〉|γ0〉 = |pcec〉. The positron is in mode c, the electron is in mode c, and the photon is

absent.

If we consider the four aforementioned arrangements of the beam splitters, we will find four outgoing

states correspondingly (denoted by |out1〉, |out2〉, |out3〉, and |out4〉), in accordance with the results

in Ref. [27]. In the absence of both beam splitters, the output state reads

|out1〉 =
1

2
(−|γ〉+ |pded〉+ i|pdec〉+ i|pced〉), (3.1)

while the output states for BS2+, BS2−, and both, respectively, are

|out2〉 = −
√

2

4
(−
√

2|γ〉+ i|pdec〉+ 2i|pced〉 − |pcec〉), (3.2)

|out3〉 = −
√

2

4
(−
√

2|γ〉+ 2i|pdec〉+ i|pced〉 − |pcec〉), (3.3)

|out4〉 =
1

4
(−2|γ〉 − |pded〉+ i|pdec〉+ i|pced〉 − 3|pcec〉), (3.4)

where the incoming state is always |pded〉.

3.2 Forward scattering

It is apparent that the setup resembles that of interaction-free measurement to some extent. This

suggests that the two phenomena might be related. Indeed, qualitatively it is clear that the two in-

terferometers play the role of a detector for each other, and thus they realize a kind of simultaneous

interaction-free measurement. Applying the reasoning in Ref. [30] directly by analyzing the role of

point P as a scattering center, one gets the interaction-free measurement based on one of the particles

reflecting the presence of the interferometer of the other particle, with a possibility of annihilation at

point P . In the case of Hardy’s paradox, however, this possibility of annihilation is always present,

thus it is not the aim of the experiment to detect the possibility of annihilation. The relevant issue

in this case is that the output beam splitters BS2+ and BS2− may be removed independently or, in

other words, their reflectivity coefficients may be set to zero. The respective paths go directly to the

detectors in that case.
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Looking at the Hardy situation, however, another possibility appears to be resonable. Note that here

the beam splitters play the role of the optionally replaceable components: the key element of the

paradox is to either place or remove the beam splitters locally. We may consider these objects as

scattering centers, though with two input and two output modes. There are three possibilities for

calculating forward scattering amplitudes. In each case, the reference will be the absence of both

beam splitters, but one can decide which of the beam splitters (BS2+ and BS2−) are in their place.

As the beam splitters are local objects, one might expect that the forward-scattered wave generated

by either of the beam splitters does not influence that of the other beam splitter. We shall see that this

is not the case.

Let us calculate the three forward-scattered waves (denoted by |fsw+〉, |fsw−〉, and |fsw±〉) corre-

sponding to the cases when only BS2+, only BS2−, or both are present, respectively, as follows:

|fsw+〉 = |out2〉 − |out1〉 =
√

2

4
[−
√

2|pded〉+ i(1−
√

2)|pdec〉+ i(2−
√

2)|pced〉 − |pcec〉], (3.5)

|fsw−〉 = |out3〉 − |out1〉 =
√

2

4
[−
√

2|pded〉+ i(2−
√

2)|pdec〉+ i(1−
√

2)|pced〉 − |pcec〉], (3.6)

|fsw±〉 = |out4〉 − |out1〉 = −1

4
(3|pded〉 + i|pdec〉 + i|pced〉 + 3|pcec〉). (3.7)

It appears that |fsw+〉 and |fsw−〉 are symmetric with respect to the amplitudes of |pdec〉 and |pced〉,
and it is clear that |fsw±〉 cannot be obtained as a linear combination of |fsw+〉 and |fsw−〉. Hence,

the forward-scattered waves are not independent; they are, indeed, nonlocal. It is also interesting to

note that the photon has no amplitude in the forward-scattered waves. At the level of beam splitters,

the possibility of annihilation does not appear in the forward-scattered waves, even though the ob-

served kind of nonlocality is definitely a consequence of the possibility of the annihilation. This can

be considered as a manifestation of interaction-free measurement in this case.

