COURSE SYLLABUS AND COURSE REQUIREMENTS ACADEMIC YEAR 2022-2023 II. SEMESTER 02

Course title	Advanced Image Processing
Course Code	IVM202ANMI
Hours/Week: le/pr/lab	2/2/0
Credits	6
Degree Programme	Computer Science Engineering MSc
Study Mode	F ull Time
Requirements	Mid term exam
Teaching Period	Spring
Prerequisites	System Theory
Department(s)	Department of Technical Informatics
Course Director	Adam Schiffer, PhD
Teaching Staff	Adam Schiffer, PhD

COURSE DESCRIPTION

A short description of the course (max. 10 sentences).

Neptun: Instruction/Subjects/Subject Details/Basic data/Subject description

This course provides the student with the theoretical background to allow them to apply state of the art image processing techniques. The course teaches students to solve practical problems involving the processing of color and grayscale images. The teach tools used in solving the problems include a variety of feature extraction methods, filtering techniques, segmentation techniques, and transform methods. Students will use the techniques covered in the course to solve practical problems in projects. The course also discusses the basics of the SIFT algorithm, like Gaussian pyramids, Lagrange of Gaussians (LoG), mosaicking, feature detection.

SYLLABUS

Neptun: Instruction/Subjects/Subject Details/Syllabus

1. GOALS AND OBJECTIVES

Goals, student learning outcome.

Neptun: Instruction/Subjects/Subject Details/Syllabus/Goal of Instruction

- to provide an introduction to the exciting and rapidly advancing fields of image processing and computer vision;
- Cover the basic theory and algorithms that are used in modern digital image processing;
- Expose students to current technologies and issues that are specific to image processing systems;
- Develop hands-on experience in using computers to process images;
- Familiarize with Python in image processing;
- Develop critical thinking about shortcomings of the state of the art in image processing.

2. COURSE CONTENT

Neptun: Instruction/Subjects/Subject Details/Syllabus/Subject content

TOPICS

LECTURE	1.	Image processing basics
	2.	Python basics
	3.	Image color tables and formats
	4.	Point-by-point operations
	5.	Convolution filters
	6.	Morphological Image Processing
	7.	Hough transform
	8.	Classification

PRACTICE

- 9. Feature detection
- 1. Python basics
- 2. Practices in python according to the actual lecture's topic

DETAILED SYLLABUS AND COURSE SCHEDULE

ACADEMIC HOLIDAYS INCLUDED

LECTURE

week	Торіс	Compulsory reading;	Required tasks	Completion date,
		page number	(assignments,	due date
		(from to)	tests, etc.)	
1.	Introcuction	Advanced Image		
		Processing 1.pptx		
		[3] 1-25		
2.	Array handling in Python, Python basics,	Advanced Image		
	python modules	Processing 1.pptx		
		[3] 1-25		
3.	Image processing basics (point processing,	Advanced Image		
	neighbourhood processing, morphology) I.	Processing 2.pptx		
		[3] 65-84		
4.	Image processing basics (point processing,	Advanced Image	Homework I.	7 th week
	neighbourhood processing, morphology) II.	Processing 3.pptx		
		[3] 89-104		
5.	Project work I.			
6.	HOLIDAY			
7.	Image processing basics (point processing,	Advanced Image	Homework II.	10 th week
	neighbourhood processing, morphology) III.	Processing 4.pptx		
		[3] 335-356		
8.	Classification I.	Advanced Image		
		Processing 5.pptx		
9.	SPRING HOLIDAY			
10.	Classification II.	Advanced Image		
		Processing 5.pptx		
11.	JPEG image compression	Advanced Image	Homework III.	14 th week
		Processing 6.pptx		
12.	SIFT features I.	[6]		
13.	SIFT features II.	[6]		
14.	Project work II.			
15.	presentations			

PRACTICE, LABORATORY PRACTICE

week	Торіс	Compulsory reading;	Required tasks	Completion date,
		page number	(assignments,	due date
		(from to)	tests, etc.)	
1.	Introcuction			
2.	Array handling in Python, Python basics,			
	python modules			
З.	Image processing basics (point processing,			
	neighbourhood processing, morphology) I.			
4.	Image processing basics (point processing,		Homework I.	7 th week
	neighbourhood processing, morphology) II.			
5.	Project work I.			
6.	HOLIDAY			
7.	Image processing basics (point processing,		Homework II.	10 th week
	neighbourhood processing, morphology) III.			
8.	Classification I.			
9.	SPRING HOLIDAY			

10.	Classification II.		
11.	JPEG image compression	Homework III.	14 th week
12.	SIFT features I.		
13.	SIFT features II.		
14.	Project work II.		
15.	presentations		

3. ASSESSMENT AND EVALUATION

(Neptun: Instruction/Subjects/Subject Details/Syllabus/Examination and Evaluation System)

ATTENDANCE

In accordance with the Code of Studies and Examinations of the University of Pécs, Article 45 (2) and Annex 9. (Article 3) a student may be refused a grade or qualification in the given full-time course if the number of class absences exceeds 30% of the contact hours stipulated in the course description.

Method for monitoring attendance (e.g.: attendance sheet / online test/ register, etc.)

Attendance sheet

ASSESSMENT

Cells of the appropriate type of requirement is to be filled out (course-units resulting in mid-term grade or examination). Cells of the other type can be deleted.

Course resulting in mid-term grade (PTE TVSz 40§(3))

Mid-term assessments, performance evaluation and their ratio in the final grade (The samples in the table to be deleted.)

Туре	Assessment	Ratio in the final grade
a personal interview on the tasks to be submitted		100%

Opportunity and procedure for re-takes (PTE TVSz 47§(4))

The specific regulations for improving grades and resitting tests must be read and applied according to the general Code of Studies and Examinations. E.g.: all tests and assessment tasks can be repeated/improved at least once every semester, and the tests and home assignments can be repeated/improved at least once in the first two weeks of the examination period.

The homeworks can be retaken

Grade calculation as a percentage

based on the aggregate performance according to the following table

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

4. SPECIFIED LITERATURE

In order of relevance. (In Neptun ES: Instruction/Subject/Subject details/Syllabus/Literature)

COMPULSORY READING AND AVAILABILITY

[1] Lecture ppt

[2] Jan Erik Solem: Programming Computer Vision with Python, [online], elérhetőség: <u>http://programmingcomputervision.com</u>

[3] Gonzalez RC Woods RE. Digital Image Processing. 2nd ed. Upper Saddle River N.J: Prentice Hall; 2002.

RECOMMENDED LITERATURE AND AVAILABILITY

[4] Aubert, G., Kornprobst, P. (2002) Mathematical Problems in Image Processing. Springer, New York.

[5] Bernd Jahne: Digital Image Processing, Berlin, Springer, 2005.

[6] Tony Lindeberg: Edge detection and ridge detection with automatic scale selection. Technical report, 1998.

[7] Hamid R. Tizhoosh: Fuzzy-Bildverarbeitung, Berlin, Springer, 1998.