COURSE SYLLABUS AND COURSE REQUIREMENTS ACADEMIC YEAR 2023-2024 SEMESTER SPRING

Course title	Engineering Mathematics 2.
Course Code	MSB294, MSB594, IVB292
Hours/Week: le/pr/lab	2/2/0
Credits	4
Degree Programme	Civil, Computer Science, Electrical Engineering BSc
Study Mode	Full-time
Requirements	Exam
Teaching Period	Spring
Prerequisites	Engineering Mathematics 1.
Department(s)	Department of Engineering Mathematics
Course Director	Ákos PILGERMÁJER
Teaching Staff	Ákos PILGERMÁJER, András KASZÁS

COURSE DESCRIPTION

Lectures give introduction to the basic theory of calculus and important mathematical techniques of problem solving. Equal emphasis is given to learning new mathematics and to learning how to construct and write down correct mathematical arguments. Upon completion of this course, the student should be able to: interpret, and put into practice

- a. applications of derivatives
- b. integral calculus in one variable and its applications to engineering problems
- c. basics of differential and integral calculus in two variables
- d. ordinary differential equations of special kinds

SYLLABUS

1. GOALS AND OBJECTIVES

The course has lectures and laboratory sessions. The instructors' aim to give civil, computer science and electrical engineer students the necessary mathematical background through intuitive and visual presentations during lectures supported by examples of the corresponding concepts. These are further investigated in more detail during laboratory classes. Firstly, by instructed problem solution then by independent student work, if possible, using the Möbius teaching and assessment system. Students learn the basics of mathematics enabling them to interpret and understand engineering sciences and through solving elementary tasks they deepen their basic theoretical knowledge in the field of engineering. The practical sessions are designed to complement the requirements of different specializations.

2. COURSE CONTENT

	TOPICS
LECTURE	 Applications of derivatives Integral calculus in one variable and its applications Differential and integral calculus in two variables Ordinary differential equations of special kinds
PRACTICE	
LABORATORY PRACTICE	 Applications of derivatives Integral calculus in one variable and its applications Differential and integral calculus in two variables Ordinary differential equations of special kinds

DETAILED SYLLABUS AND COURSE SCHEDULE

ACADEMIC HOLIDAYS INCLUDED

LECTURE (Classes: Wednesdays 9:30-11:00 in A-019)

LLCTO	RE (Classes: Weanesdays 9:30-11:00 I			
week	Торіс	Compulsory reading; page number (from to)	Required tasks (assignments, tests, etc.)	Completion date, due date
1.	Introduction to the course, discussion of the	[1] 221-231, 292-299,		
	syllabus. L'Hôpital's rule, linear approximation, higher	805-822		
	order approximation: Taylor polynomial,			
	remainder term, order of osculation			
2.	Applications of differential calculus to the	[1] 244-278		
	study of properties of functions; function			
	discussion			
3.	Solving applied optimization problems.	[1] 278-292, 307-318,		
	Antiderivatives, basic integration formulae	553-561		
4.	Integration by parts, change of variable	[1] 561-570, 368-376		Homework 1
5.	Integration of rational functions by partial	[1] 570-593		Midterm 1
	fraction decomposition, integration of rational expressions containing			(8 March 2024)
	trigonometric functions			
6.	Definite integral, Riemann-sum, numerical	[1] 325-368		
	integration, Newton-Leibniz theorem,			
	applications of the integral: area under the			
	graph of a function			
7.	Applications of the integral: area between	[1] 376-387, 396-461		
	curves, length of a curve, area of the surface			
0	and volume of the solid of revolution Improper integrals	[1] 619-633		
8. 9.	The function of two variables, partial	[1] 965-1005, 1005-		
9.	derivatives, directional derivatives, gradient	1015		
	vector	1010		
10.	Multiple integrals and their applications	[1] 1067-1111		
11.	First-order separable and linear differential	[1] 642-650, 1452-		Homework 2
	equations, Lagrange's method (variation of	1474		
	the parameters)			
12.	Second-order linear differential equations	[1] 1493-1504		Midterm 2
	with constant coefficients: three cases,			(26 April 2024)
	resonance, undetermined coefficients method			
13.	On Wednesday: Labour's Day (National			
10.	Holiday)			
14.	Consultation for the exam, retakes			
I				