Motivated by this nonlocal nature of forward-scattered waves of the beam splitters, one may consider

a quantitative measure of quantum correlations in this wave. Even though the forward-scattered wave
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does not describe a state of a physical system (it is not even normalized), it plays a definite role in the

measurement probabilities. Hence, it is interesting to analyze the extent to which an imaginary phys-

ical system, whose state is described by the normalized version of the forward-scattered amplitude,

would have an entanglementlike structure, as it reflects the very quantum nature of the correlations.

Let us note that the systems which belong to BS2+ and BS2− are effectively two-state systems:

in the states |fsw+〉, |fsw−〉, and |fsw±〉, there are no amplitudes for which the photon mode is not

in the vacuum state. Of course, the complete description of positron and electron states includes

their annihilation at point P (see Fig. 1.2), however, the forward-scattered wave has zero probability

amplitude for the annihilation. Thus the state represented by the forward-scattered waves resides in

a state space spanned by the remaining four basis vectors, which, however, obeys a tensor-product

structure of two local bases of two elements each:

{|pc〉,|pd〉}and{|ec〉,|ed〉} (3.8)

We may consider the system as that of two quantum bits, with one corresponding to the electron and

the other to the positron, and the two orthogonal states are represented by the output spatial modes

of the beam splitters. (This does not apply for the whole description of the system; it applies to the

forward-scattered wave only.) Due to this fact, we can calculate the concurrence for the forward-

scattered waves after the normalization of their states using the Wootters formula [1] (presented in

Eq. (1.28)) in order to quantify entanglement.

Let us denote the concurrence for the case when BS2+ is in place and BS2− is removed by C+, and

the other two concurrences by C− and C±. After a straightforward calculation, we find

C+ = C− =
2

3

C± = 1. (3.9)

These results unambiguously indicate that the normalized forward-scattered wave has an entangle-

mentlike structure: if it were to describe a physical system, that would be an entangled one. More-

over, in the case when both beam splitters are present, its entanglement as measured by concurrence

is maximal. It is also interesting to note that the value of concurrence of 2
3

appearing in the two other
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cases is rather special, as it is pointed out in Ref. [31]: it is the concurrence of assistance [32] of a

density matrix of rank 3 in the two-qubit Hilbert space with uniform eigenvalues.

3.3 Conclusion

We have studied the interferometric setup of Hardy’s paradox from the point of view of the structure

of the forward-scattered waves when the beam splitters of the scheme are considered as scattering

centers. In the original setup, we have found that the forward-scattered wave is not of a product

structure, and the forward-scattered wave for both beam splitters is not simply a linear combination

of that of the two beam splitters. It is interesting to note that the forward-scattered wave has zero

amplitude for the photon possibly generated in the system, which illustrates the relation between

Hardy’s paradox and interaction-free measurement. It would be interesting to systematically clarify

the exact role of the entanglementlike structure of forward-scattered waves in interferometric setups

with optionally placeable beam splitters, considering beam splitters as scattering centers. Altogether

our result further illustrates that approaches which are successful in well explaining single-particle

quantum phenomena (such as interaction-free measurement) do not necessarily provide an intuitive

explanation of multipartie phenomena, they rather reveal that they are inherently quantum mechanical

in a sense. Nevertheless the behavior of the so-calculated forward-scattered wave does not seem to be

accidental and might prove to be a good tool for the analysis of such setups.



Chapter 4

Forward-scattered wave analysis of an

optical Hardy-like setup

In this Chapter we analyze a photon interferometric scenario which is directly similar to that of the

gedanken experiment of Hardy, where the annihilation of the particle-antiparticle pair is replaced by

the interference of the two photons on a beam splitter. We discuss its relation to Hardy’s paradox.

We calculate the forward-scattered waves of the output beam splitters for this setup and analyze their

entanglement-like structure.

In the previous chapter we have pointed out (see also: [33]) that the gedanken experiment of Hardy

can be studied in the framework of scattering theory as applied by Geszti [30] to interaction-free

measurement. Calculating the so-called forward scattered waves for the replaceable beam splitters of

the setup, we find that they exhibit an entanglement-like structure. It is of some interest to seek for

other schemes of the same kind, to obtain a deeper understanding of this entanglement-like structure.

