

Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

Unit (Unit code) (MIK-IV)

Lecturer responsible for the course: JANCSKÁRNÉ DR. Anweiler Ildikó

Requirement:ExamClasses per week :2/2/0/0Classes per term:14/14/0/0

#### Purpose of education:

#### **Introduction, Learning Outcomes**

This course presents some fundamental knowledge of classic and modern control systems, focusing on intelligent control algorithms.

Upon completion of this course the student should be:

- able to understand basic knowledge of control systems
- · able to apply basic knowledge of fuzzy information representation and processing
- able to apply basic fuzzy inference and approximate reasoning
- able to understand the basic notion of fuzzy rule base
- able to apply basic fuzzy PID control systems.

### Contents:

### **General Course Description and Main Content:**

Introduction to control engineering. Basics of classical control theory, PID control. Control performance testing examples. Introduction to fuzzy sets: The uncertain and inexact nature of the real world: ideas and examples; fuzzy membership functions. Introduction to fuzzy logic: Basic concept and properties of fuzzy logic versus classical two-valued logic. Introduction to fuzzy inference: Fuzzy inference principles; fuzzy decision making; approximate reasoning. Introduction to fuzzy rule base: If-Then rules; general format of fuzzy rule base; establishment of fuzzy rule base. Introduction to fuzzy control systems: Basic fuzzy control principle: example of set-point tracking; open-loop and closed-loop fuzzy control systems; fuzzy PID controllers design methods.

### Methodology:

Lecturing using NI ELVIS QUANSER models. Practice in LabVIEW with PID and fuzzy logic toolkit development module.

Dokuments: in Neptun Meetstreet.



Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

Contents:

Assigments: in Moodle LMS.

### Lectures and consultations: in class room or MS Teams.

| Ref. Nr. | Lecture topics                                                                                                                                            | Lecture ppt in pdf:<br>Intelligent Control<br>Systems_Jancskárné_2020.pdf<br>slides page-to-page |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1.       | Introduction to control principles,<br>Control examples                                                                                                   | 122                                                                                              |
|          | Open loop, closed loop control examples;<br>elements of the control loops;<br>Graphical representation of control loops: P&ID<br>diagrams, Block diagrams | 2230<br>3442                                                                                     |
|          |                                                                                                                                                           | 3034                                                                                             |
|          | Stedady-state & transient responses;<br>first order second order systems;<br>model reduction to FOPTD t                                                   | 4352<br>5362                                                                                     |
|          | inderreduction to For Fb t                                                                                                                                | 3302                                                                                             |
| 4.       | Closed loop control : on/off controller and control performance                                                                                           | 146150                                                                                           |
| 5.       | Closed loop control II: continous control; control performance meters; PID controller;                                                                    | 155160<br>173180                                                                                 |
|          | Saturation of the final control element                                                                                                                   | 181185                                                                                           |



Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

## Contents:

| 6.  | Properties of : P-controller I-controller PI-conroller PID-controller                              | 186196           |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| 7.  | Tuning of PID-controller in time domain: open-loop methods closed-loop methods Model-based control | 197223<br>224236 |  |  |  |  |
| 8.  | Fuzzy sets and fuzzy logic 238242                                                                  |                  |  |  |  |  |
| 9.  | Fuzzy control: introduction. Rule-based systems                                                    | 242247           |  |  |  |  |
| 10. | Fuzzy control examples, IFTHEN rules, fuzzification, activity factor of rules                      | 248250           |  |  |  |  |
| 11. | Fuzzy controller outputs, defuzzification methods                                                  | 251259           |  |  |  |  |
| 12. | From digital PI control to fuzzy PI control                                                        | 260263           |  |  |  |  |
| 13. | DC motor fuzzy control                                                                             | 264272           |  |  |  |  |
| 14. | LabVIEW fuzzy system designer                                                                      | 273276           |  |  |  |  |



Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

## Contents:

| Lab<br>ref. Nr. | Topics of Seminar, lab                                                                                                                 | Assignment or Report required |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| 1.              | Drawing P&ID diagrams and block diagrams                                                                                               | Quiz                          |  |
| 2.              | Approximation FOPDT model parameters of three tank step response.                                                                      | Report                        |  |
| 3.              | Drawing a Control Loop demo program in LabVIEW: 1. simulation a FOPDT controlled process.                                              |                               |  |
| 4.              | Drawing a Control Loop demo program in LabVIEW: 1. writing on/off control algorithm. Testing the contol loop. (Step reference change.) |                               |  |
| 5.              | Modell system PID control: writing PID control algorithm.                                                                              |                               |  |
| 6.              | Testing the contol loop. (Step reference change.) Performance comparison.                                                              | Program and Report            |  |
| 7.              | Fuzzy set manipulation                                                                                                                 |                               |  |
| 8.              | Fuzzy controller design                                                                                                                | Quiz                          |  |
| 9.              | nzzy controller design in LabVIEW and performance testingfs Fuzzy file and progra                                                      |                               |  |
| 10.             | Presentation of a scientific paper pptx upload and presentation                                                                        |                               |  |
| 11.             | Presentation of a Labview control demo program  Report and taking a presuming the program                                              |                               |  |

