Mechanics 3 (Dynamics) Course Code: MSB257AN-EA-00, MSB257AN-GY-01 Semester: Autumn 2017/2018 Course Syllabus Location: PTE MIK, A-316 (Lecture) A-301 (Practice)

General Information

Name of course:

Course Code: Semester: Number of Credits: Allotment of Hours per Week Evaluation: Prerequisites:

Instructor:

MECHANICS 3 (DYNAMICS)

MSB257AN-EA-00 MSB257AN-GY-01 3rd 4 1 lectures + 2 practice / week Midterm Exams (Practice) + Final Exam (Theory) Mechanics 1 (Statics)

Dr Adél Len Office: 7624 Pécs, Boszorkány utca 2, No. B307 E-mail: len.adel@mik.pte.hu

General Course Description

Introduction into the fundamentals of the dynamics - kinematics and kinetics of a particle and of the rigid body, mechanical vibrations.

Learning objectives

The aim of the course is to introduce the students into the following themes: Kinematics and kinetics of a particle. Constrained motion. Kinematics and kinetics of rigid bodies. Mass moments of inertia. Work and power theorems. Kinetic energy. Central and eccentric impact. Analysis of the free and forced vibrations with and without damping.

Methodology:

Lectures: will give the theoretical base knowledge of the dynamics

Practice: through examples the students will learn how to apply the theoretical knowledge to solve exercises

Exam: Accumulated knowledge is tested in three exams: two midterm exams (practice) and a final exam (theory). Both exams have to reach the minimum acceptable level (50% of the maximal point number). Failed or skipped midterm exams can be repeated twice (the second opportunity will be given in the exam period). The final exam can be repeated twice in the exam period.

Topic of the lecture Topic of the practice Week Week 1 Kinematics of a particle, Kinematics of Kinematics of a particle the rigid body Week 2 Kinematics of the rigid body Week 3 Instantaneous and finite motions Instantaneous and finite motions Rigid body in plane motion Week 4 Rigid body in plane motion Week 5 Kinetics of a particle Kinetics of a particle Week 6 Kinetics of a particle Kinetics of rigid bodies Week 7 Kinetics of rigid bodies

Schedule:

	Collisions	
Week 8		First midterm exam (Practice)
Week 9	Autumn vacation – no classes	Autumn vacation – no classes
Week 10	Retake of the first midterm exam	Collisions
Week 11	Free vibrations without damping	Vibrations
	Damped free vibrations	
Week 12		Vibrations
Week 13	Forced vibrations	Vibrations
Week 14		Second midterm exam (Practice)
Week 15	Final exam (Theory) written during	Retake of the second midterm exam
	the theoretical class (90 minutes)	

Attendance

Attendance is required in the classes, and will impact the grade (max. 10%). Unexcused absences will adversely affect the grade, and in case of absence more than 30% of the total number of lesson will be grounds for falling the class. The students are required to be punctual in the class and in case of illness or family urgency present a valid excuse (such as a doctor's note). The continuous following of the subjects and taking notes is mandatory. The subject of the missed class has to be worked out by the student based on the notes of the classmates and reference reading materials.

Grading

10% attendance30% first midterm exam30% second midterm exam30% final exam

Grade	5	4	3	2	1
Evaluation in	85% - 100%	74% - 84%	63% - 73%	51% - 62%	0 - 50%
percent					

Bibliography

- J.L. Meriam, L.G. Kraige: Engineering Mechanics, Dynamics. John Wiley and Sons. 2003
- Beer, F.P., Johnston, E. R.: Vector Mechanics for Engineers. Dynamics, McGraw-Hill, 2004
- Tongue, B.H., Sheppard, S.D.: Dynamics. Analysis and Design of Systems in Motion, John Wiley ans Sons, 2005
- William T. Thomson: Theory of Vibration with application, Chapman & Hall