COURSE SYLLABUS AND COURSE REQUIREMENTS ACADEMIC YEAR 2024-2025 SEMESTER I

Course title	Biophysics
Course Code	MSM605MNEG
Hours/Week: le/pr/lab	2/2/0
Credits	4
Degree Programme	Biomedical Engineering MSc
Study Mode	Full-time
Requirements	exam
Teaching Period	fall
Prerequisites	
Department(s)	Medical School, Department of Biophysics
Course Director	Dr. Lukács András
Teaching Staff	Dr. Lukács András, Dr. Telek Elek, Dr. Újfalusi Zoltán, Dr. Pécsi Ildikó, Dr. Bódis
	Emőke, Dr. Fekete Zsuzsanna, Dr. Pasitka Jonatán

COURSE DESCRIPTION

A short description of the course (max. 10 sentences). Neptun: Instruction/Subjects/Subject Details/Basic data/Subject description

SYLLABUS

...

Neptun: Instruction/Subjects/Subject Details/Syllabus

1. GOALS AND OBJECTIVES

Goals, student learning outcome.

Neptun: Instruction/Subjects/Subject Details/Syllabus/Goal of Instruction

The course addresses the physical basis of the structure and function of biological systems. The main topics include atomic and nuclear physics, thermodynamics, transport processes, molecular and supramolecular systems, bioelectric phenomena, and biological motion.

2. COURSE CONTENT

Neptun: Instruction/Subjects/Subject Details/Syllabus/Subject content

TOPICS

LECTURE

- Introduction
 The structure of atoms I (Rutherford's experiment, Bohr's model)
- 3. The structure of atoms II (De Broglie, Photoelectric effect, Frank-Hertz experiment)
- 4. The quantum mechanical model of the atom. Orbitals, molecular orbitals.
- 5. LASER I
- 6. LASER II
- 7. Absorption spectroscopy
- 8. Fluorescence spectroscopy
- 9. Infrared spectroscopy
- 10. Raman spectroscopy
- 11. Thermodynamics 1 (zeroth law, gas laws, work, first law)
- 12. Thermodynamics 2 (enthalpy, Gibbs free energy, spontaneous processes)
- 13. Structure of the atomic nucleus, radioactivity
- 14. Interaction of radioactive radiations with matter, biological effects
- 15. Gamma-camera, SPECT, PET

- 16. NMR, MRI
- 17. X-ray diagnostics, CT
- 18. Protein structure (folding, enzymes)
- 19. Molecular mechanisms of biological movement: motor proteins, cytoskeletal polymers
- 20. Molecular mechanisms of muscle functioning
- 21. Structure of membranes. Resting membrane potential
- 22. Types of sensory receptors. Action potential
- 23. Fluid flow
- 24. Circulation. Work of the heart
- 25. Vision
- 26. Hearing
- 27. Ultrasound
- 28. DSC, ITC

PRACTICE LABORATORY PRACTICE

- 1. Introduction. Laboratory safety rules
- 2. Direct current measurements
- *3. Alternative current measurements*
- 4. Frank-Hertz experiment
- 5. Raman spectroscopy
- 6. Spectroscopy and spectrophotometry
- 7. Fluorescence spectroscopy
- 8. Polarimetry and refractometry
- 9. Temperature and basic thermodynamics measurement
- 10. Conductivity
- *11. Michelson interferometer*
- 12. Make-up lab
- 13. Make-up lab
- 14. Make-up lab and final evaluation

DETAILED SYLLABUS AND COURSE SCHEDULE

ACADEMIC HOLIDAYS INCLUDED

LECTURE

week	Торіс	Compulsory reading; page number (from to)	Required tasks (assignments, tests, etc.)	Completion date, due date
1.	Introduction The structure of atoms I	LECTURE NOTES		
2.	The structure of atoms IIThe quantum mechanical model of the atom.Orbitals, molecular orbitals	LECTURE NOTES		
3.	LASER I-II	LECTURE NOTES		
4.	Absorption spectroscopy Fluorescence spectroscopy	LECTURE NOTES		
5.	Infrared spectroscopy Raman spectroscopy	LECTURE NOTES		
6.	Thermodynamics 1-2	LECTURE NOTES		
7.	Structure of the atomic nucleus, radioactivity Interaction of radioactive radiations with matter, biological effects	LECTURE NOTES		
8.	Gamma-camera, SPECT, PET NMR, MRI	LECTURE NOTES		
9.	autumn break			
10.	X-ray diagnostics, CT Protein structure (folding, enzymes)	LECTURE NOTES		

