COURSE SYLLABUS AND COURSE REQUIREMENTS ACADEMIC YEAR 22/23 SEMESTER FALL

Course title	Mechanics I. (Statics)
Course Code	MSE256AN
Hours/Week: le/pr/lab	1/3/0
Credits	5
Degree Programme	Civil Engineering BSc, Architecture, Architectural Engineering undergraduate
Study Mode	Full-time, In-person
Requirements	Exam grade
Teaching Period	22/23 Fall
Prerequisites	None
Department(s)	Department of Civil Engineering
Course Director	Vanda Olimpia Pomezanski Dr.
Teaching Staff	Tamas Juhasz
Lecture	Every other week M 1:15 – 2:45 p.m. class begins September 5 th , A216
Practice Group A	M 3:00 – 5:30 p.m. A315
Group B	M 5:30 – 8:00 p.m. A315
Group C	T 3:00 – 5:30 p.m. A306

COURSE DESCRIPTION

In this course, students examine principles of statics, studies of vectors and moments, force systems, and their resultants. It also covers force systems in equilibrium, static friction, and introduces section properties, and shear and moment diagrams.

SYLLABUS

1. GOALS AND OBJECTIVES

Specific, measurable student behavioral learning objectives.

Students should acquire an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. Upon completion of the course, the student must be able to,

- Describe force and moment systems and identify all unknown loads as applied to statically determinate rigid bodies.
- Analyse statically determinate beams, trusses, frames, machines, and systems with friction forces.
- Introduce section properties.
- Draw shear and moment diagrams for statically determinate beams under given loads.

2. COURSE CONTENT

TOPICS

LECTURE PRACTICE

- 1. Force Systems
- 2. Equilibrium
- 3. Trusses and frames
- 4. Machines
- 5. Internal force diagrams
- 6. Properties of sections

DETAILED SYLLABUS AND COURSE SCHEDULE

ACADEMIC HOLIDAYS INCLUDED

LECTURE

week	Торіс	Compulsory reading; page number (from to)	Required tasks (assignments, tests, etc.)	Completion date, due date
1 st	Introduction	[1] Chapter 1		
3 rd	Forces and Force Systems	[1] Chapter 1		
5 th	Analysis of Statically Indeterminate Trusses	[2] Chapter 3		
		[1] Chapter 6		
7 th	Internal forces Developed in Structural	[2] Chapter 4		
	Members	[1] Chapter 7		
9 th	SEMESTER BREAK			
11 th	Compound Structures and Machines	Lecture notes		
13 th	Loads and Load Combinations	Lecture notes		
15 th	Section Properties	[1] Chapter 9-10		

PRACTICE, LABORATORY PRACTICE

	Tomic	Camanalaama naadinaa	Danwing d Applic	Commission data
week	Торіс	Compulsory reading;	Required tasks	Completion date,
		page number	(assignments,	due date
+		(from to)	tests, etc.)	
1 st	Registration			
2 nd	Operation with Vectors	[1] Chapter 2		
3 rd	Result Force of Concurrent and Parallel Force	[1] Chapter 2		
	Systems			
4 th	Result Force and Equilibrium of General	[1] Chapter 2		
	Force Systems, Moment of Forces	[1] Chapter 3		
5 th	Solving Statically Determinate Trusses	[2] Chapter 3		
	Method of Joints, Shears, and Moments			
6 th	Solving Statically Determinate Trusses	[2] Chapter 3		
	Method of Joints, Shears, and Moments	[1] Chapter 6		
7 th	1 st Test		Manual calculation	90-minute test, due
			test.	at the end of the
				class. Submission on
				engineering paper.
8 th	Internal Forces Developed in Structural	[2] Chapter 4		
	Members I	[1] Chapter 7		
9 th	SEMESTER BREAK			
10 th	Internal Forces Developed in Structural	[2] Chapter 4		
	Members II	[1] Chapter 7		
11 th	Compound Structures and Machines,	Lecture notes		
	Three Hinged Frames			
12 th	Compound Structures and Machines	Lecture notes		
	Gerber Beams	10000.000		
13 th	Section Properties	[1] Chapter 9		
13	Area, Centroid 1 st Moment of Inertia	[1] Chapter 5		
14 th	Section Properties	[1] Chapter 10		
17	2 nd Moment of Inertia, Product of Inertia	[1] Chapter 10		
15 th	2 nd Test		Manual calculation	90-minute test, due
15	2 1630		test.	at the end of the
			iesi.	class. Submission on
				engineering paper.

3. ASSESSMENT AND EVALUATION

ATTENDANCE

By the Code of Studies and Examinations of the University of Pécs, Article 45 (2) and Annex 9. (Article 3) a student may be refused a grade or qualification in the given full-time course if the number of class absences exceeds 30% of the contact hours stipulated in the course description.

Method for monitoring attendance

Attendance will be monitored by attendance lists.

Course-unit with a final examination

Mid-term assessments, performance evaluation, and their weighting as a pre-requisite for taking the final exam

Туре	Assessment	Weighting as a proportion of the pre-requisite for taking the exam
Test 1	50 points	50 %
Test 2	50 points	50%

Requirements for the end-of-semester signature

Mid-term assessment of 40%

Re-takes for the end-of-semester signature

Each test can be repeated or improved once during the 1st week of the examination period.

Type of examination: written exam

The exam is successful if the result is a minimum of 40 %.

Calculation of the grade

The mid-term performance accounts for 60 %, and the performance at the exam accounts for 40 % in the calculation of the final grade.

Calculation of the final grade based on aggregate performance in percentage.

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

4. SPECIFIED LITERATURE

COMPULSORY READING AND AVAILABILITY

[1.] R.C. Hibbeler Engineering Mechanics: Statics (12th Edition) ISBN 978-0136077909

[2.] R. C. Hibbeler, Structural Analysis, ninth edition ISBN 978-0-13-394284-2