MECHANICS 1, STATICS

Syllabus and subject requirements

Course Code:	MSE256MN
Allotment of Hours per Week ¹ :	1/3/0
Number of Credits:	5
Program type ² :	Civil Engineering / Architect / C
School ³ :	F-full-time
Requirement ⁴ :	E - exam
Semester ⁵ :	2019/2020/1
Language:	English
Pre-studies:	-
Responsible Department:	Department of Civil Engineering
Instructors:	Dr. Pomezanski Vanda

Aims:

The course provides basic knowledge in the design and production of building equipment for static calculations.

Syllabus:

This course aims at teaching the basics of mechanics and covers the following topics: equilibrium states and conditions of equilibrium; resultant and balance of plane force systems; defining load-bearing structures, their types and loads. This theme is also expanded through the calculation of support reactions, simple hinged structures, loads on structures, calculation of loads, types of structural systems, definition and calculation of internal forces and internal force diagrams, definition of support and internal forces of joint structures, three-joint girders, Gerber girders and compound joint structures. The definition and types of truss is also covered and the forces influencing them.

Methodology:

The course is based on individual engineering skills with regular consultations and presentations.

Studio Culture:

The course is based on through collaboration, participation and discussions trough lessons. This is an interaction between Students and Faculty; used the teaching methods like 'Problem-based learning' and 'learning-by-doing'. The communication and work should be reflect a respect for fellow students and their desire to work with regard to noise levels, noxious fumes, etc – from each site of participants.

Attendance:

Attending is required all classes, and will impact the grade (max. 10%). Unexcused absences will adversely affect the grade, and in case of absence from more than 30% of the total number of lesson will be grounds for failing the class. To be in class at the beginning time and stay until the scheduled end of the lesson is required, tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency, the student must present a valid excuse, such as a doctor's note.

¹ Subject course types: L - lecture, pr - practice, lab - lab

² C - compulsory, CO - compulsory optional, O - optional (optional)

³ Full-time, Part-time, E-learning

 $^{^4}$ S - signature, Sm - semester mark, E - exam, Fe - final exam

 $^{^{5}}$ /1 - autumn, /2 – spring semester

Requirements for the course period:

Writing of the thematic midterm tests (2) at the given time, preparation of the required homework (3) and timely submission is obligatory. If the result of a Midterm Test is below 50%, the test must be repeated at a given out of lecture time.

At the end of the semester the result of the final test is taken into consideration (here the 50% threshold is no longer required).

Minimum score required for mid-term work is 76 points! If the student does not achieve this, at the beginning of the exam period, on the first or on second week, we provide a correction possibility.

Components of the score:

Sum:	= 150 point
 Midterm Test. HomeWorks 	= 60 point 3× 10 = 30 point
1. Midterm Test.	= 60 point

Requirements for the exam period:

The written exam is based on semester material. The maximum score for the exam is 150 points, the **minimum is 76 points**. **Minimum score on the exam and semester is 151 points**!

Grading Scale:

0-150 points = failed (1)

151-188 points = pass (2) 189-225 points = medium/average (3) 226-263 points = good (4) 264-300 points = excellent (5)

Students with Special Needs:

Students with a disability and needs to request special accommodations, please, notify the Deans Office. Proper documentation of disability will be required. All attempts to provide an equal learning environment for all will be made.

References:

Lecture notes, tutorials, example books

Required literature:

ENGINEERING MECHANICS STATICS, R.C.Hibbeler ISBN:-13: 978-0-13-291554-0

Recommended literature:

J.L. Meriam, L.G. Kraige, Engineering mechanics.—7th ed.

D. Gross, W. Hauger, J. Schröder, W.A. Wall, N. Rajapakse, Engineering Mechanics 1 Statics

A. Pytel, J. Kiusalaas, Mechanics of Materials, Second Edition

P. Block, · J. Schwartz, Structural Design I

Detailed program of the subject

Week	Lecture	HW	Test	Practice
	(even weeks: Monday			Course dependent
	11.15-12.00)			
1.	Registration			Registration
	Basic Concepts. Power, power			Balancing of a force system with
	systems, constraints. Plane forces with common intersection.			common intersection. Examples of 3
	Resulting, components.			force system.
3.	Moment, pair of forces, parallel			The resultant and equilibrium of a planar
<u>.</u>	forces.			power system.
				Balancing with one, two and three forces.
	Parallel forces in a plane system.	1.		Balancing of planar supports,
	General Power Systems in Plane.			determination of reaction forces. Truss
	Resolution of force into 3			type structures.
	components coinciding with			
=	force.			
<u>5</u> .	Structure Types, reactions, balance of supports. Examination			Calculation of trusses by node method and triple section method.
	of 2D truss structures,			and apple section method.
	determination of the beam forces.			
				Internal force diagrams.
<u>7.</u>	1 TEST			Internal force diagrams of cantilevered
				beam structures.
		2.		Internal force diagrams of Multiaxial
		2.		structures (by 90 °).
9.	ŐSZI SZÜNET			SZÜNET
	Internal forces, representation of		I.	Internal force diagrams of broken and
	them. Structures with straight line		TEST	branched supports
	axes, balance, internal force			
	diagrams. Balance and internal force diagrams of multiaxial			
	structures. 3-pined frame			
	structure			
<u>11.</u>				Internal force diagrams of structures with
				an inclines axes.
	Analysis of 2D structures			Internal force diagrams of Gerber-
15	connected by pins.			structures.
<u>13.</u>	Statically determinate			Internal force diagrams of 3-pined
	multisupported beams. (Gerber structures)			structures
		3.		Internal force diagrams of cantilevered 3-
		~•		pined structures
<u>15.</u>	2. TEST		II.	Semester assessment, Consultation,
			TEST	supplements
TESTS: HW			HW:	
• resulting force, balancing, trusses			• Balancing with 1, 2 or 3 forces.	
Internal force diagrams			• Internal forse diagrams of structures with a	
			straight line axes.	
			• 3-pined structure	

Pécs, September 2019.

Vanda Olimpia Pomezanski Dr. Associate Professor