In a possible experimental realization of Hardy’s setup one has to face an obstacle that interferometry

with a particle and an antiparticle is beyond any available experimental technology. As in case of

many fundamental issues of quantum mechanics, optics, especially photon interferometry provides a

proper playground for experimental realization. However, the annihilation of two photons is not viable

in experiments with photons, hence, some modifications of the scenario is needed. The experimental
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tests of the paradox by Lundeen and Steinberg [28] and independently by Yokota et al. [29] a modified

version of the original setup in which weak measurements are carried out for identifying photon paths

instead of considering simply detector click correlations as in the original gedanken experiment.

In this chapter we consider Hardy’s original interferometer, except some relevant modification: the

particles entering the setup are both photons, and the point where the electron and positron can annihi-

late each other in the original setup, the photons can interfere on a symmetric beam splitter, introduc-

ing the coupling between the two Mach-Zehnder interferometers. The detectors are considered to be

photon counters. We call this setup a „Hardy-like” setup, since it obviously does not realize Hardy’s

paradox. In this chapter we leave open the question whether it is capable of violating local realism

in any way (maybe different from Hardy’s idea) or not. Instead, as a preliminary study, we study

the forward-scattered waves and entanglement-like structure in the spirit of Ref. [33]. We find some

similarities in the behavior of the two setups, however, the quantities characterizing entanglement are

different.

4.1 The optical Hardy-like setup

The optical Hardy-like setup is depicted in Fig. 4.1. It consists of two Mach-Zehnder interferometers.

Numbers indicate the modes of the interferometers, while letters denote modes before and after the

photons cross the different beam splitters. As mentioned in the introduction, it is similar to Hardy’s

gedanken experimental setup except that the particles entering are both photons, and at point P, where

the electron and the positron can annihilate each other, a symmetric beam splitter (denoted by BSbc14

in Fig. 4.1) is placed.

In the whole setup we consider symmetric beam splitters, which transform their input modes (âin,1

and âin,2) to output modes according to the following transformation:

âout,1 →
1√
2

(âin,1 + iâin,2), (4.1)

âout,2 →
1√
2

(âin,2 + iâin,1). (4.2)
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Figure 4.1: The interferometric setup in argument. Two Mach-Zehnder interferometers, coupled

by the beam-splitter BS14 (as opposed to Hardy-s paradox where there is simply a possibility of

annihilation of a particle and antiparticle contained by the different interferometers). The other two

beam-splitters are optionally replaceable, the detectors are photon number resolving ones.
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This implies that the transformation of the two-mode photon states, in photon number representation,

for the input states relevant for the present setup transform as

|01〉 → 1√
2

(|01〉+ i|10〉), (4.3)

|10〉 → 1√
2

(|10〉+ i|01〉), (4.4)

|02〉 → 1

2
(|02〉+

√
2i|11〉 − |20〉), (4.5)

|20〉 → 1

2
(|20〉+

√
2i|11〉 − |02〉), (4.6)

|11〉 → i√
2

(|20〉+ |02〉). (4.7)

In the studied setup, we consider situations similar to those considered by Hardy in the gedanken

experiment: some of the output beam splitters are either replaced (or equivalently, made completely

transmissive) or not. The four possible arrangements are:

i. every beam splitter is in place,

ii. BScd12 is removed,

iii. BScd34 is removed,

iv. BScd12 and BScd34 are removed.

For these arrangements we find the following output states, respectively. (They are given in the photon

number basis for the four modes, the order of the photon numbers in the kets follows the numbering

of modes in Fig. 4.1) The state with all the beam splitters in place reads

|out1〉 =
1

8

[
−i(
√

2 + 1)
√

2(|2000〉+ |0002〉)

+i(1−
√

2)
√

2(|0200〉+ |0020〉)

+2(|1100〉+ |0011〉) + 2i(|1010〉+ |0101〉)

−2(1 +
√

2)|1001〉+ 2(1−
√

2)|0110〉
]
, (4.8)
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the state without BScd12 is

|out2〉 =
1

4

[
−i
√

2|2000〉 −
√

2|1100〉+ i|1010〉+ |0011〉

−|1001〉+ (
√

2− 1)|0110〉+ i(
√

2 + 1)|0101〉

−i
√

2− 1

2

√
2|0020〉 − i

√
2 + 1

2

√
2|0002〉

]
. (4.9)

