General Information:

Name of Course:

HYDROLOGY AND HYDRAULICS

Course Code:	PMTKGNB40
Semester:	3 nd
Number of Credits:	4
Allotment of Hours per Week:	2 Lectures, 2 I
Evaluation:	Exam (with gr
Prerequisites:	None

DOCA Practices rade)

Instructor:

Dr. Judit PÁL-SCHREINER Office: 7624, Pécs, Boszorkany u. 2. Office Nº B302 E-mail: schreiner@mik.pte.hu

Introduction, General Course Description:

This course exposes students to an expansive suite of topics and methods within the field of water resources engineering, emphasizes engineering applications of hydrology and hydraulics.

Learning Objectives:

Hydrology and hydraulics concepts are explored using fundamental conservation laws and ecologically-based design theory. Concepts include the properties of water, the water cycle, precipitation, runoff, flood, infiltration, groundwater flow, evaporation, hydrostatics, fundamental concepts of fluid flow, pressurized flow in pipe and open-channel flow.

Methodology:

- Lectures: Lectures will give an introduction to the basic knowledge of the hydrology and hydraulics.
- Practical class: Students will be able to practice the basic calculations and design through sample examples.
- **Exams:** Accumulated knowledge is tested in two midterm exams.
- **Practical test:** Accumulated practice in basic calculations is tested in two midterm practical tests.

Schedule:

Week	Topic of lecture				
Week 1	Course description; Orientation				
Week 2	The properties of water; The water cycle, Water in motion				
Week 3	The process of precipitation (forms, types, measuring), Snow				
Week 4	The runoff cycle, Factors affecting runoff, Measurement of runoff, The stream channel				
	Floods, Surface water 1 st Homework				
Week 5	1 st Practical test (Precipitation, Runoff)				
Week 6	Infiltration, Zones of subsurface water, Soil water, Ground water reservoir, Aquifers,				
	Aquifers as reservoirs, The process of evaporation, Measuring evaporation, The				
	process of condensation, Measurement of condensation				
Week 7	Midterm exam (Hydrology)				

University of Pécs Faculty of Engineering and Information Technology, H-7624 Pécs, Boszorkány u. 2., HUNGARY Phone: +36 72 501 500/22801 e-mail: civilengineering@pmmik.pte.hu http://www.engineeringstudies.net

Week 8	Hydrostatics (fluid pressure, atmospheric pressure, manometers, stability of dams)				
Week 9	Fall Break – no classes				
Week 10	Fundamental Concepts of Fluid Flow (classification of flow, continuity, energy and the				
	Bernoulli equation, Venture meters, Pitot tube, Siphons)				
Week 11	Pipe Flow (laminar- and turbulent flow in pipes, loses) 2nd Homework				
Week 12	2 nd Practical test (Hydrostatics, Pipes)				
Week 13	Open-Channel Flow (rapidly varied flow, critical depth-general case, hydraulic jump)				
Week 14	Final exam (Hydraulics)				
Week 15	Retake exams, retake practical tests (if required)				

Attendance:

Attending is required all classes, and will impact the grade (max. 10%). Unexcused absences will adversely affect the grade, and in case of absence from more than 30% of the total number of lesson will be grounds for failing the class. To be in class at the beginning time and stay until the scheduled end of the lesson is required, tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency, the student must present a valid excuse, such as a doctor's note.

Grading:

Grading will follow the course structure with the following weight 10% - Class attendance, class activity 5% - 5% Homeworks 20% - 20% Practical tests 20% - 20% Exams A minimum of 55% is required to pass the exam

Offered exam grade

Numeric grade:	5	4	3	2	1
Evaluation in percents:	89%-100%	77%-88%	66%-76%	55%-65%	0-54%

Students with Special Needs:

Students with a disability and needs to request special accommodations, please, notify the Deans Office. Proper documentation of disability will be required. All attempts to provide an equal learning environment for all will be made.

Readings and Reference Materials:

John C. Manning: Applied Principles of Hydrology 3rd Edition ISBN-13: 978-0135655320; ISBN-10: 0135655323 Ernest Brater, Horace King, James Lindell, C. Wei: Handbook of Hydraulics 7th Edition ISBN-13: 978-0070072473; ISBN-10: 0070072477