

Tárgytematika

Félév: 2021/22/1 Tárgynév: Hardverek villamosságtani alapjai Tárgykód: IVB286ANMI

Felelős szervezet neve: Informatika és Villamos Intézet

Felelős szervezet kódja: MIK-IV

Tárgyfelelős neve: Gyurcsek István Dr.

Tárgy követelménye:VizsgaTárgy heti óraszáma:2/2/0/0Tárgy féléves óraszáma:10/10/0/0

Oktatás célja:

Electric circuit theory and electromagnetic theory are the fundamental principles upon, which many branches of engineering are built. Therefore, the basic electric circuit theory is not only the one of the most important courses for students learning information technology, electrical engineering but always an excellent starting point for the beginnings in all kind of engineering education.

Circuit theory is also valuable for students specializing in other branches of the physical sciences because circuits are good model for the study of energy systems in general, and because the applied mathematics, physics, and topology involved.

In different branches of engineering, we are often interested in communicating or transferring energy from one point to another. To do this an interconnection of electrical devices is required. The interconnection is referred as an electric circuit and each component of the circuit is known as an element.

This course is the short collection of the fundamental principles is given helping to understand the basics of practical electricity i.e. the basics of electric circuits.

Tantárgy tartalma:

The semester is divided into the following principle periods and attendant exercises. The rough outline of the schedule is summarized as below:

1 – 3 ELECTROMAGNETIC FIELDS

- Electric field (characteristics of static electric field, Gauss' law, energy of the electric field, interaction
 with matter, characteristics of stationary electric field, theoretical background of Ohm's law and
 Kirchhoff's laws) (examples)
- Magnetic field (Energy in static and stationary magnetic field, interaction with matter, induction, self and mutual inductance, Amperee's excitation law, Faraday's induction law, Time varying electric and magnetic fields, Maxwell equations)

4 – 9 DC CIRCUIT ANALYSIS

Tárgytematika

Félév: 2021/22/1 Tárgynév: Hardverek villamosságtani alapjai Tárgykód: IVB286ANMI

Tantárgy tartalma:

- Concepts and definitions (charge and current, voltage, power and energy, circuit elements) (examples)
- Basic laws (Ohm's Law, nodes, branches, and loops, Kirchhoff's laws, series resistors and voltage division, parallel resistor and current division, wye-delta transformations) (examples)
- Methods of analysis (nodal analysis, mesh analysis, applications: DC transistor circuits) (examples)
- Circuit theorems (linearity property, superposition, source transformation, Thevenin's theorem, Norton's theorem, maximum power transfer) (examples)
- Operational amplifiers (ideal op amp, inverting amplifier, noninverting amplifier, summing amplifier, difference amplifier, cascaded op amp circuits) (examples)

10 - 15 BASIC AC CIRCUITS

- Capacitors and inductors (capacitors, series and parallel capacitors, inductors, series and parallel inductors, applications) (examples)
- Sinusoids and phasors (sinusoids, phasors, phasor relationships for circuit elements, impedance and admittance, Kirchhoff's laws in the frequency domain, impedance combinations) (examples)
- AC power analysis (instantaneous and average power, maximum average power transfer, effective or RMS value, apparent power and power factor, complex power, conservation of AC power, power factor correction) (examples)
- Three-phase circuits (balanced three-phase voltages, balanced wye-wye, wye-delta, delta-delta, delta-wye connections, power in a balanced system, unbalanced three-phase systems, applications) (examples)

Számonkérési és értékelési rendszere:

Attendance:

Attending is required all classes and will impact the grade. Unexcused absences will adversely affect tge grade and in case of absence from more than 30% of the total number of lessons will be grounds for failing the class. To be in the class at the beginning time and stay until the scheduled end of the lesson is required. Tardiness of more than 20 minutes will be counted as an absence. In the case of an illness or family emergency the student must present a valid excuse, such as a doctor's note.

The highest possible grade on the late performance (in two weeks) is '2'

Signature / Mid-semester grade:

The requirement is two approved classroom studies, scheduled during the semester and the written examination scheduled for the exam terminus.

Tárgytematika

Félév: 2021/22/1 Tárgynév: Hardverek villamosságtani alapjai Tárgykód: IVB286ANMI

Számonkérési és értékelési rendszere:

Vizsga: írásbeli/szóbeli, eredményes: min.:51 %

Az érdemjegy kialakításának módja:

The grade of the examination will be based on the following guidelines:

- 5. Outstanding work. Execution of work is thoroughly complete and demonstrates a superior level of achievement overall with a clear attention to details. The student is able to synthesize the course material with new concepts and ideas in a thoughtful manner and is able to express those ideas in clear way.
- 4. High quality work. Student work demonstrates a high level of knowledge with consistency. The student demonstrates a level of thoughtfulness in addressing concepts and ideas. Work demonstrates excellence but less consistency than a '5' student.
- 3. Satisfactory work. Student work addresses all of the task and assignment objectives with few minor or major problems.
- 2. Less than satisfactory work. Work is incomplete in significant ways and lacks attention to details.
- 1. Unsatisfactory work. Work exhibits several major and minor problems with basic conceptual premise, lacking both intention and resolution. Results are severely lacking and are weak in clarity and completeness.

Grading Scale:

Numeric Grade	5	4	3	2	1
Evaluation interval	90-100%	76-89%	63-75 %	51-62 %	0-50 %

Kötelező irodalom:

- 1. Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3
- 2. Dr. Gyurcsek: Electrical Circuits Exercises, FEIT, University of Pécs, 2019 ISBN:978-963-429-385-9
- 3. Ch. Alexander, M. Sadiku: Fundamentals of Electric Circuits, 6th Ed., McGraw Hill NY 2016, ISBN: 978-0078028229
- 4. Neptun Meet Street presentation materials