Naturally the state without BScd34 is very similar to the latter one, because they are symmetric to each

other:

|out3〉 =
1

4

[
−i
√

2|0002〉 −
√

2|0011〉+ i|0101〉+ |1100〉

−|1001〉+ (
√

2− 1)|0110〉+ i(
√

2 + 1)|1010〉

−i
√

2 + 1

2

√
2|2000〉 − i

√
2− 1

2

√
2|0200〉

]
. (4.10)

The state without the any of the output beam splitters of the interferometers (i.e. without BScd12 and

BScd34) reads

|out4〉 =
1

2

[
i√
2

(|1010〉+ |0101〉 − |2000〉 − |0002〉)

|0110〉 − 1√
2

(|1100〉+ |0011〉)
]
. (4.11)

For sake of comparison it is interesting to recall the states which were to emerge in the case of the

electron and positron in Hardy’s setup. These states are (c.f. Ref. [33]):

|out1〉 =
1

4
(−2|0000〉 − |0110〉+ i|0101〉

+i|1010〉 − 3|1001〉),

|out2〉 =

√
2

4
(−
√

2|0000〉+ i|0101〉

+2i|1010〉 − |1001〉),

|out3〉 =

√
2

4
(−
√

2|0000〉+ 2i|0101〉

+i|1010〉 − |1001〉),

|out4〉 =
1

2
(−|0000〉+ |0110〉+ i|0101〉+ i|1010〉). (4.12)

In these formulae, |0000〉 refers to the vacuum state in the subspace of the electron and positron. This

is the case of annihilation. In the other four states we have an electron and a photon in the respective
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modes. Even though these are Fermions, there is exactly one of each, hence, these number states can

be compared with the Bosonic ones with photons.

It appears that the states in Eq. 4.12 are different from those in Eqs. 4.8-4.11. There is no vacuum

state in the optical setup. There are however some doubly occupied states which would be impossible

in the Fermionic case, and also, there are cases in which both photons end up on the same side. To

obtain a Hardy-like scenario we omit these states. Physically this can be done by a kind of local

filtering: if a state with two photons in total (n.b. we assume photon-counting detectors) is detected

on either side, the experiment is considered as invalid. Mathematically we omit these summands and

renormalize the states. As a result we get states similar to those in Eq. 4.12, however, still with other

coefficients. It is clear that the Hardy-like setup does not realize Hardy’s paradox directly, with the

omission of the unsuitable states. Nevertheless, one may analyze the forward scattered waves and

the output probabilities. While we leave the latter question open in this study, we continue with the

former.

4.2 Forward scattering

In the case of the setup which can be seen in Fig. 4.1, forward-scattered waves can be calculated just

like that we explained in Sec. 3.2.

This time – just as in Sec. 3.2 – we have three possibilities for calculating forward scattering am-

plitudes. In each case, the reference is the absence of both beam splitters, BScd12 and BScd34, but we

can decide which of the beam splitters (BScd12 or BScd34) are in their place. Being the beam splitters

local objects, we would think that the forward-scattered wave generated by either of them does not

influence that of the other beam splitter. As we saw in Sec. 3.2, we will see that this is not the case,

even in this setup.

We may now calculate three forward-scattered waves (FSWs). They are calculated by subtracting the

state of arrangement (iv) from the ones of arrangements (i), (ii) and (iii), and omitting the basis states

which are not suitable for the scenario as described in the previous Section. The resulting FSWs are
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the following:

|FSW1〉 = c1(|out1〉 − |out4〉) =

=
1

12
[i(1−

√
2) (|1010〉+ |0101〉)

−(1 +
√

2) (|1001〉+ |0110〉)],

|FSW2〉 = c2(|out2〉 − |out4〉)

=
1

8(2−
√

2)
[i(1−

√
2)|1010〉 − |1001〉

+(
√

2− 3)|0110〉+ i|0101〉],

|FSW3〉 = c3(|out3〉 − |out4〉) =

=
1

8(2−
√

2)
[i|1010〉 − |1001〉

+(
√

2− 3)|0110〉+ i(1−
√

2)|0101〉], (4.13)

where ci (i=1,2,3) are constant normalization factors. As in Sec. 3.2, we consider the entanglement-

like structure in the FSWs in Eq. 4.13. We talk about entanglement-like structure since the FSWs

do not describe a physical system. Yet the fact that they are not separable is conjectured to relate to

quantum correlations.