11.	Molecular mechanisms of biological movement: motor proteins, cytoskeletal polymers Molecular mechanisms of muscle functioning	LECTURE NOTES	
12.	Structure of membranes. Resting membrane	LECTURE NOTES	
	potential		
	Types of sensory receptors. Action potential		
13.	Fluid flow	LECTURE NOTES	
	Circulation. Work of the heart		
14.	Vision	LECTURE NOTES	
	Hearing		
	Ultrasound		
	DSC, ITC		

PRACTICE, LABORATORY PRACTICE

week	Торіс	Compulsory reading;	Required tasks	Completion date,
		page number	(assignments,	due date
		(from to)	tests, etc.)	
1.	Introduction. Laboratory safety rules	LECTURE NOTES		
2.	Direct current measurements	LECTURE NOTES		
3.	Alternative current measurements	LECTURE NOTES		
4.	Frank-Hertz experiment	LECTURE NOTES		
5.	Raman spectroscopy	LECTURE NOTES		
6.	Spectroscopy and spectrophotometry	LECTURE NOTES		
7.	Fluorescence spectroscopy	LECTURE NOTES		
8.	Polarimetry and refractometry	LECTURE NOTES		
9.	Temperature and basic thermodynamics	LECTURE NOTES		
	measurement			
10.	Conductivity	LECTURE NOTES		
11.	Michelson interferometer	LECTURE NOTES		
12.	Make-up lab	LECTURE NOTES		
13.	Make-up lab	LECTURE NOTES		
14.	Make-up lab and final evaluation	LECTURE NOTES		
15.				

3. ASSESSMENT AND EVALUATION

(Neptun: Instruction/Subjects/Subject Details/Syllabus/Examination and Evaluation System)

ATTENDANCE

In accordance with the Code of Studies and Examinations of the University of Pécs, Article 45 (2) and Annex 9. (Article 3) a student may be refused a grade or qualification in the given full-time course if the number of class absences exceeds 30% of the contact hours stipulated in the course description.

Method for monitoring attendance (e.g.: attendance sheet / online test/ register, etc.)

...

ASSESSMENT

Cells of the appropriate type of requirement is to be filled out (course-units resulting in mid-term grade or examination). Cells of the other type can be deleted.

Course-unit with final examination

Mid-term assessments, performance evaluation and their weighting as a pre-requisite for taking the final exam (The samples in the table to be deleted.)

Туре	Assessment	Weighting as a proportion of the pre-requisite for taking the exam
1. e.g: Test 1	eg. max 20 points	eg. 20 %
2. e.g.: Test 2	eg. max 30 points	eg. 30 %
3. e.g.: home assignment (project documentation)	eg. max 30 points	eg. 30 %
4	eg. max 15 points	eg. 20 %

Requirements for the end-of-semester signature

(Eg.: mid-term assessment of 40%)

Performing all the practical labs

Re-takes for the end-of-semester signature (PTE TVSz 50§(2))

The specific regulations for grade betterment and re-take must be read and applied according to the general Code of Studies and Examinations. E.g.: all the tests and the records to be submitted can be repeated/improved each at least once every semester, and the tests and home assignments can be repeated/improved at least once in the first two weeks of the examination period.

There are three make up labs in order to perform the missed labs

Type of examination (written, oral): oral

The exam is successful if the result is minimum 40 %. (The minimum cannot exceed 40%.)

Calculation of the grade (TVSz 47§ (3))

The mid-term performance accounts for **0** %, the performance at the exam accounts for **100** % in the calculation of the final grade.

Calculation of the final grade based on aggregate performance in percentage.

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

4. SPECIFIED LITERATURE

In order of relevance. (In Neptun ES: Instruction/Subject/Subject details/Syllabus/Literature)

COMPULSORY READING AND AVAILABILITY

[1.] Medical biophysics (ed. Damjanovich, Fidy, Szöllőssy) Medicina Kiadó

RECOMMENDED LITERATURE AND AVAILABILITY

[3.] P.W. Atkins: Physical Chemistry