LABORATORY PRACTICE (Classes: Monday 11:15-12:45, Wednesday 11:15-12:45, Wednesday 15:00-16:30) M: MÖBIUS ASSESSMENT

weekTopicCompulsory reading: page number (from to)Required tasks, (asignments,<	M: MC	DBIUS ASSESSMENT			
differentials, higher order approximation with Taylor polynomial, remainder term, order of osculation805-822derivatives 12.Applications of differential calculus to the study of properties of functions; function sketch through discussion[1] 244-278M: Application of derivatives 23.Solving applied optimization problems. Antiderivatives, basic integration formulae[1] 278-292, 307-318, 553-561M: Application of derivatives 2, Antiderivatives, basic integration formulae4.Integration by parts, change of variable[1] 561-570, 368-376M: Antiderivatives 2, Antiderivatives 15.Integration of rational functions by partial fraction decomposition, integration of rational expressions containing trigonometric functionsM: Antiderivatives 3Midterm 1 (8 March 2024)6.Definite integral, Rieman-sum, Newton- Leibniz theorem (Fundamental Theorem of Calculus), area under the graph of a function[1] 376-387, 396-461M: Definite integral 27.Applications of the integral: area between curves, length of a curve, moments and centres of mass, area of the surface and volume of the solid of revolution[1] 965-1005, 1005- 1015M: Function of two variables 18.Easter Monday (National Holiday), Wednesday lessons will be held.[1] 1067-1111M: Function of two variables 210.Multiple integrals and their applications[1] 1067-1111M: Function of two variables 211.First-order separable and linear differential equation 1[1] 1493-1504M: Offerential equation 112.Second-order linear differential e	week	Торіс	page number	(assignments,	-
study of properties of functions; function sketch through discussion derivatives 2 3. Solving applied optimization problems. Antiderivatives, basic integration formulae [1] 278-292, 307-318, 553-561 M: Application of derivatives 2, Antiderivatives 1 4. Integration by parts, change of variable [1] 561-570, 368-376 M: Antiderivatives 1 5. Integration of rational functions by partial fraction decomposition, integration of rational expressions containing trigonometric functions [1] 570-593 M: Antiderivatives 3 Midterm 1 (8 March 2024) 6. Definite integral, Riemann-sum, Newton- Leiniz theorem (Fundamental Theorem of Calculus), area under the graph of a function volume of the solid of revolution [1] 376-387, 396-461 M: Definite integral 2 8. Improper integrals [1] 619-633 M: Function of two variables 1 9. Easter Monday (National Holday), Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient vector [1] 1067-1111 M: Function of two variables 2 10. Multiple integrals and their applications with constant coefficients: three cases, resonance, undetermined coefficients method [1] 1493-1504 M: Differential equation 2 Midterm 2 (26 April 2024)	1.	differentials, higher order approximation with Taylor polynomial, remainder term,			
Antiderivatives, basic integration formulae553-561derivatives 2, Antiderivatives 14.Integration by parts, change of variable[1] 561-570, 368-376M: Antiderivatives 15.Integration of rational functions by partial fraction decomposition, integration of rational expressions containing[1] 570-593M: Antiderivatives 3Midterm 1 (8 March 2024)6.Definite integral, Riemann-sum, Newton- Leibniz theorem (Fundamental Theorem of Calculus), area under the graph of a function[1] 325-368M: Definite integral 17.Applications of the integral: area between curves, length of a curve, moments and volume of the solid of revolution[1] 619-633M: Function of two variables 18.Improper integrals[1] 619-633[1] 965-1005, 1005- 1015M: Function of two variables 110.Multiple integrals and their applications equations[1] 1067-1111M: Function of two variables 211.First-order separable and linear differential equations[1] 642-650, 1452- 1474M: Differential equation 112.Second-order linear differential equations[1] 1493-1504M: Differential equation 2Midterm 2 (26 April 2024)13.Wednesday: Labour's Day (National Holiday), Wordeday: Labour's Day (National Holiday), Monday Lesson will be held.[1] 1493-1504M: Differential equation 1	2.	study of properties of functions; function	[1] 244-278		
5. Integration of rational functions by partial fraction decomposition, integration of rational expressions containing trigonometric functions [1] 570-593 M: Antiderivatives and the problem of the pro	3.	• • • •		derivatives 2,	