At the exit beam splitters, we may consider our system as that of two quantum bits, with two orthogo-

nal states which are represented by the output spatial modes of the beam splitters. We do not consider

the whole description of the system but the forward-scattered waves only. Due to this fact, we can

now calculate the concurrences of the different forward-scattered waves using the Wootters formula

[1] (presented in Section 1.2). After calculating, we get the following results:

C1 = 1,

C2 = C3 = 1/2. (4.14)

In comparison with the original Hardy setup, where we have C1 = 1, C2 = C3 = 2/3, we see

that there are some similarities between the two scenarios: the maximal entanglement for the first

FSW, and the equality of the entanglement for the other two, which is an obvious consequence of

the symmetry of the setup. If the present setup could provide some violation of local realism, in the
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present form, one might conjecture that it is related to the entanglement-like structure of the second

two FSWs. However, the fact that the concurrence is below 2/3 in the present setup might suggest

that this is not the case. We leave the decision for further consideration.

In the present study we gave another particular example of the approach in [33], which serves as

another example of its applicability.

4.3 Conclusion

We have analyzed an optical setup similar to that of the Hardy paradox along the same lines of thought

which was applied to the original scenario in the previous Section. We have found that apart from

the difference of certain details, there is a similarity between the behaviors of the forward-scattered

waves in the two scenarios.



Chapter 5

Summary

In my thesis I have presented my results related to two main topics. One of them was the entanglement

manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for

quantum bits, and the other one was a similarly interesting theme where I analyzed Hardy’s paradox

from the point of view of scattering theory. My work belongs to the area of quantum information

theory. The phenomenon of quantum entanglement plays a fundamental role in both of the mentioned

topics.

Using certain quantifications of entanglement I have analyzed the entanglement manipulation capa-

bilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. In

the analysis the cloning a member of a bipartite or a genuine tripartite entangled state of quantum

bits was considered. In case of bipartie states question to be answered was how much of bipartite

entaglement “remains” between the original qubit and the other member of the pair, and how much of

it is “transferred” to the clone when varying the cloning fidelity. I found that for bipartite pure entan-

gled states a nontrivial behavior of concurrence appears. I have also studied the situation for cloning

a member of GHZ entangled states, which are genuine threepartite states. The question here is the

quantification of bipartie entanglements which are availabe via measurements on certain subsystems.

I found that the partial extraction of bipartite entanglement can be achieved. These procedures can be

useful in quantum communication and computation protocols.
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The study of Hardy’s paradox from the point of view of scattering theory was motivated by the

fact that this approach was useful for the understanding of interaction-free measurement, which is a

similar setup. I have calculated the forward-scattered waves generated by the beam splitters, which

are replaceable in the gedanken experiment. I pointed out that these two-mode waves appear to have

an entanglement-like structure, reflecting the quantum nature of the phenomenon.

Since there is a photon interferometric scenario which is directly similar to that of the gedanken exper-

iment of Hardy, where the annihilation of the particle- antiparticle pair is replaced by the interference

of the two photons on a beam splitter, it was interesting to analyze its relation to Hardy’s paradox. I

calculated the forward-scattered waves of the output beam splitters for this setup and analyzed their

entanglement-like structure. I found similarities with the original paradox.

My new scientific results are enumerated below. The list of scientific publications concerning these

results can be found in a separate Chapter.

