COURSE SYLLABUS AND COURSE REQUIREMENTS

ACADEMIC YEAR 24/25 SEMESTER FALL

Course title	REINFORCED CONCRETE STRUCTURES
Course Code	MSB165ANEP
Hours/Week: le/pr/lab	1/2/0
ECTS	4
Degree Programme	Civil Engineer BSc
Study Mode	Full-time, in-person
Requirements	Exam
Teaching Period	24/25 Fall
Prerequisites	MSB086ANEP, MSB110ANEP
Department(s)	Department of Civil Engineering
Course Director	
Teaching Staff	Tamas Juhasz juhasz.tamas@mik.pte.hu

COURSE DESCRIPTION

In this course, students will learn the basics of reinforced concrete structures and explore the composition of concrete and the reinforcement of mild steel under different load conditions according to Eurocode standards. The lectures and practical classes will concentrate on the structural analysis and limit state design of simply and complexly supported concrete beams.

SYLLABUS

1. GOALS AND OBJECTIVES

Specific (Measurable) Student Behavioral Learning Objectives:

Upon completion of this course, the student should be able to

- 1. Identify and explain the characteristics of stress stages of reinforced concrete sections in flexure.
- 2. Analyze reinforced concrete sections under transverse shear.
- 3. Optimize the amount of reinforcement of concrete beams for different limit state criteria.
- 4. Draw reinforcement structural plans.

2. COURSE CONTENT

TOPICS		
LECTURE,	1. Mechanical properties of concrete and reinforcing steel	
PRATICE, LAB	, LAB 2. Stress stages	
	3. Design of reinforced concrete beams in flexure	
	4. Design of reinforced concrete beams in shear	
	5. Limit state design	
	6. Requirements of structural drawings	

DETAILED SYLLABUS AND COURSE SCHEDULE, TENTATIVE

UNFORESEEABLE CIRCUMSTANCES MIGHT AFFECT THE SCHEDULE BELOW. ACADEMIC HOLIDAYS INCLUDED

LECTURE, PRATICE, LAB

week	Торіс	Compulsory reading	Required tasks (assignments, tests, etc.)	Completion date, due date
1.	Registration, introduction in general	[1]	TBD	ТВА
2.	Mechanical Properties and Material Models	[1]	TBD	ТВА
2.	of Concrete and Reinforcing Steel,			10/1
	Introduction to Stress Stages			
3.	Analysis of Sections in Flexure Under Stress	[1]	TBD	ТВА
	Stage I and Stress Stage II			
4.	Failure Criteria of Concrete Beams,	[1]	TBD	ТВА
	Calculation Methods for Moment Bearing			
	Capacity			
5.	Plastic Design of Beams for Bending I,	[1]	TBD	ТВА
	Ultimate Limit State Design	[4]		
6.	Plastic Design of Beams for Bending II	[1]	TBD	ТВА
7.	Biaxial Bending, The Interaction Curve	[1]	1 st Midterm test	ТВА
	Handing out take-home assignments	[4]	tentative	
8.	Transverse Shear in Concrete Beams	[1]	TBD	ТВА
9.	Shear Design According to Eurocode 2	[1]	TBD	ТВА
10.	Complex Plastic Design of Concrete Beams,	[1]	TBD	ТВА
	Development Length, Curtailment	[4]		
11.	Serviceability Requirements,	[1]	TBD	ТВА
12	Design for Elastic Deflection	[1]		
12.	Serviceability Requirements, Crack Width		TBD	ТВА
13.	Engineering Drawings of Reinforced	[1]	2 nd Midterm test	Collecting take home
15.	Concrete Beams,	L _ 1	tentative	assignments
	Evaluation and Grading			assignments
l		1	1	

3. ASSESSMENT AND EVALUATION

ATTENDANCE

By the Code of Studies and Examinations of the University of Pécs, Article 45 (2) and Annex 9. (Article 3) a student may be refused a grade or qualification in the given full-time course if the number of class absences exceeds 30% of the contact hours stipulated in the course description. Online attendance is not available.

Method for monitoring attendance

Attendance will be monitored by attendance lists. All relevant university regulations apply.

ASSESSMENT

Assessment will be based on the quality of the two midterm tests, the take-home project, and the final exam.

The midterm tests are scheduled for the 7^{th} and 13^{th} academic week. The exact dates and times will be announced no later than two weeks prior to due.

The take-home project will be assigned on the 7th *week and must be turned in by the final week. No late submission is accepted. No tests scored below 40% can be accepted and must be repeated.*

Midterm test results cannot be combined.

A make-up test is available on the 15th week.

Neatness is part of the grade for all student work.

Mid-term assessments, performance evaluation, and their weighting as a pre-requisite for taking the final exam

Туре	Assessment	Weighting as a proportion of the pre-requisite for taking the exam
1. Take-home project	max 100 points	34 %
2. Midterm test I	max 100 points	33 %
3. Midterm test II	max 100 points	33 %

Requirements for the end-of-semester signature

- Each midterm test must score 40 points or beyond.
- Take-home project must score 70 points or beyond.
- Regular attendance as per the Code of Studies.

Re-takes for the end-of-semester signature

• A make-up test is available on the 1st week of the examination term.

Type of examination spoken

The exam is successful if the result is a minimum of 40%

Calculation of the grade (TVSz 47§ (3))

The mid-term performance accounts for 50%, and the performance at the exam accounts for 50% of the final grade calculation.

Calculation of the final grade based on aggregate performance in percentage.

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

4. SPECIFIED LITERATURE

COMPULSORY READING AND AVAILABILITY

[1.] Bill Mosley, John Bungey, Ray Hulse Reinforced Concrete Design to Eurocode 2 7th Edition ISBN0230302858, 9780230302853