fraction decomposition, integration of rational expressions containing trigonometric functions 3 (8 March 2024) 6. Definite integral, Riemann-sum, Newton-Leibniz theorem (Fundamental Theorem of Calculus), area under the graph of a function 11 325-368 M: Definite integral 1 7. Applications of the integral: area between curves, length of a curve, moments and centres of mass, area of the surface and volume of the solid of revolution (1) 376-387, 396-461 M: Definite integral 2 8. Improper integrals [1] 619-633 2 2 9. Easter Monday (National Holiday), Wednesday lessons will be held. [1] 965-1005, 1005- M: Function of two variables, partial derivatives, directional derivatives, gradient vector M: Function of two variables 1 10. Multiple integrals and their applications [1] 1067-1111 M: Function of two variables 2 11. First-order separable and linear differential equations with constant coefficients: three cases, resonance, undetermined coefficients is method [1] 1493-1504 M: Differential equation 2 (26 April 2024) 13. Wednesday: Labour's Day (National Holiday), Monday lesson will be held. I I I	4.	Integration by parts, change of variable	[1] 561-570, 368-376		Homework 1
Leibniz theorem (Fundamental Theorem of Calculus), area under the graph of a function17.Applications of the integral: area between curves, length of a curve, moments and centres of mass, area of the surface and volume of the solid of revolution[1] 376-387, 396-461M: Definite integral 28.Improper integrals[1] 619-6339.Easter Monday (National Holiday), Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient vector[1] 1067-1111M: Function of two variables 110.Multiple integrals and their applications[1] 1067-1111M: Function of two variables 211.First-order separable and linear differential equations[1] 493-1504M: Differential equation 212.Second-order linear differential coefficients: the constant coefficients: three cases, resonance, undetermined coefficients[1] 1493-1504M: Differential equation 213.Wednesday: Labour's Day (National Holiday), Monday lesson will be held.[1] tabaut's Day (National Holiday), Monday lesson will be held.[1] tabaut's Day (National Holiday), Monday lesson will be held.	5.	fraction decomposition, integration of rational expressions containing	[1] 570-593		
curves, length of a curve, moments and centres of mass, area of the surface and volume of the solid of revolution28.Improper integrals[1] 619-6339.Easter Monday (National Holiday), Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient vector[1] 965-1005, 1005- 101510.Multiple integrals and their applications[1] 1067-1111M: Function of two variables 211.First-order separable and linear differential equations[1] 642-650, 1452- 1474M: Differential equation 112.Second-order linear differential equations with constant coefficients: three cases, resonance, undetermined coefficients[1] 1493-1504M: Differential equation 213.Wednesday: Labour's Day (National Holiday), Monday lesson will be held.[1] and the led.[1] 1493-1504	6.	Leibniz theorem (Fundamental Theorem of	[1] 325-368	-	
9.Easter Monday (National Holiday), Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient vector[1] 965-1005, 1005- 1015M: Function of two variables 110.Multiple integrals and their applications[1] 1067-1111M: Function of two variables 211.First-order separable and linear differential equations[1] 642-650, 1452- 1474M: Differential equation 112.Second-order linear differential equations with constant coefficients: three cases, resonance, undetermined coefficients method[1] 1493-1504M: Differential equation 213.Wednesday: Labour's Day (National Holiday), Monday lesson will be held.[National Holiday)[National Holiday)	7.	curves, length of a curve, moments and centres of mass, area of the surface and	[1] 376-387, 396-461	-	
Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient vector1015variables 110.Multiple integrals and their applications[1] 1067-1111M: Function of two 	8.	Improper integrals	[1] 619-633		
Image: Non-State and linear differential equationsImage: Non-State and linear differential equationsVariables 211.First-order separable and linear differential equations[1] 642-650, 1452- 1474M: Differential equation 112.Second-order linear differential equations with constant coefficients: three cases, resonance, undetermined coefficients method[1] 1493-1504M: Differential equation 213.Wednesday: Labour's Day (National Holiday), Monday lesson will be held.National HolidayImage: Non-State and State	9.	Wednesday lessons will be held. The function of two variables, partial derivatives, directional derivatives, gradient			
equations1474equation 112.Second-order linear differential equations with constant coefficients: three cases, resonance, undetermined coefficients method[1] 1493-1504M: Differential equation 2Midterm 2 (26 April 2024)13.Wednesday: Labour's Day (National Holiday), 	10.	Multiple integrals and their applications	[1] 1067-1111		
 with constant coefficients: three cases, resonance, undetermined coefficients method 13. Wednesday: Labour's Day (National Holiday), Monday lesson will be held. equation 2 (26 April 2024) 	11.				Homework 2
13. Wednesday: Labour's Day (National Holiday), Monday lesson will be held.	12.	with constant coefficients: three cases, resonance, undetermined coefficients	[1] 1493-1504		
	13.	Holiday),			
	14.				