1. I have shown that when using a universal covariant quantum cloning circuit to clone a member

of an entangled pair of qubits, a very specific behavior of the entanglement of the qubits appears

in its dependence on the cloning fidelity. The main feature is that behavior of the entanglement

between the not cloned part of the pair and the cloned one is repeated in the entanglement of certain

ancillae, and so is that of the not cloned qubit and the clone, provided that the original qubit pair

was maximally entangled initially. My thesis includes the detailed description of the behavior of

entanglement. Additionally, I showed that analyzed the cloning of an element of the GHZ state. I

have shown that the universal quantum cloning circuit facilitates the partial extraction of bipartite

entangled resources from a genuine tripartite entangled resource. I gave a detailed analysis of the

entanglement behavior, including the relation to Coffman-Kundu-Wootters inequalities.

In summary, I have shown that the universal quantum cloning circuit (or quantum processor) for

qubits can be used as an entanglement manipulator as well. It can perform entanglement manipu-

lations which are potentially applicable in quantum information processing [I].

2. I have studied the interferometric setup of Hardy’s paradox from the point of view of the structure

of the forward-scattered waves when the beam splitters of the scheme are considered as scattering
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centers. I showed that in the original setup, the forward-scattered wave is not of a product structure,

and the forward-scattered wave for both beam splitters is not simply a linear combination of that

of the two beam splitters. The forward-scattered wave has zero amplitude for the photon possibly

generated in the system, which illustrates the relation between Hardy’s paradox and interaction-

free measurement. This approach might prove to be a good tool for the analysis of such setups[II].

3. I have investigated a realizable experimental setup which is directly similar to the one that was

dealt with in the previous point. In this setup the role of particle-antiparticle annihilation was

played by the interference of two photons on the beam splitter. I have calculated the respective

forward-scattered waves. Though the values of the quantities featuring the entanglement were not

equal to the values obtained in the case of Hardy’s original gedanken experiment, the behaviour of

the two setups showed similarities[III].



Chapter 6

Összefoglalás

(Summary in Hungarian)

Disszertációmban két témával kapcsolatos eredményeimet mutattam be. Ezek egyikében az univer-

zális kovariáns kvantumklónozó, vagy kvantumprocesszor alkalmazását vizsgáltam összefonódott ál-

lapotok manipulálására. A másik téma a Hardy-paradoxon egyfajta szóráselméleti elemzése. A be-

mutatott munka a kvantum-információelmélet területéhez kötődik. Az említett témakörökben végzett

kutatás során végig alapvető jelentőséggel bírt a kvantumos összefonódás jelensége.

Az összefonódás bizonyos számszerű jellemzőinek használatával megvizsgáltam az összefonódás op-

timális univerzális aszimmetrikus kovariáns kvantum klónozóval (vagy kvantumprocesszorral) való

manipulálhatóságát kvantumbitek esetében. Kétrészű állapotok esetén az volt a kérdés, hogy a klóno-

zás hűségének függvényében mennyi összefonódás „marad” a pár másik tagja és klónozott tagja közt,

és mennyi „megy át” a klónra. Azt talátam, hogy a kétrészű összefonódás, konkurrenciában mérve,

nemtriviális viselkedést mutat. Megvizsgáltam a GHZ állapot esetét is, amely inherensen háromré-

szű összefonódást mutat. Itt a feladat azon kétrészű összefonódások karakterizálása volt, amelyek

a különböző részrendszereken végzett mérésekkel állíthatók elő. Azt találtam, hogy az összeállítás

alkalmas a háromrészű összefonódás részleges kétrészűvé alakítására. Ezek az eljárások hasznosak

lehetnek különféle kvantuminformációs és kvantum számítási protokollokban.

56
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A Hardy-paradoxon szóráselmélet nézőpontjából való vizsgálatát az a tény motiválta, hogy ez a hoz-

záállás egyszer már gyümölcsözőnek bizonyult a Hardy-paradoxon kísérleti elrendezésével nagy ha-

sonlóságot mutató kölcsönhatás-mentes mérés elméleti hátterének megvilágításakor. Az elemzés so-

rán a Hardy-féle gondolatkísérlet berendezésében opcionálisan kivehető illetve betehető nyalábosztók

előreszórt hullámait kiszámítva megmutattam, hogy az említett kétrészű állapotvektorok összefonó-

dott szerkezetűek, ami a jelenség erősen kvantumos természetére utal.

