OURSE SYLLABUS AND COURSE REQUIREMENTS ACADEMIC YEAR 2025/26 SEMESTER 1

Course title	Problem classes
Course Code	VB052ANMI
Hours/Week: le/pr/lab	2/0/0
Credits	4
Degree Programme	Computer science engineering BSc
Study Mode	Full-time
Requirements	Final exam
Teaching Period	2025/26-1
Prerequisites	-
Department(s)	Systems and Software Technologies
Course Director	
Teaching Staff	Dr. STORCZ, Tamás

COURSE DESCRIPTION

A short description of the course (max. 10 sentences).

Neptun: Instruction/Subjects/Subject Details/Basic data/Subject description

The concept of an algorithm, how it is represented. Simple algorithms. Computability, complexity theory, P and NP problems. Basic data structures: array, row, stack, list, tree and graph. Graph theory basics and algorithms. Search algorithms, depth and breadth-first search. Sorting algorithms. Hash tables, clash resolution. Recursion and recursive algorithms

SYLLABUS

Neptun: Instruction/Subjects/Subject Details/Syllabus

1. GOALS AND OBJECTIVES

Goals, student learning outcome.

Neptun: Instruction/Subjects/Subject Details/Syllabus/Goal of Instruction

The main objective of the course is to introduce students to the concept of algorithm and the formal treatment of programming tasks, and to present some well-known and commonly used algorithms for different data structures.

2. COURSE CONTENT

Neptun: Instruction/Subjects/Subject Details/Syllabus/Subject content

TOPICS

LECTURE

- 1. Problem, algorithm, representations
- 2. Elementary algorithms
- 3. Data structures and their algorithms
- 4. Number representations and operations
- 5. Complexity theory

DETAILED SYLLABUS AND COURSE SCHEDULE

ACADEMIC HOLIDAYS INCLUDED

LECTURE

week	Торіс	Compulsory reading; page number (from to)	Required tasks (assignments, tests, etc.)	Completion date, due date
1.	Introduction, connection to programming			
2.	Problem, algorithm, representation			
3.	Elementary algorithms			
4.	Array, Pointer, Record, Dynamic List			
5.	Methods, recursion, elementary instructions			
6.	Practice		Homework	Week #10
<i>7</i> .	Data structures and their algorithms			
8.	Holiday			
9.	Graph, tree, search, sort			
10.	Other graph algorithms			
11.	Hash tables		HW resubmission	Week #13
12.	Number representations and operations			
13.			Midterm exam	
14.			Midterm exam retake	

3. ASSESSMENT AND EVALUATION

(Neptun: Instruction/Subjects/Subject Details/Syllabus/Examination and Evaluation System)

ATTENDANCE

In accordance with the Code of Studies and Examinations of the University of Pécs, Article 45 (2) and Annex 9. (Article 3) a student may be refused a grade or qualification in the given full-time course if the number of class absences exceeds 30% of the contact hours stipulated in the course description.

Method for monitoring attendance (e.g.: attendance sheet / online test/ register, etc.

on-line tests

ASSESSMENT

Cells of the appropriate type of requirement is to be filled out (course-units resulting in mid-term grade or examination). Cells of the other type can be deleted.

Course-unit with final examination

Mid-term assessments, performance evaluation and their weighting as a pre-requisite for taking the final exam (The samples in the table to be deleted.)

Туре	Assessment	Weighting as a proportion of the pre-requisite for taking the exam
1. Homework	success/failure	50%
2. Midterm exam	20	50%

Requirements for the end-of-semester signature

(Eg.: mid-term assessment of 40%)

Midterm exam minimum 40%

Re-takes for the end-of-semester signature (PTE TVSz 50§(2))

The specific regulations for grade betterment and re-take must be read and applied according to the general Code of Studies and Examinations. E.g.: all the tests and the records to be submitted can be repeated/improved each at least once every semester, and the tests and home assignments can be repeated/improved at least once in the first two weeks of the examination period.

On week 14

Type of examination (written, oral): written.

The exam is successful if the result is minimum 40 %. (The minimum cannot exceed 40%.)

Calculation of the grade (TVSz 47§ (3))

The mid-term performance accounts for **0** %, the performance at the exam accounts for **100** % in the calculation of the final grade.

Calculation of the final grade based on aggregate performance in percentage.

Course grade	Performance in %
excellent (5)	85 %
good (4)	70 % 85 %
satisfactory (3)	55 % 70 %
pass (2)	40 % 55 %
fail (1)	below 40 %

The lower limit given at each grade belongs to that grade.

4. SPECIFIED LITERATURE

In order of relevance. (In Neptun ES: Instruction/Subject/Subject details/Syllabus/Literature)

COMPULSORY READING AND AVAILABILITY

[1.] Tamas Storcz: Problem classes, algorithms, data structures - Lecture notes

RECOMMENDED LITERATURE AND AVAILABILITY

- [2.] Cormen, Leiserson, Rievst, Stein: Introduction to Algorithms (The MIT Press)
- [3.] Sedgewick, Wayne: Algorithms (Princeton University)
- [4.] Erickson: Algorithms