ATTENDANCE

Method for monitoring attendance

Attendance sheet/ online test/ other valid means of checking attendance. Making up any absence is not possible according to the current state of science. No need for verification of absence, but keep it under the regulation limit (30 % of total contact hours (lectures and laboratory classes)).

ASSESSMENT

Course-unit with final examination

Mid-term assessments, performance evaluation and their weighting as a pre-requisite for taking the final exam

Туре	Assessment	Weighting as a proportion of the pre- requisite for taking the exam
Homeworks (Möbius platform)	test points	10 %
Midterm tests (>= 40 %)	test points	90 %

Requirements for the end-of-semester signature

In general:

- Midterm tests and homeworks are compulsory. Missing both midterm tests terminates in failure of the course!
- At most one midterm test can be made up due to serious causes which must be written in advance to the lecturer in a Teams message.
- Homeworks can be handed in continuously during their availability, but no delays are permitted.

In particular:

• Successful midterm tests (>= 40 % for each)

AND

AND

• successful *mid-term performance*:

submitted homeworks

90%*(MTT1%+MTT2%)/2+10%*(HW1%+HW2%)/2 >= 40%,

where MTT[12]%: midterm test [12] %, HW[12]%: homework[12] %

Re-takes for the end-of-semester signature

Make up of at most one unwritten or retake (only once due to regulations) of the unsuccessful midterm will be held on the 1st week of the exam period.

Type of examination (written, oral): written (plus oral if grade 5 is the student's aim)

The exam is successful if the result is minimum 40 %.

Calculation of the final grade

- 1. **Offered grade** (*without an exam*): if the student's mid-term performance is better than 55 %, then I offer a grade to her/him based upon her/his performance between 3 and 4. This offered grade will be registered into the Neptun system and must be accepted or denied during the exam period. Otherwise, it will be unvalidated.
- 2. **Final grade** (*with an exam* taken <u>in the exam period</u>): If the student earned the end of semester signature but did not get or accepted the offered grade, *must take an exam* in the exam period for which (s)he registers in Neptun in advance as usual.

The mid-term performance accounts for **50** %, the performance at the exam accounts for **50** % in the calculation of the final grade.

Calculation of the final grade based on aggregate performance in percentage.

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

3. Specified literature

COMPULSORY READING AND AVAILABILITY

[1] George B. Thomas, Jr.: Thomas' Calculus, Eleventh, International Edition, Pearson Addison Wesley, 2006.

RECOMMENDED LITERATURE AND AVAILABILITY

[2] Additional course materials on Teams.