SYLLABUS AND COURSE REQUIREMENTS 2020/2021. II. SEMESTER

Title	Steel Structures 2
Course code	MSB380ANEP
Weekly hours: lect/pract/lab	1/2/0
Credit points	4
Curriculum(s)/ type	Civil Engineering BSc./ obligatory
School	English
Requirement	exam
Registration semester	spring semester
Pre-requirement(s)	MSB379ANEP Steel Structures 1.
Gestor Department(s)	Department of Civil Engineering
Responsible and lecturers	Dr. Attila FÜLÖP associate professor

INTRODUCTION, LEARNING OUTCOMES

The goal of the semester is that the students should learn the conventional steel structures, and should be able to solve the design of the execution drawings independently

CONTENT

General Course Description and Main Content: Design of steel beams: classification, design of class 4 sections subjected to bending. Design of steel beams: stability design, lateral torsional buckling, shear buckling. Design of bar elements subjected to normal force and bending (N+M). Stability design of bar elements subjected to normal force and bending (N+M). Bolted and welded connections of steel bar elements subjected to normal force and bending. Application of component method at bolted connections. Global analysis of steel bar elements. Application of first and second order analysis. Imperfections. Coupled steel columns under compression. Plastic analysis of steel elements

Lecture and Practice:

- 1. Introduction.
- 2. Design of steel beams: classification, design of class 4 sections subjected to bending.
- 3. Design of steel beams: stability design, lateral torsional buckling, shear buckling.
- 4. Design of bar elements subjected to normal force and bending (N+M)
- 5. Stability design of bar elements subjected to normal force and bending (N+M)
- 6. Bolted and welded connections of steel bar elements subjected to normal force and bending.
- 7. Application of component method at bolted connections.
- 8. Global analysis of steel bar elements.

- 9. Application of first and second order analysis. Imperfections.
- 10. Coupled steel columns under compression.
- 11. Plastic analysis of steel elements
- 12. Exam

EVALUATION AND GRADING

Attendance: Attending is required all classes. In case of unexcused absence from more than 30% of the total number of lessons will be grounds for failing the class. To be in class at the beginning time and stay until the scheduled end of the lesson is required, tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency, the student must present a valid excuse, such as a doctor's note.

Signature / Grading: The exam grade is based on a semester project (steel deck) 50 %, homework samples 45% and attendance 5%. Details is discussed on the practice.

Grading Scale:

0 - 50 % failed (1)

51 – 62 % passed (2)

63 – 75% satisfactory (3)

76 – 87 % good (4)

88 - 100 % excellent (5)

RECOMMENDED READINGS

- [1st] Alexander Reichel, Peter Ackermann, Alexander Hentschel, Anette Hochberg, Building with Steel, 2007.
- [2nd] Iványi, M. Skaloud, M.: Stability Problems of Steel Structures (in English) CISM Courses and Lectures No 323, International Centre for Mechanical Sciences, SPRINGER - Verlag, Wien - New York, 1992, p. 415.
- [3rd] Iványi, M. Skaloud, M.: Steel Plated Structures (in English), CISM Courses and Lectures No 358, International Centre for Mechanical Sciences, SPRINGER Verlag, Wien New York, 1995, p. 373.
- [4th] Iványi, Miklós: ORTHOTROPIC STEEL BRIDGES. Theory, Design and Construction (in English) Helsinki Technical University, Laboratory of Bridge Engineering, TKK-SRT-33 Műegyetemi Kiadó, Budapest, 2003, p. 323.
- [5th] Iványi, Miklós Iványi, Péter: EUROCODE Manual: Design of Multi-storey Steel Buildings (in English-Hungarian) POLLACK PRESS, Pécs, 2008, p. 380.
- [6th] Iványi, M. Miklós Bancila, Radu Iványi, Péter Iványi, Miklós: Stability and Ductility of Planar Plated Steel Structures (in English) POLLACK PRESS, Pécs, 2010, p.305.
- [7th] Iványi, M. Miklós Iványi, Miklós Iványi, Péter: Multi-Storey Steel Frames with Semi-Rigid Connections. Experimental Analysis (in English) POLLACK PRESS, Pécs, 2011, p. 175.
- [8th] Iványi, M. Miklós Iványi, Miklós: Refurbishment of Steel Bridges (in English) POLLACK PRESS, Pécs, 2011, p. 107.
- [9th] Iványi, M. Miklós Iványi, Miklós: Plastic Design of Steel Structures (in English) POLLACK PRESS, Pécs, 2013, p. 157.

SCHEDULE

	TEACHING PERIOD, TEACHING WEEKS													I	EXAM PERIOD							
2020/2021. II. SEMESTER	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	1.	2.	3.	4.	5.		
Number of Lecture and Practice	1	2	3	4	4	5	5	6	7		8	9	10	11				Signature, midsemester				
Exams																						
Homework		×					×								×			grad	not			
Signature and midsemester grade															sig n.			be fulfil				
Planed exam time																						

^{4&}lt;sup>th</sup> February 2021.

Dr. Attila FÜLÖP

responsible lecturer