COURSE SYLLABUS SEMESTER FALL 2019/2020

Name of Course	Reinforced concrete III
Course Code	MSB394AN
Allotment of Hours per Week	
Number of Credits	4
Program	BSc. in Civil Engineering (Bachelor)
Evaluation	Signature (with grade)
Semester	7th
Prerequisites	Νο
Department	Civil Engineering
Instructor	Dr. Orban Zoltan, Saied Kashkash, Andras Dormany

OBJECTIVES

Students will gain from this course:

- Knowledge on the principles of precast prestressed concrete technology and its applications in civil engineering

structures,

- Understanding of the construction technology using precast structural elements,

- Knowledge on the different precast building systems,

- preliminary design of precast structural elements.
- Understanding the types and effects of lateral action on reinforced concrete structures.
- basic knowledge of structural stiffening systems to resist lateral forces.

CONTENTS

Short description:

This course is aimed to provide basic and advanced knowledge on the principles of the precast concrete technology and different types of precast building systems. Topics covered by the course include: precast frame analysis, precast concrete floor system, basic principles of designing precast structural elements, basic conceptual design principles to resist lateral action (wind & earthquakes), Types of structural connection between precast elements,

Methodology:

- Lectures: will give the theoretical background on precast technology advantages and the differences between precast and cast in place concrete, second part will be about stiffening of structural systems, calculate and distribute the lateral action on structures.

- **Practical class:** to design structural element slabs beams columns and demonstrate the theoretical knowledge second part calculate the designed lateral action on high-rise building.

- Exams: Accumulated knowledge is tested in two exams: a midterm and a final exam.

Both feature multiple-choice, true-false questions or structural design calculations.

Schedule:

Week	Topic of lecture	
Week 1	Orientation.	
Week 2	Introduction of precast technology	
Week 3	Manufacturing and advantages/disadvantages of precast systems	
Week 4	Principle of prestressing for precast slabs systems.	

Week 5	Precast structural frame analysis (column)
Week 6	Precast structural frame analysis (beam)
Week 7	Types of joints and connections between precast structural elements
Week 8	Midterm exam.
Week 9	Break – no class
Week 10	Introduction of lateral actions on a structure
Week 11	Calculate the wind load on high-rise building
Week 12	Structural systems to resist seismic actions
Week 13	Seismic static analysis Equivalent static force method
Week 14	Seismic Dynamic analysis response spectrum
Week 15	Final exam, Submit of assignments

ATTENDANCE AND GRADING

Attendance:

Attending is required all classes, and will impact the grade (max. 10%). Unexcused absences will adversely affect the grade, and in case of absence more than 30% of the total number of lessons will cause the student to fail the class. To be in class at the beginning time and stay until the scheduled end of the lesson is required, tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency, the student must present a valid excuse, such as a doctor's note.

Grading:

10% - Attendance

- 40% Assignments
- 25% Midterm Exam
- 25% Final Exam

Offered exam grade:

Evaluation in percents	Numeric grade
89%-100%	5
77%-88%	4
66%-76%	3
55%-65%	2
0-54%	1

READINGS AND REFERENCE MATERIALS

- Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions

- Planning and design handbook on precast building structures. Manual/Textbook (313 pages, ISBN 978-2-88394-

114-4, September 2014. No. 74.

- Eurocode 8 General Rules and Seismic Actions (EN.1998:2004)