Location: PTE MIK, A-303

General Information:

Name of Course:

Number of Credits:

Allotment of Hours per Week:

Course Code:

Semester:

FUNDAMENTAL LAWS, EQUATIONS AND MODELS 2 (MODELING OF TRANSPORT PROCESSES)

IVB289ANVM (IVB287ANMI) 2nd 4 (5) 2 Lectures +1 Seminar/Week Signature and grade None

Instructor:

Evaluation:

Prerequisites:

Dr. Gergely Nyitray Office: 7624, Pécs, Boszorkany u. 2. Office N° B232 E-mail: nyitray@mik.pte.hu

Introduction, General Course Description:

The aim of this course is to present the basic concepts of physics that students need to know for later courses and future careers. To emphasize that physics is a tool for understanding the real world. To teach transferable problem solving skills. *Classical thermodynamics* is the description of the states of thermodynamic systems at near-equilibrium, that uses macroscopic, measurable properties. It is used to model exchanges of energy, work and heat based on the laws of thermodynamics. *Transport processes* concerns the exchange of mass, energy, charge, momentum and angular momentum between observed systems. Examples of transport processes include *heat conduction, fluid flow, molecular diffusion* and *electromagnetic radiation*.

Learning Objectives:

Problem-solving skills are central to an introductory physics course, these include:

- Thinking logically and analitically,
- Making simplifying assumptions,
- Constructing mathematical models,
- Using valid approximations,
- Understanding the basic laws of the universe.

Methodology:

- Lectures: will give an introduction to the Classical Thermodynamics and Transport processes.
- Seminar: focusing each time on some particular problem, in which everyone present is requested to participate.
- **Homework:** The students will receive homework to be prepared.
- **Exams:** During the semester accumulated knowledge is tested two times (week 6th and week 12th) as a written examination which involves problems and computational questions require the students to perform some calculations to provide the answer. In case the exam fails or the students want to improve their results a retake exam will be organized (up to two times) in the last week of the semester (week 15th).

Schedule:

Location: PTE MIK, A-303

Week	Topic of lecture					
Week 1	Course description, thermodinamic system and surroundings, extensive and intensive					
	parameters, ideal and real gases, gas laws					
Week 2	Kinetic theory of ideal gases, law of equipartition, degree of freedom, internal energy					
Week 3	Van der Waals equation of real gasses, work done, heat exchange					
Week 4	Heat, heat capacity, specific heat, the first law of thermodynamics					
Week 5	Isochor, isobaric, isotherm, isentropic, polytropic process					
Week 6	exam					
Week 7	Heat engines, Carnot cycle, Carnot efficiency, Entropy, Second Law of Thermodynamics					
Week 8	Thermodynamic potentials, Helmholtz free energy, Gibbs free energy					
Week 9	Gibbs-Duhem relation, the third law of thermodynamics					
Week 10	Break – no class					
Week 11	Transport processes: fluid flow, Bernoulli Equation, viscosity					
Week 12	exam					
Week 13	Transport processes: diffusion, heat transfer					
Week 14	Transport processes: convective heat transfer, radiation					
Week 15	Retake exam (only if required).					

Attendance:

To be in class at the beginning time and stay until the scheduled end of the lesson is required, tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency, the student must present a valid excuse, such as a doctor's note.

Grading:

 $100\%\,$ - Writing Exams (WE1 and WE2) during the semester Oral exam - optional Grade - (WE1+WE2)/2

Grade:	5	4	3	2	1
Evaluation in percents:	89%-100%	77%-88%	66%-76%	55%-65%	0-49%

Students with Special Needs:

Students with a disability and needs to request special accommodations, please, notify the Deans Office. Proper documentation of disability will be required. All attempts to provide an equal learning environment for all will be made.

Readings and Reference Materials:

Gambiattista, Richardson, Richardson: "College Physics" McGraw-Hill International Edition 2007 ISBN-13 978-0-07-110608-5