Tekintve, hogy létezik egy, a Hardy-féle gondolatkísérletben szereplő kísérleti elrendezéshez na-

gyon hasonló foton interferometriai berendezés, ahol az eredeti Hardy-változatban említett részecske-

antirészecske annihiláció szerepét a nyalábosztón találkozó fotonok interferenciája veszi át, érdekes

volt megvizsgálni e kísérlet Hardy-paradoxonhoz való viszonyulását, mégpedig az adott kísérleti el-

rendezés megfelelő nyalábosztóihoz tartozó előreszórt hullámok elemzésén keresztül. Ezek szerke-

zetében az eredeti paradoxon esetéhez hasonló tulajdonságokat találtam.

Új tudományos eredményeimet az alábbi pontokban foglalom össze. Az eredményeket taglaló tudo-

mányos közlemények felsorolása a "List of related publications" cím alatt található.

1. Megmutattam, hogy ha egy kezdetben maximálisan összefonódott kvantumbit pár egyik tagját kló-

nozzuk, a kvantumbitek összefonódása sajátos visekledést mutat. Ennek fő jellemzője az, hogy a

klónozás művelete után az eredeti kvantumbit pár két tagja – a nem klónozott és a klónozott –

közötti összefonódás éppen úgy viselkedik, mint ahogy az az egyes segéd kvantumbiteket jellem-

ző összefonódás esetében megfigyelhető. Ugyanez tapasztalható a nem klónozott kvantumbit és a

klón közötti összefonódás tekintetében, melynek viselkedése a klónozott kvantumbit és a másik se-

géd kvantumbit köszötti összefonódáséval mutat teljes egyezést. Az összefonódás viselkedésének

részletes leírását tartalmazza a disszertáció.

Ugyanezen elemzés kapcsán megmutattam azt is, hogy egy GHZ állapot egyik tagjának klónozá-

sakor, az kvantumklónozó eszköz lehetővé teszi a kétrészű összefonódott erőforrások eredetileg

teljesen háromrészű összefonódott erőforrásból való részleges kivonását. Az összefonódás visel-

kedéséről részletes elemzést adtam ebben az esetben, a Coffman-Kundu-Wootters egyenlőtlensé-

geket is felhasználva.
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Összefoglalva: megmutattam, hogy az univerzális kvantumklónozó (más néven: kvantum pro-

cesszor) az összefonódás manipulálásának is hasznos eszköze, ezáltal ily módon is hasznos lehet

a kvantuminformáció feldolgozás területén [I].

2. Megvizsgáltam a Hardy-paradoxonban szereplő interferometriai berendezést, annak nyalábosztói-

ra, mint szóró centrumokra tekintve, az előreszórt hullámok szerkezetéből kiindulva. Kimutattam,

hogy az eredeti elrendezésben az előreszórt hullám nem szorzat-szerkezetű, továbbá azt is, hogy

a két nyalábosztó előreszórt hulláma nem állítható elő az egyedi nyalábosztók előreszórásainak

lineárkombinációjaként. Az előreszórt hullám nulla nagyságú valószínűségi amplitúdót tartalmaz

a rendszerben potenciálisan létrejövő foton esetére vonatkozólag, ami a Hardy-paradoxon és a

kölcsönhatás-mentes mérés közötti viszonyt illusztrálja. Ez a hozzáállás hasznosnak bizonyulhat

a hasonló elrendezések elemzésekor [II].

3. Megvizsgáltam egy, az előző pontban tárgyalthoz hasonló, ténylegesen kivitelezhető kísérleti be-

rendezést, ahol a Hardy-paradoxonban vázolt elrendezésben szereplő részecske-antirészecske an-

nihiláció helyét két foton, nyalábosztón történő interferenciája vette át, ezúton csatolván a két,

interferométert. Kiszámítottam a kimenet nyalábosztóinak előreszórt hullámait, s az előző pont-

ban említett módszert alkalmazva megvizsgáltam azok összefonódás-szerű szerkezetét. Noha az

összefonódást jellemző mennyiségek nem egyeztek az eredeti gondolatkísérlet esetén kapott érté-

kekkel, a két elrendezés viselkedése mutatott hasonlóságokat [III].
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