Schedule



Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

## Contents:

| Week of semester | Lecture topic Nr.                                     | Seminar, lab Nr. |  |
|------------------|-------------------------------------------------------|------------------|--|
| 2                | 1,2                                                   | 1                |  |
| 3                | 3                                                     | 2                |  |
| 4                | 4                                                     | 3                |  |
| 5                | 5,6                                                   | 4,5              |  |
| 6                | 6,7                                                   | 4,5              |  |
| 7                | 8                                                     | 6                |  |
| 8                | 9                                                     | 7                |  |
| 9                | Autumn break                                          |                  |  |
| 10               | 10,11                                                 | 8                |  |
| 11               | 12                                                    | 8,9              |  |
| 12               | 13,14                                                 | 8,9              |  |
| 13               | Consultation &<br>Student's presentations<br>of task1 | 10               |  |
| 14               | Student's presentations of task2                      | 11               |  |



| Term:       | 2022/23/1                                 | Subject name:                      | Intelligent Controll Sy                                                                                       | stems                   | Subject code:          | IVM194ANMI              |
|-------------|-------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-------------------------|
| Content     | s:                                        |                                    |                                                                                                               |                         |                        |                         |
| 15          | Final C                                   | Grade                              |                                                                                                               |                         |                        |                         |
| System      | of examing and                            | valuation:                         |                                                                                                               |                         |                        |                         |
|             | lent is expected to                       |                                    | nomework assignments ar<br>or.                                                                                | nd submit the final pr  | roject with a written  | report on the topic a   |
| Projects a  | and homework                              |                                    |                                                                                                               |                         |                        |                         |
| report on   | the paper, showin                         | g his/her mast                     | g with fuzzy systems will<br>ery and understanding of<br>ncluded in the report.                               |                         |                        |                         |
| 2.Explain   | a LabVIEW fuzzy                           | demo prograr                       | n                                                                                                             |                         |                        |                         |
|             |                                           |                                    | system. Students will pr<br>k, and analysis of the resu                                                       |                         | rt on their project, e | xplaining in detail the |
| Attendar    | ice:                                      |                                    |                                                                                                               |                         |                        |                         |
| the total r | number of lesson was is required, tarding | rill be grounds<br>less of more th | ed absences will adversely<br>for failing the class. To be<br>an 20 minutes will be couch as a doctor's note. | e in class at the begin | ning time and stay unt | il the scheduled end o  |
| Evaluation  | on + Grading                              |                                    |                                                                                                               |                         |                        |                         |
| Evaluatio   | n criteria will be al                     | ole with the Re                    | port descriptions.                                                                                            |                         |                        |                         |

Offered exam grade can be obtained, calculated from the results of the study period.



Term: 2022/23/1 Subject Intelligent Controll Systems Subject code: IVM194ANMI

name:

#### System of examing and valuation:

#### **Grading scale**

| Numeric Grade:  | 5        | 4       | 3       | 2         | 1     |
|-----------------|----------|---------|---------|-----------|-------|
| Evaluation in % | 85%-100% | 70%-84% | 55%-69% | 40% - 54% | 0-39% |

#### **Bibliography:**

- 1. Intelligent Control Systems Jancskarne 2020.pdf (Neptun MS)
- 2. R. C. Dorf, R. H. Bishop, Modern control systems, 12.ed. Prentice Hall, 2011.
- 3. Process Control Fundamentals P ID.pdf
- 4. Jan Jantzen: Tutorial On Fuzzy Logic: Jantsen Tutorial On Fuzzy Logic.pdf
- 5. LabVIEWfuzy toolbook.pdf
- 6. Nise: Control system engineering. Wiley, 2011
- 7. Timothy J. Ross: Fuzzy Logic with Engineering Applications, Wiley, 2010. ISBN-13: 978-0470743768
- 8. Kevin M. Passino and Stephen Yurkovich, *Fuzzy Control*, Addison Wesley Longman, Menlo Park, CA, 1998 (later published by Prentice-Hall). http://eewww.eng.ohio-state.edu/~passino/FCbook.pdf
- 9. Standard Isa Instrumentation Symbols And Identification.pdf
- 10. L. A. Bryan, E. A. Bryan, *PROGRAMMABLE CONTROLLERS, THEORY AND IMPLEMENTATION*, An Industrial Text Company Publication, Atlanta Georgia USA, 1997, ISBN 0-944107-32-X
- 11. Kevin M. Passino and Stephen Yurkovich, *Fuzzy Control*, Addison Wesley Longman, Menlo Park, CA, 1998 (later published by Prentice-Hall).
- 12. PC WORX 6 IEC 61131-Programming
- 13. E.A. Parr, Programmable Controllers, An engineer's guide, Newnes, 2003, ISBN 075065757 X

Additional papers for reading will be uploaded into Neptun MS by the instructor.